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%e comment on our result. Concerning the S-wave
scattering lengths, Hamilton's' new values are
44o- —0.091+0.005 and 2ai+a, =0.270&0.008, which
yield ai+ 2ao ———0.002&0.008. As regards the I"
parameters, a diversity of results appears in the liter-
ature. Barger and Olsson" gave n~ =0.39&0.24; Rarita
et at. '- gave n~ =0.57 with 7~ ——14.8 mb BeV or

"J.Hamilton, Phys. Letters 20, 687 (1966)."V. Barger and M. Olsson, Phys. Rev. 146, 1080 (1966)."W. Rarita, R. J.Riddell, Jr., C. B.Chiu, and R. J.N. Phi11ips,
Phys. Rev. 165, 16j.5 (1968).

0,~ =0.73 with y~ =21 mb BeV; Meshcheriakov et ul. ,
"

imposing n~ =0.50, obtained y~. = 13.86 mb BeV; while
Igi, ' who was the first one to propose the existence of
P', gave yp =3.05@, '=18.3 mb BeU for o.p ——0.4
(yv ——21.6 mb). Although the experimental uncertainties
in ReC&+&(v) may still be large, we believe that our
method provides a better method for the determination
of all these parameters, since all the integrals LEqs. (5),
(7), and (9)) are superconvergent.

"V. A. Meshcheriakov et a/. , Phys. Letters 258, 341 (1967)."K. Igi, Phys. Rev. 130, 820 (1963).
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The observed total weak-interaction current 4ii, "(x) and the observed total electromagnetic current 4i„» (x)
are assumed to be, respectively, the same local operators, apart from constant multiplicative factors, as the
hypothetical charged intermediate boson Geld W„(x) and the corresponding neutral intermediate boson field
W„(x).The Geld algebra satisfied by these current operators is discussed. It is shown that, neglecting higher-
order weak-interaction eAects, one can obtain finite higher-order electromagnetic corrections for the known

. hadrons and leptons, such as the electromagnetic mass shifts of p, m, e, p, , etc., and the radiative corrections
to the weak decays of these particles.

I. INTRODUCTION

'HE purpose of this paper is to show that within
the general framework of field-current identi-

ties' ' it is possible to derive 6nite higher-order elec-
tromagnetic corrections for the known hadrons and
leptons, provided one identi6es the observed weak and
electromagnetic current operators, 4)„w~ and 4i„», as
proportional to some weakly coupled fields such as the
(hypothetical) intermediate boson fields. In order to
show that such 6eld-current identities are indeed pos-
sible, let us first examine the de6nitions of these ob-
served current operators.

The total electromagnetic current operator 4i„» is,
by de6nition, related to the electromagnetic field A„by4

BF„„= eo4l, »,

*This research was supported in part by the U. S. Atomic
Energy Commission.

' N. M. Kroll, T. D. Lee, and Bruno Zumino, Phys. Rev. 157,
1376 (1967).

~ T. D. Lee, S.Weinberg, and Bruno Zumino, Phys. Rev. Letters
18, 1029 (1967).

' T. D. Lee and Bruno Zumino, Phys. Rev. 163, 1667 (1967).' Throughout the paper, the subscript p denotes the space-time
index, 44=4 is the time component, x4 st, and /4 =s(or j, or it)=
denotes the space component. All repeated indices are to be sum-
med over.

where

Gp BS BS
i gi,""(x)=

gS~wi4(e) C}S~wi4(/4)

Op=10 'm~ ',

(1.3)

which denotes the Fermi coupling constant of the weak
interaction, and m~ is the nucleon mass. In (1.3), the
equality jBS/Bsi,""(e)j= Lc}S/Bsx""(/4)j expresses the
p—e symmetry property of the weak interaction.

where eo is the unrenormalized charge of the electron
(eo(0), and

8
+pp Ap Apy

~&p ~gv

To give a precise definition of the total observed weak-
interaction current operator 4i„w"(x), we assume that
the bilinear product

(1 2)

is an observable, where l(x) and vi(x) represent field
operators of the particles 1 and v&, respectively, /= e or
p, , and the dagger denotes the Hermitian conjugate. The
observed total wea¹interaction current 4)„""(x)is then
defined to be proportional to the derivative of the S
matrix with respect to s&,""(e) or s&,"~(/4). We have
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Throughout the following discussions, we assume the
following:

(i) All presently known leptonic and semileptonic
weak processes such as

Different symmetry requirements could lead to different
choices of the ratio (fp/f); those will be given in Ap-
pendix A. In general, we assume that fp is of the same
order of magnitude as f; i.e.,

2 —+ B+l +vi-

(1.5)

(1.6)

and, therefore,

fo= o(f)

fpP/ms ' ——O(Gr) . (1.12)

are transmitted by the hypothetical charged intermedi-
ate boson field W„(x).

(ii) There exists a neutral intermediate boson field

which is the source of the electromagnetic field;
1.e.)

where ~ is a constant.
(iii) In the absence of all other fields, these inter-

mediate boson fields satisfy a set of non-Abelian field

algebra and the Lagrangian is invariant with respect
to the corresponding symmetry group, the simplest
possibility being the SU2 symmetry.

