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Using unitary representations of the Lorentz group, and expanding in powers of mass splitting, we intro-
duce a perturbative approach to superconvergence relations and current algebra.

'UCH effort has been devoted recently toward
representation of current algebra and/or super-

convergence relations' ' in a one-particle subspace. It
appears that the relations with a finite number of
external one-particle states have an infinite number of
solutions, 4 so we are encouraged to study the full
problem (with nondegenerate masses).

In this paper we introduce a perturbative approach,
expanding in powers of the mass splitting around various
degenerate mass solutions. We begin with the set of all
helicity-Qip-two superconvergence relations associated
with the scattering of an isospin-zero tower from co

mesons (or commutative current algebra). Solutions
are exhibited to second order for this system. Models
with internal symmetry are also brieAy studied, and
finally a scheme which introduces SU(6)-like solutions
is discussed.

YVe begin by reviewing'' the statement of super-
convergence relations and the kinematic structure of
current matrix elements in the P,= eo frame. Having in
mind scattering of a tower from a vector-meson target,
we define currents FN(q) in the p, = co frame as the
boosted form of

dx e'&'*P0 (O,x).

Here n is an isospin or SU(3) index, and tl is the
two-dimensional momentum, perpendicular to the third
direction, carried by the current. In terms of these
operators, the set of all helicity-Rip-two supercon-
vergence relations (or commutative current algebra)
takes the form

2"(e) ~'(e') j=O,
tls= (tl')s= —(vector meson mass)'. (1)
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Moreover, sandwiching the currents between states of
definite momentum, spin, and mass, one has

(p', Js,J,s,MsiF (q) i y,J1,J,1,M1)
= (2 )'&(p0'+ ps' —p.-p.)b"'(1 '+q —p )

X(J2 J*2 M2~ + QM Ar (tl) ~
Ji,J.1 M1), (2)

where ger, sr, (q), containing the boosts from both ex-
ternal states (and leaving them at rest), is

gee, se, (q) =exp(iKs ln(Ms/M0)1 exp(ig x)
XexpL —iE, 1n(M1/Mo) j,

(3)
(1/MO)Lgs(J1+E2) g1(J2 El)j j

oc=Ji+Es, y =Js Ei. —

J, K are the usual rotations and boosts, M0 is a number
(later the degenerate mass), and Pa is the "reduced
matrix element. "8, must transform like a vector plus
a scalar under the rotations of the little group that
leaves both p, y' invariant, ' thus giving rise to the
angular condition

(Js,J,s,Ms[[pppo, J Qj, J ~ Qj, J Qje'& K[Ji,J,1,M1)
=Q'(Js J,s,Ms~Le J Q7e'& K~ J1J 1M1)' (4)

g is parallel to Q, tanh)= L(q'+Qss)/(q'+Q '+Mrs) 1'"
Q= Ltl, (1/2Ms) (Ms' —Mi' —q') j. We have in mind first
assigning a mass to each J so that the states at rest
can be labeled by J, J„andthen solving Eqs. (1) and
(4) as operator equations in the space of a unitary
representation of the I.orentz group.

With these preliminaries, we mention a previously
noted' ' degenerate mass solution (suppressing isospin):
If M0 is the degenerate mass, /sr, se, (q) collaPses to its
second factor and one can take

"'=p+p "'=(po+p) "* ( )

This solution automatically satisfies the commutativity
and degenerate mass angular condition. In a perturba-
tion expansion around this solution, each order will be
proportional to p0+ ps, so, for simplicity, we factor this
out and require a scalar condition on the remaining

(Js,J,0,Ms~ Pr„JQ)e'&
~
Ji,J,1,M1) =0 (6).

The commutativity condition is satisfied quite generally
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by the ansatz

F,= Uf(xs, x q)e'q *U

Hz, ft, At. Doing a number of "absorptions" with
Hermitian Hs's, and taking fs= x', this can be simpli-
fied to

where U is a unitary transformation independent of the
direction of q. Equation (7) does not automatically
satisfy the angular condition. This we attempt to
demand in perturbation theory;

U= e'~) H =Ht+Hs+ I f= 1+fr+ fs+
5'=1+K«&+P&s&+ M(J) =Mp(1+I& s+I)s+ ),
Q=Q"'+Q"'+ " (g)

where H is Hermitian. Expanding Eqs. (3) and P) in
this way to first order, we can, with attention to the
ordering of the mass operator, solve for the operator
pO) ~

= —zklKs+z(Kskl) q+ fl+zH1 z(H1) q I

(0),=—e'q *Oe 'q', (9)

where Ht and ft are thus far undetermined. We must
use these to satisfy the angular condition expanded to
first order,

[P& &,J ~ Q&o&7 0 Q&o (q qs/2Mo) (10)

This is done with the choice

dr= eVp, Ht= ', e[Ks, Vp7+-+e5,

ft c(Vo—Vs) = e(x')'t' (11)

where e is an arbitrary constant (presumably small),
S=S(J) is an undetermined Hermitian scalar (under
three-dimension rotations), and V„is the Majorana
four-vector. ' This leads to'

r&'& =-', e[Vp+ (Vp) q7+zeS ie(S), — (12.)