This last assumption is needed to distinguish between
the electromagnetic field A„and other possible linear
combinations of the neutral spin-l fields such as A„'
=A„+(const) W„'. The field algebra, or the correspond-
ing symmetry, is satisfied when one sets A„=O, but not
A„'=0.

According to (i), the transition matrix elements of the
weak-intera, ction Hamiltonian for (1.5) and (1.6) are
given by

f(B I
W.(x) I ~)L""'(e)+~.""(~)j, (1 7)

where Wi(x) is the usual charged intermediate boson
field, f is related to Gr by

f'/mar' Gp/V2, ——

and m~ is the mass of the charged intermediate boson.
Comparison between (1.3) and (1.7) leads to the current-
field identity

g "'(x)= —(ms'/f)W„(x). (1.9)

g„&(x)= —(ms"/fp) W„'(x), (1.10)

where fp may differ from f by a numerical factor, de-
pending on the details of the model. For example, as we
shall see, a particularly simple choice for the SU2 model
discussed in Sec. II is

f,= 2%2f.

For all presently known weak reactions (1.5) and (1.6),
the matrix element (BlWilA) is O(f) Therefore, .
(BIg„-~l~) is O(

In Sec. II we discuss an SU2-triplet model of inter-
mediate bosons, 5'+, 5", and 8' . These intermediate
boson fields are related to the observed current opera-
tors by (1.9) and

From these field-current identities, one finds that, to
all orders of e' and Gp, the total electromagnetic current
operator g„& satisfies, among others, the following field
algebra:

f/'(r, t),gP(r', t)j= f/4~(r, t),g4&(r', t)j=0, (1.13)

I:84'(r,t),al'(r'lt) j= (m~'/fp') ~'t"(r r') —(1 14)

and

l (a/at) g;~(r, t) —i v;gp(r, t),y„~(r', t)j
=—i(ms '/fp')mp'0;p8'(r —r')

i(f'/m~—') hl ""(«)8."'( )'
+g "~(r t)tgp""(r, t)]b'(r —r'), (1.15)

where mo is the bare mass of the neutral intermediate
boson. It is important to note that in (1.15) the coeK-
cient of the quadratic term gt""gp""t is i(G—r/K2); it
can be neglected if one is not interested in higher-order
weak-interaction effects. The commutator between
Bgp (r, t)/Bt and gp&(r', t) becomes, then, a c number.

Note added irt proof This co.mmutator can be a c
number to all orders in e and G~, provided that one
does not apply the Yang-Mills theory to the inter-
mediate boson system; otherwise, this commutator is a
c number only if higher-order weak-interaction effects
are neglected.

Sy introducing additional boson fields, the relevant
group can be easily enlarged to, e.g., SU2&SU2, or
SU3&&SU3. The corresponding field algebra can also be
derived. Furthermore, if one wishes, the interaction be-
tween the hadrons and the intermediate bosons can be
made to preserve the usual isospin symmetry. Thus, for
example, there is no O(f') term in the mass difference
between different hadrons of the same isospin multiplet.
Such a general treatment is given in Appendix A. The
usual theory of vector and axial-vector dominance in
strong interactions assumes a different form in the
present case; these will be discussed in Appendix B.

In all these cases, independently of the particular
group structure assumed, the electromagnetic interac-
tions between all known particles, hadrons and leptons,
are mediated only through 8"via the sequence

known particles ~+—8' ~~ y ~~
W'+~ known particles. (1.16)

In this sequence, the interaction between 8' and the
known particles is O(f) and that between W' and y is
O(e/f). One may combine this chain of neutral spin-1
boson propagators into a single term called the effective
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ph«ops p&0pagrit&r D~(q'). As q'~ 0, D~(q') ~ q ', but, where the neutrino fields v.(x) and v„(x) are described
as we shall see, by the two-component theory

as q -+ ao, D„(q') ~O(q ), (1.17) ysvi(x) =vi(x) . (2.5)

provided all higher-order weak-interaction e6'ects are
neglected. The general properties of such an electro-
magnetic interaction are discussed in Sec. III, and the
detailed behavior of this effective photon propagator
D„(q') is given in Sec. IV. The q

' dependence of D~(qs)
at large q' makes it possible to obtain Gnite values for
many previously divergent radiative correction calcula-
tions which were evaluated in a theory without 8".The
present theory gives a convergent result if the previous
integral diverges like either O(lnq'), or O(q'), as the
square of the virtual photon momentum q'~ ~. This
includes the electromagnetic mass shifts of any spin--,'
and spin-0 charged particles, such as e, ii, p, s., etc. ; it
also applies to the radiative corrections to the weak
decays of these particles. The details of these radiative
corrections will be given in a separate paper.

In contrast, the higher-order weak-interaction effects
remain divergent, at least in the perturbation series ex-
pansion. In this sense, the present formulation cannot,
as yet, be regarded as a fundamental theory, but one
that provides unambiguous rules to obtain Gnite radia-
tive corrections within the general framework of the
local field theory.

II. SU -TRIPLET MODEL OF
INTERMEDIATE BOSOMS

We Grst discuss a simple system consisting of the
electromagnetic Geld A„, the three intermediate boson
fields W„'(x),

W„(x)= (1/v2) t W„'(x)—iW„'(x)j (2.1)

W„*(x)=(1(v2)LW„'( )+xiW„'(x)j, (2.2)

the usual four lepton fields e(x), ii(x), v, (x), and v„(x),
but, for clarity of presentation, only two hadron fields

q~ and q2. If one uses the Sakata model' of the usual
triplet p+, I', and )~', then

Thus, in the familiar decomposition~

(2 6)

where a= l or 5,

and

one has for the lepton 6eld

(2.7)

(2 g)

0
fi'(x) =-

2 j1—y,)l(x))
(2.9)

The total electric charge operator Q can be written as

Q= Is+ sZ, (2.10)

+f ie id+ ~ matter+ +iat q (2.12)

Zt;, id ————,'J „,s—-„'(1+re)(W )'—-'ASS'(W )' (2.13)

& ~ -= —4'J(v v. +~. lA. ,
ax„ i

(2.14)

where Z is related to the usual baryon number E and
the usual total leptonic number I. (defined to be +1 for
l and vi) b—y

Z=E —I, (2.11)

and I3 is related to the Pauli matrix 7-3 by I&= ~73 for
lt i and its For th.e intermediate boson field, Z=O, and
I3= I, 0, and —1, respectively, for 8'„, 8'„', and 5'„*.
It is important to note that I3 is rot the usual third com-
ponent isospin operator T3, For the hadrons, I3——T3
+ is5, and 5 is the strangeness.

In accordance with assumptions (i), (ii), and (iii),
the total Lagrangian for this simple model is a sum of
three parts, the spin-1 boson Geld part 2f' id the matter
part Z,«„, and the interaction part 2;„~.

qs ——e cose+)i sin8, (2.3)

where 0 is the Cabibbo angle. '
It is convenient to deGne

(vi(x) qi(x)
ipi(x) =

~

and fs(x)=, (2.4)
qs(x)

~Z. Maki, M. Nakagawa, Y. Ohnuki, and S. Sakata, Progr.
Theoret. Phys. (Kyoto) 23, 1174 (1960). If one uses the quark
model (M. Gell-Mann, Phys. Letters 8, 214 (1964); G. Zweig,
Conseil Europeen pour la Recherche Nuclharie Report (unpub-
lished) I, then it is necessary also to include the interaction between
8'„0 and q3

———e sin8+X cos8 because q3 is charged.
6

¹ Cabibbo, Phys. Rev. Letters 10, 513 (1963).

7 Such decomposition has been used since the early days of
parity nonconservation. %'e note that the total Lagrangian (2.12),
except for the mass term, is invariant under a U2X U~ symmetry
group which transforms %„~%'„,PA ~ Pg, A„~A„, but

-+ ' and ' -+e

where I and v are two arbitrary (2X2) unitary matrices. In addi-
tion, it is also invariant under the usual UIX U1 gauge group gen-
erated by the total charge Q and the total baryon number E.

The total lepton number L is one of the particular generators of
the U2XU~ group. Prom (2.10) and (2.11), one sees that Ia-—Q—~lV+-,'L is always conserved. This U2X U~ group has been dis-
cussed by G. Feinberg and F. Giirsey /Phys. Rev. 128, 378 (1962)g
and T. D. Lee )Nuovo Cimento 35, 945 (1965)g.
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where W„denotes the SUs triplet W„', W„', and W„',
the components of W„= (W„',W„',W„') are related to
those of W„by

W„'= W„'+(eo/fo)A „

S'„'=8'„', for i = 1 and 2,

8 8
W„„= W„— W„fp(W—„XW„),

Bxp Bxp

e= (rt, rs, rs) denotes the usual set of three Pauli ma-
trices, all repeated indices are to be summed over, the
subscript a varies over e, p, and h, and 3f„ is the ap-
propriate mass matrix. In (2.13), the parameter r} is a
constant which, as we shall discuss in Sec. III, is impor-
tant for the renormalization problem of the intermediate
boson.

The choice of the numerical factor between f and fe
depends on the approximate symmetry properties of the
model. For example, a particularly simple choice is

but summing over only a=e and p,. The hadronic part
Z~ now also includes the usual strong interactions; it is
assumed to have the general functional form

&s= &s(A,D,4a, W„) (2.21)

Under the infinitesimal transformation of the triplet
field

(qi qii
i+&2 ' '(f/fo)(&i&f}i+&s&f}s)(1+vs)i

&q, qi I qsi

Qs ~ 4's+ (Tl~f 1+Tsfies) fh ~ (2.22)

$3~ f3~

where qi and qs are given by (2.3) and

qs —— ri si—no+}t cos8,

we assume that the general hadron field fs transforms
as

Therefore,
fo= 2~&f.

fe'/mg '= 4&2Ge,

(2.16)

(2.17)