Vp is diagonal in J and equal to 2J'+1. We believe that
the solution for the mass spectrum is unique, but the
off-diagonal couplings (AJWO), sensitive to S=S(J'),
are essentially arbitrary. For simplicity in the solution
of the second-order equations, we shall temporarily
set S=O.

Turning now to second-order mass splitting, we ex-
pand Eqs. (3) and (7) to this order, obtaining (e= 1)

5:&s&—szVosKs+r VpsKss lz(KsVos) +r (KssVos)

iI&.,K,+i(K,a,)—, ,'zV, r&'&K,+ir—&»—(K,V,),
VAs(Ks—Vo)q &'t[Ks, Vo'—7+' &'t(LKs V—o7+')q

+

ps[Koan

Vo7+ (Vo—Vs) s z(Vo Vs) ([KsiVo7+) q

+s[Ks,Vo7+([Ks, Vo]y) q+iHs i(Hs) «+ fs ~—
(13)

where we have used the previously obtained values of

' X'hus we Gnd a solution only in the space of the two Majorana
representations. See, e.g. , M. A. Naimark, Linear RePresentations
of the Lorertts Grottp (Pergamon Press, New York, 1964).

e Here we have used the commutation relations pVo, Es j=iVs,
/Vs, Es1=iVp Note that.

q2 qV q'('+2nrr'+ nr. =m. r',
indeed commutes with J Q(0).

&"'=—sVo' —-'(Vo') +-'Vo(Vo) —-'[Vo Vs7+
—s ([Vo Vs7+).—(q'/4M') Vp'+[1+ (q'/4Mp') 7
X VoVs+-,'z[Ks, As7+-', z([Ks,d s7) +-'[Vo, Vs7

+s ([Vp, Vs7) q (14)

The angular condition at second order is seen to be~

[&"' J'Q' '7+I Mp+(q'/2Mp)7Vp[5'"' Js7
—Mp[$&",Js7(Vp) q=0. (15)

This is solved by'

5&'& = rp&s&+-'(1+qs/2Mps) [V&&,Vs7——',Vs V Q &'&, (16)

where fp() satisfies the "simple" angular condition,
Eq. (10). Taking Eqs. (14) and (16) together, we can
solve for Fp(2). The only terms which do not commute
with J Q&o& are

&o"'=—s[Vo,Vs7+—s([Vo,Vs7+) q+ sz[Ks,~s7+

+sz([Ks,~s7+)' (I"I)

The only way to eliminate the bad terms is to take
62= —', Vp', or, with the parameter e back in,

M(J) = M (1+eVp+-', e'Vp') .

Again, although the mass spectrum appears unique, the
second-order couplings can be changed by adding a
Hermitian rotational scalar to H2.

A mass spectrum corresponding to a linear Regge
trajectory would have 62= —-', e'Vp'. Is there any way
we could 6nd such a spectrumP We have studied the
effect of the arbitrary S (in first order) on the second
order, and 6nd that the second-order mass shift is not
changed. The only hope would appear to be a diGerent
zeroth-order solution. As a simple modification, con-
sider Eq. (5), but without the factor pp+ps. Then we
could allow vector plus scalar S. At each order in the
expansion, the reader can easily convince himself, the
mass operator is not determined, ' although the ability
to solve the (tz+1) order depends on the nth-order
splitting. It is trivial to observe that, taking the first-
order solution as above, we can solve the second order
(as above) with hs ———

s es Vps, this time absorbing extra
terms of the form [Ks,hs7 into the vector part of 5'q"'.
Moreover, we have not yet been able to solve the second-
order equations for any but 6»= ~Vp. On the other hand,
we have not studied the solubility of the third order
with this (physical) As.

We now consider SU(3) &g&SU(3) current algebra for
which we must satisfy

[F~(&I),Fs(&1')7=if »Fr(q+q'), etc. (19)
r A useful identity here is exp(i)& & ~ K) Ve exp( —i)&'& K) = (Vo) .
s Useful identities are P(Vp)„Jog=(i/Mo)(V&qs —Vs&I'), t.Vs,

J Q&o&)=i(Vs&I&—V&qs).
s The mass term at 1th order is of the form (Ides, Ising, and can

always be absorbed into the vector part of F&"). Only in the case
of vector zeroth-order solutions, e.g., Kq. (5) or 5(') = Vo—VI, is
the splitting determined, In this latter case, h1 = e Vo again.
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An already noted' ' zeroth-order solution for the vector
current alone is Eq. (5) multiplied by X~[SU(3)]. The
only necessary change in our formalism for this starting
point is that f(x', x q) = 1 in Eq (.7). This tells us im-
mediately that there is no solution to first order for this
starting point, as we needed fi= Vp —Vs to solve above.
Instead we begin with the zeroth-order solution 5 "&