The operator D„ in (2.21) is given by

Dl4=i +foT W lit'
'Lax„

(2.23)

&=&neie+&i+&a, (2.19)

where 2&;.ie is given by (2.13) and 2& denotes the lep-
tonic part of the previous (Z~,iier+2;„i); i.e.,

2i= (2.14)+(2.15), (2.20)
' Another simple choice is fp V2f cose, where e —i—s the Cabibbo

angle. In this case, the T=1 part of the vector interaction in g; ~

betvreen the hadrons and the intermediate bosons preserves the
usual isospin symmetry. Thus, for example, to Grst order in f,
the magnitudes of the (virtual} transition matrix elements for
m -+++A, x ~m++W, x ~m. +W+ ~+~m++Wo and
m+ ~ x +W+ are in the ratio 0:1:1:1:1.For a discussion of the
general relation between fo and f, see Appendix A, especially Eq.
(A22}.

and (2.15) becomes

&int= —is fij(Pa ) &4&pefa

'lf.L~.'v v-.~~.+(~:)'7.v:.~."jW: (2.»)
In this case, the SU2 symmetry is violated by the elec-
tromagnetic Geld 3„,the mass matrix 3f„and the term
inside the square bracket in 2; & given by (2.18). Thus,
in the absence of P," and A„, the Lagrangian 2 trans-
forms like an SU2 scalar, provided it operates only on
states with Z= lV —I.=0. Other choices' of the numeri-
cal factor (fe/f) are also possible, which would lead to
different symmetry requirements for the model. All our
discussions are, however, valid independently of the par-
ticular value of (fs/f).

This simple model can be easily generalized to include
arbitrary varieties of other hadron fields Ps. In the fol-
lowing, Ps represents all hadron fields which can be
either the quarks, or the known baryons, or the strongly
interacting spin-1 mesons, etc. In the general case, the
total Lagrangian 2 can in place of (2.12), be, written as

The matrix T has three components, T=(T',T' To)
where T' and T' are determined by (2.22), and T' is re-
lated to the total charge operator Q by

T'= sQ. (2.24)

= — (epms'/ fp) W„e (2.26)

The equation of motion of the intermediate boson 6eld
ls

a
(1+ti) W„„—ms 'W„

BXp

= feLs.(~)+s.(e)+s.(~)3

+fo(1+i})(W„XW„,), (2.27)

where s„(e), s„(p), and s„(h) are, respectively, the source
functions due to f., P„, and fs. By using (2.15), we find
that, for the simple case that fs is given by (2.4), the
components of s„(a) are given by

."( ) ='lO. 'v 7.("+~)S. (2.28)

Since in the general form (2.21) Za may also depend on
8"„„,we assume

Zs=0 if all ps=0. (2.25)

This eliminates the possibility of an isolated term such
as —4iqS'„„' in Zg.

From the general Lagrangian (2.19), one finds that
the Maxwell equation becomes
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~.a(ti) =i2 '"(f/fo)4'o'74V. (1+Vs)rA", (2 29)

where k= 1, or 2 and a can be e, or p, , or h. For the gen-
eral case (2.19), s„(e) and s„(p) remain the same, but the
components of s„(h) become

s.*(h)= s"af(ci2a/ci W„,') (—Ma/BWj )jW„a

+ (8/cix„) HBZa/BW„„') (—ciZa/ciW„„') j
—g $8Za/BD„Pa jT'Pa, (2.30)

where the sum extends over all hadron fields pa and
s'~a is p], —1, or 0 depending on whether (ij k) is an
even permutation of (012), an odd permutation, or
otherwise.

In the Coulomb gauge, the electromagnetic 6eld 3„is
given by

If Z~ satisfies

$8&a/BW4, (r, &) 8&—a/BW, t'(r, &),W (r', &)j=0, (2.41)

then by using the results given in Appendix A of Ref.
3, it can be readily veri6ed that the total electromagnetic
hadron current g„t' satisfies (1.15), where the bare mass
mo is given by

moo= (1+ted) 'm—trs+(eo/fo)'mtr' . (2.42)

All these commutation relations (1.13)—(1.15), (2.39),
and (2.40) are valid to all orders in e and Gr. As an
example of (2.41), Za can be of the form

~„(ga)W,'+&a'(4 a,D,4 a),

where 3II„„o=BZa/8W„„o depends only on fa.

and A 4= ip, (2.31) Remarks

where the transverse part A,"is divergence free,

V,W,~ =0.

and g is determined by the Laplace equation

Vs&=i(eomw'/fo) Wto.

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

Pa = i (8Z a/BD—tea),

11 tr — gq tr (rig. t—r/cit')

and

(Ptv), = iL(1+ti)Wt;—(ciZa/ciWt;)

+ (eisa/ciW;4) j. (2.37)

Thus, for t =4, (2.27) becomes

%,=mw sfiV, (P-w),+ifo(Pv»), XW;

+if, g.P.Tit.j, (2.38)

where the sum extends over a=e, p, and all hadron

6elds. For the leptons, u= e, or at, similarly to (2.22) and

(2.24), we define T=(T' T' T') to be T'=i2 '~'(f/fo)
Xri(1+ps) T'=i2 "'(f/fo)»s(1+go), and To=ig=ssi
X(rs+&).

By following the usual derivation of field algebra2 '
and by using (1.9) and (1.10), one finds that indepen-

dently of the detailed structure of ZI„ the total observed
current operators g„& and g„~ satisfy, in addition to
(1.13) and (1.14),

L8'""(r,t),J '(»' ~)1=L8'""(r,t),8 "'(r',&) 3
= L8'"'(r,&), 9"'(»',&)'7=0 (2.39)

Lg;&(r, l),g„(",i))=—L8 '(», i),8."'(r' ~)3
iti wk(r g)gs(r p') (2 40)

It is convenient to choose Pi, i(a, and the spatial com-

ponents A;" and TV; as the general coordinates; their

conjugate momenta are, respectively,

Pi=i/it,

(1) Recently, several authors have shown' " that
in a theory without intermediate bosons the application
of field algebra leads to an infinite mass difference be-
tween ~+ and x'. In the present case, if one neglects the
higher-order weak-interaction effects, the equal-time
commutator between (8/R)tits' —iV';tltt' and pat' is, ac-
cording to (1.15), a c number. By following the same
argument used in Refs. 9 and 10 (which is, in turn, based
on the general method developed by Bjork,en"), it is
easy to show that the second-order electromagnetic
mass shift of the pion must be 6nite.

(2) In the absence of other fields, the equal-time com-
rnutator between the charged intermediate boson fields
Wt(r, t) and W4(»', t)t is simply proportional to Wto(r, l)
Xiis(r —r'). From (2.28) and (2.29), one sees that this
simple relation is no longer valid in the presence of the
matter field. Thus, the equal-time commutator between
$4"a and $4"a" leads to a new operator which is dtffere»tt
from the observed current ti„&. This new operator can-
not be exactly proportional to an intermediate boson
field in the theory. This is of course a general feature of
only intermediate boson theory, rejecting only the well-
known fact that, except for

ie(&)'&tVae(&)+iu'(~)Vn aa (*),
all other neutral bilinear combinations of the lepton
6elds are not coupled to the hadrons. Nevertheless, it
is possible to extend the field-current identity to the
commutator between $4"a and ps~"t, provided the uni-
versality between hadrons and leptons is somewhat
altered. For example, if one wishes, one may assume that
the Geld-current identity can be applied to the com-
mutator between gt"" and ti4 at and that such a field-
current identity is violated not by the hadrons, but

I Q. C. @lick and Bruno ZuInino, Phys. Letters 25$, 479 {1967).
MM. B. Halpern and G. Segre, Phys. Rev. Letters 19, 611

{1967);19, 1000 {1967).» B.%'. Lee and N; T. Nieh, Phys. Rev. 166, 1507 (1968); see
also, J. Schwinger, Phys. Rev. Letters 19, 1154 (1967l.»J. D. Bjorken, Phys. Rev. 148, 1467 (1966).
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only by the leptons. As we shall see, this necessitates the
introduction of additional intermediate boson 6elds.
This generalization is given in Appendix A.

(3) The usual idea of vector and axial-vector domi-
nance by p, i', oi, A i, etc. , can be incorporated into the
present theory; they correspond to the identification
that the hadronic source function s„(h) in (2.27) is pro-
portional to a linear sum of these strongly interacting
spin-1 meson fields. The details are given in Appendix B.
It will be shown that (2.41) is satisfied, commutation
relations (1.15) holds, and therefore the s.+, s' mass
difference remains finite. Furthermore, in such a case,
the usual isovector part of the hadronic electromagnetic
form factor [F»&(qs)7+=i for any real or virtual Photon
transition

III. NEUTRAL INTERMEDIATE BOSON AND
ELECTROMAGNETIC INTERACTION

In order to examine more clearly the properties of the
electromagnetic interaction in the present theory, it is
useful to exhibit in the Lagrangian only its explicit de-
pendence on 8'„and A„; the charged intermediate
boson 6eld can be grouped together with other particles.
We note that for either the SU~-triplet model of the in-
termediate bosons, or the more general case discussed in
Appendix A, the total Lagrangian (2.19) or (A36) of the
entire system can also be rewritten in the form

~= —-'(1+~)G '—-'~~s(W o)s—-'Z '
+~f(4».V G") (31)

where W„o is the neutral intermediate boson field, P
represents fs, Pi, and all other intermediate boson fields
except 8"„',

8 8
6„„= S'„'— TV„',

~&v

W„'= W„o+(eo/fo)A„
t9

D„of= +i foQW. o P,
~&v

and Q is the total charge operator.

(3.2)

(3.3)

(3.4)

is related to the correspondingly deQned form factor
F»&(q') of the transition

A -+8+ps

at the same 4-momentum transfer q„by
risir ) nzp

[J'»'(q') jr=i=
I I

lI'»'(q'). (2 43)
l q'+mrrsi q'+rN, )s

Such an identity holds for all hadron states A and 8,
if higher-order electromagnetic and weak-interaction
effects are neglected. Similar conclusions hold also for
the isocsalar part (J„&)r o provided one replaces p„o by
an appropriate mixture of the idio and ohio meson fields.