= P . In first order, there is no restriction on the mass
spectrum just as discussed above. However, as above,
the solubility of second order puts restrictions on the
first order. A first-order solution which makes the second
order soluble is

+(1i = s e~ [Us+ (Vs) q]+&CS se(5 )q& 61=eVp. (20)

This solution predicts (unphysically) magnetic mo-
ments (etc.) proportional to charge. Also, the saturating
states stay within one representation of SU(3)."The
following model seems to avoid some of these unpleasant
features.

Define the generators of the I.orentz group by

J=rXp+S, K=SXP+(r p)P —rP. (21)

Here p'= const, r, =iB/Bp;, and S is a finite representa-
tion of SU(2) (spin matrix). Further, 5,, X, together
with some additional operators 5;", are supposed to
form an SU(6) algebra

[S;,S, ]=is;,i,Si, ,

[5,~,5,~]=if orb, ,h&+id o~e,,i,S~'r, etc. (22)

This gives rises to a reducible representation of the
Lorentz group. We take a particular representation of
this algebra, 56 for baryons and 35 for mesons. The
states of the space in which Eqs. (21) and (22) are
realized will be characterized by I', 5', L' (L= J—S),
plus hypercharge and isospin. The multiplet structure is
therefore SU(6)0(3). A zeroth-order ansatz for the
vector and axial-vector currents is F(0)"=P, $(0) '
=S p, where 5 ' is the axial current. A first-order
solution that allo~s solution at second order is

&t» =2e~
I Vs+(Vs) ]

F(i) ' ——-', eS .p[Vs+(Us), ], hi= eVp) (23)

where the four-vector V„(a,natural Majorana vector)
is now (for mesons)

Us ——A+[S J—(S P)']A++A.—[S J—(S P)']A.—

Y=A+[KXS+(S.P) L]A++A. [KXS+ (S P) L]h.—,

A'=s(1~Sr P)(1~Ss P) (24)

' That is, the solution does not mix 8 and 10 representations,
in contrast to present saturation schemes. See, e.g., F. Gilman and
H. Harari, Phys. Rev. 165, 1803 (1968).

where Si, S, are the quark spins of the two quarks in
the 35 representation, and S=Si+Ss. For the 56, one
has similar formulas" involving three quarks. The
ability to solve to second order depends crucially on the
fact that this V„conunutes with S .P.

This ansatz has the virtue of SU(6)-type representa-
tions for low-lying states, but, on the other hand, it still
generates a vector current proportional to charge. More-
over, it still gives rise to exchange degenerate tra-
jectories. Relative to these two problems, it appears
promising to introduce a parity doubling of the group
[SU(6)SU(6)]. The helicity-flip-two superconver-
gence relations can be included in the scheme by con-
tracting the SU(6) algebra to [SU(2)3SU(3)]XTs4 as
in the strong-coupling theory. "

We understand that M. Gell-Mann, D. Horn, and
J. Weyers have obtained similar mass spectra in a
similar perturbative approach.

1Vote added ie proof. All the currents given in this
paper are proportional to the internal symmetry gener-
ators. Since submitting the paper, we have discovered
representations for which the internal symmetry does
not factor out, but the ones we have all contain pro-
liferating isospin [or SU(3) quantum numbers]. For
example, the form

P = U[I~+iq xA f(x&)]e'& *U i'
where f(x') = U= 1 defines the degenerate mass starting
point, satisfies SU(3) current algebra if

[I,Io]=if o7I&, [I",Ao]=if"»A&, [A,A~]=0.

We recognize this as the strong-coupling algebra of
Goebel and Sakita. In the degenerate limit, one has
then a degenerate tower of higher and higher SU(3)
multiplets (as well as higher spin). We have solved the
perturbation theory to second order and find that the
SU(3) degeneracy can be split; within the limits of the
perturbative approach, it appears that the large multi-
plets can be pushed into the high mass region. The
spin structure remains as discussed in the paper. Similar
models can be constructed with SI.(6,C). We under-
stand that, in the degenerate mass limit, similar models
have also been discovered by M. Gell-Mann.

We would like to thank J.Harte and R. Hermann for
stimulating conversations; we are particularly grateful
to J. Weyers for emphasizing the possible value of the
Majorana representation.

"Although Uo is not explicitly SU(3)-dependent, the multiplets
8 and 10 will be split because of diferent spin content.

"See, e.g. , T. Cook, C. J. Goebel, and B. Sakita, Phys. Rev.
Letters 15, 35 (1965).This will give the necessary Abelian isospin
structures.