The Lagrangian (3.1) is clearly invariant under the
electromagnetic gauge transformation. It follows from
either the Maxwell equation (2.26) or the equation of
motion of 8",' that

8$'„0
=0 (3.5)

In (3.1) the interaction of the electromagnetic field A„
with P occurs only through the combined field W„o. The
usual minimal electromagnetic interaction corresponds
to the requirement that Z~ is independent of G„„;this
would be the case" if in (2.21) the function Zs is inde-
pendent of 8 „„'. In the following, unless explicitly
stated, it is not necessary to assume the validity of the
minimal electromagnetic interaction.

Ke consider the spectral representation

(vac
~
[W„'(x),W„'(0)j ~

vac)

cls

os(M') 8 —M '
~

As(x)dM' (3.6)
c)x„ax„)

where

Dsl(x) = —z(27r) s (q +M )

Xsin[(il'+M') "sfj exp(iq r)d'q (3.7)

o.s (M') ~0.

By using the equal-time commutator

[W4 (r,t),Wi'(r', t) j=nsrr 'V', 5s(r r'), (3.8)—
one has'4

3f '(Tg deaf'=my (3.9)

By using (1.15), or (A41), and setting the vacuum
expectation value of the second term on its right-hand
side to zero, "one derives the additional sum rule

o n dMs= (mo/mw)', (3.10)

io That the term —i(1+ii) (W„,)s in (2.13), or the term
—

4 (1+q) (S'„„)'in (A13), can be cast into the minimal interaction
form follows from the general discussions given by T. D. Lee
[Phys. Rev. 140, 8967 (1965)g.

i4 K. Johnson, Nucl. Phys. 25, 435 (1961)."Relative to the first term on the right-hand side of (1.15), or
(A41), the second term is formally smaller by a factor Gz'. As
already noted in Ref. 2, the vacuum expectation of the covariant
tensor (vac (

g„""g„~s*+g„"i'~g„~"
~
vac), where g„~=g„t for ii/4

and —$4t for ii=4, or (vac)f C"~foCNb™J„~J„"(vac)for the more
general model discussed in Appendix A, has opposite signs for
p, = v spacelike and timelike. Such a term can be explicitly shown
to be zero if one adopts a suitable regularization procedure, such
as the (-limiting process discussed by T. D. Lee and C. N. Yang
LPhys. Rev. 128, 885 (1962)g and T. D. Lee Piblf 128, 899.
(1962)3.
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where @so is given by (2.42). To see the physical mean-
ing of mo, let us de6ne the bare mass of 5"' to be the
mass of 8" determined by the spectrum of (3.1) in the
absence of Zy. By setting 2~=0, it can be readily veri-
field that the square of the bare 8"mass is

mo'= (1+g) 'mw'+(eo/fo)2mir~,

which is (2.42). Similarly, by examining the spectrum
of the total Lagrangian (2.19) or (A36) in the limit of

fo ——0, but keeping (eo/fo) finite, one can conclude

be of the form

(q'8„„q„—q.)F(q'), (3.18)

q = —ReF (q'= —ms"), (3.19)

where Re denotes the real part. The resulting lV' propa-
gator depends only on the diA'erence

where F(q') contains the usual logarithmically divergent
integrals. These inanities can be cancelled by the counter
term —4iqG„2 in (3.1'/) by choosing

(1+g) 'I'ms =bare mass of W*, (3.11) (q'4 —q.q ) t F(q') —«F(q'= —~w') 7,
which is the same as mo only if the 8"—7 coupling

(eo/fo) is zero.
We note that

~0'= 0 W~~' (3.12)

is independent of the wave-function normalization of
5'„.For convenience, we will fix the normalization" of
8'„' by requiring that the spectrum of the quadratic
expression

—-'G '—-'m '(8' ')' —-'F ' (3.13)

This particular convention has the advantage that
in a perturbation series expansion in which the total
Lagrangian is

~= ~0+&i, (3 15)

the unperturbed Lagrangian is

Z, = (3.13)+Z„„Q),

and the perturbation is

(3.16)

,'gG„„'+Zy(P, D—.—'P,G„.) 2, (P), (3.1—7)

where Zi„,(P) denotes the free-field part of Zp (with
the observed mass of P), the unperturbed spectrum is

already adjusted to be the same as the physical spec-
trum; in addition, as we shall see, the expression —4qg„„'
is particularly convenient for the cancellation of in-
finities in the perturbation series expansion.

If we limit ourselves to the case that P consists of only
spin-0 and spin-2iparticles, then the Lagrangian (3.15)
gives a renormalizable theory; the 5 matrix is 6nite to
any given order of its perturbation series expansion of
2». For example, in the propagator of 8"' the vacuum
polarization term due to pair creations of P and g is
infinite; because of the conservation law (3.5), it must

~'See Ref. 1 for a detailed discussion of the various possible
choices of the wave-function renormalization for a spin-1 meson
6eld.

is the same as the physical spectrum. This choice relates
the parameter m~ to the physical mass of O'. We have

ms ——physical mass of W'=ms )1+(eo/fo)27'~'. (3.14)

and is, therefore, 6nite. In (3.1), the coupling constant
fo is already the renormalised (i.e., finite) coupling con-
stant, and 8'„' the renormalized field operator. The de-
tails of such perturbation series have been analyzed in
the literature. '~ Furthermore, it has been shown' that
the unrenormalized charge t, o is Qnite. If one neglects
0(eo') and O(fo'), but keeps all orders in (eo/fo), then
one has the approximate relation that m~ is the physical
mass of 8'+; i.e.,

physical mass of 8"
[1+(eo/f—)27'~~ (3.20)

physical mass of 8"+

From (3.19), one sees that the perturbation series ex-
pansion of q has divergent terms. Yet, if one sums over
the perturbation series, q must be hnite. This follows
directly from the two sum rules (3.9), (3.10), and
os ~0. The integral fN 'osdM'=ms ' must be
Qnite. If the unrenormalized theory of 8'0 is divergent,
then Jose'= ~, and one has no= ~ but g= —1.

In the present theory, owing to the necessary inclu-
sion of the spin-1 charged intermediate boson, the com-
plete Lagrangian (3.1) cannot be renormalized by using
the usual perturbation series expansion. Nevertheless,
we will assume that the spectral representation (3.6)
does exist for finite values of fo and terr, and that the
sum rules (3.9) and (3.10) hold. Consequently, p is
finite. The failure of the power-series expansion is at-
tributed to the presence of possible singularities, such as
fo' info, etc., in the theory.

IV. PROPAGATORS

The covariant propagator of lV„O is de6ned to be

where o.s is given by (3.6), e is a positive infinitesimal
quantity, q„denotes the 4-momentum (q, iqo), and
q'= q' —qo'. The Fourier transform of X)„,~(q) is related
to the vacuum expectation value of the time-ordered

"L D. Lee and Bruno Zumino, Nuovo pimento {to be
published).
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product T(W„(x),W '(0)) by"

(vac
I
T(W„'(x),W„'(0))

I
vac)

where
cV= [1+(ep/fp)'(1+it) j '. (4.9)

$„.~(q) exp(iqixi) d'qdqp

This theorem can be proved by following exactly the
arguments used in Ref. 17.For completeness, the details
are given in Appendix C.

+i M 'o rrdM'$„45„454(x), (4.2) Theorem Z:
lim q'D~=O.
Q~ ~00

where b4(x) = tip(r) 8(t).
I,et Proof: The sum rules (3.9) and (3.10) imply that

(4.10)

D„„~(q)= covariant propagator of W„'. (4.3)

Similarly to (4.2), the Fourier transform of D„„~(q)
differs from (vacI T(W„'(x),W„'(0)) Ivac) only in the
appropriate contact term proportional to 8„48„45'(x).It
is convenient to express D„.~(q) as

D„„(q)= —i(2m) '[Ds (q')8„„+Es(q')q„q„). (4.4)

From the definition (3.3) of W„', one sees that Zs (q')
&&q„q„depends on the gauge of A„(x). The gauge in-

variance of the theory ensures that this longitudinal
part Es (q')q„q„does not contribute to the evaluation
of the transition matrix elements for any physical
processes.

In (3.1), the electromagnetic field A„ is coupled to iP

only through fpW„P. Thus, we can define an effective

photoN propagator 5)„„tp~"'.

&e.,'(q) —=fp'D, . (q)-Lfp'D (q)3"=o (4 5)

where e is the renormalized charge and eo the unrenor-
malized charge. In this subtraction, all other param-
eters, such as rt, fp, and ms, are kept axed; i.e.,
P)„„~(q)j.,=p is the covariant W„' propagator for the
problem in which the Lagrangian is the same (3.1), ex-

cept that ep=0. Similarly to (4.4), we may write

&. '(q) = —'(2 ) '[D.(q') b..+&.(q')q. q.) (4 6)

In (4.5), the renormalized charge e' is determined by the
requirement that

p1 1~
os

I

— IdM'=0.
&Ms msi

(4.11)

Furthermore, by using (4.8), one finds that as q'~ ~

D~(q') ~(1+~) 'q '

which is independent of eo. Theorem 2 then follows on
account of (4.5).

mm'2m 02

D,(q')= —, (4»)
q'[q'+ (1+rt) 'ms 'j[q'+m p'j(1+ rt)

where mps is given by (2.42).

Proof: In the limit fp 0, the field ——W„' is not coupled to
any 1t; i.e., in the Lagrangian (3.1), Zt, becomes inde-

pendent of W„'. [As fp +0, the m-inimal interaction
between W„' and 1t certainly vanishes. We assume here
that the same also holds for the nonminimal interaction,
if it exists. $ Theorem 3 can be readily proved by con-

sidering the explicit dynamical solution for the Lagran-
gian (3.1) in the absence of Zp.

We note that in the limit fp ——0,

os (M') = (mp/ms)'b(M' mp')—(4.13)

Theorem 3: At 6xed values of (ep/fp)' and (1+it), but
setting fp 0, one ha——s

and
D (q') q

' as q' 0. (4.7) e'=ep'[1+(eplfp)'(1+~)3 ' (4 14)

We will now show that as q' approaches infinity, D (q')
goes to zero much faster than q '.

duces to

Theorem 1:
t'ep ( 1=E' dM'+SI—

q'+M' i,p k f—o kq'

(epl' (ep ' (1—
I

—
I
m~' 2&+

I

—m~'I —+
&foe Efo Eq' mps)

&ir 1 1
IdM', (4.8)

q'+M' sp kM' mp'1—

' See, e.g. , Appendix A of T. D. Lee and C. N. Yang, Phys.
Rev. 128, 885 (1962};K. Johnson, Nucl. Phys. 25, 431 (1961}.

ms =ms [1+(ep/fp)'j'",

and D~ becomes simply

8$gl Eggs

D.(q') =, ,q'(q'+ ms") (q'+ms")
(4.15)

Theorem 2 states that without any approximation, as
q' —+ ~, D~(q') approaches zero faster than any con-
stant times q '. Theorem 3 states that at fixed (ep/fp),
but neglecting O(f, '), D~(q') -+ (constant)q ' as qs —+

~. %e recall that in the perturbation series expansion
in Zi, which is given by (3.17), the counter term it, ac-
cording to (3.19), can be regarded as O(fps). Thug,
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neglecting O(fp') but keeping (ep/fp) fixed Ltherefore,
0(e') is also neglected), one Piids that D~(q') is giver
by (4.15).

Furthermore, at finite values of e', fpP, and msP, the
unrenormalized charge ep' is also finite. ' As y varies
from 0 to —',, 1Y(ep/e)' varies from 1 to 2, and (ep/e)' from

Theorem 4: The renormalized charge e is related to the
unrenormalized charged ep by to

L1—(1+v)(e/fp)'] '~1 (4.26)

2L1—2(1+rt)(e/fp)')-'~2. (4.27)

e = e 1V—(ep /fp )ms

1 1
op —— — dM'

M' mp' 3EI'

where N is given by (4.9).

(4.16)

(4.16) reduces to

1~ (ep'/e') g2 (4.28)

If the integral J air dMP diverges )Note added im Proof.
It turns out that the inequalities (4.28) and (4.30) are
actually valid independently of whether the integral
j'os dMP is divergent or not] then (1+g)=0, N=1,

Proof: This theorem can be easily derived by using (4.8)
and taking the limit q'f p'Dtr(q') at q'=0,

From Theorem 4, it follows that
e'= ep' 1—(ep'/fp')ms' M 'o s dM' (4.29)

Neo'= e'y 'L1(1—2y)'"), (4.17) (4.24) becomes

where

y=21V '(e'/fp') ms'M '(M ' mp ')o.s—dM'. (4.18) (f,'/") o4mw4 M-4o~dMP
I

(4.30)

M '(M '—mp ')osdMP

(M-' —m )'owdMP (4.20)

which implies that
y)P (4.21)

The requirement that ep' should be real and positive
(which is also the necessary condition that there is no
ghost state) leads to the following inequalities:

(fp'/e')) (1+&)y 'L1 —(1—2y)'tP]~ (&+it) (4.22)

and
(4.23)

i.e.,

(f '/e')~4N ' m '(M '—m ') 'o dM'

As fp~0, but at fixed values of (ep/fp) and (1+it),
y —+ 0 and, therefore, (4.17) reduces to (4.14).This limit
requires us to choose in (4.17) the negative branch
—(1—2y)'i', instead of the positive one. By using (4.9)
and (4.17), one finds that

ep'=e'(yL1 —(1—2y)'") '—(e'/fp')(1+~)) ' (4 19)

According to (4.11), one has

and the inequality (4.22) imposes no liriutatjon of f, .
On the other hand, in the mathematical limit of fp=0,
but at fixed (ep/fp) and (1+g), one finds, by using (4.13),
that the inequality (4.24) imposes no restriction on
(fp'/e') and only the inequality (4.22) remains.

For the realistic case, it is important to know the
values of the right-hand sides of (4.22) and (4.24), or
(4.30) if fo.sdM' diverges. At present, it remains an
open question whether fp' can be much smaller than
e'=(4ir/137), or fp' should be of the same order of
magnitude as e'. In the latter case, one sees that, by
using (1.8), ms would be comparable to (e'/4&2Gi)"'—40m~.

As already noted in the Introduction, the present
theory requires the electromagnetic interaction between
all known particles to occur only through the chain
(1.16). Thus, neglecting all higher-order weak-interac-
tion effects, the H/" —7—8" sequence gives rise to the
effective photon propagator D~(q') which is given by
(4.15) and is O(q ') as q'~ ~. As a result, the elec-
tromagnetic shifts and the radiative corrections of weak
decays of spin-0 and spin-~ particles can become 6nite.
The details of these calculations will be given in a subse-
quent paper.
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~4 ms 4(M '—mp ') 'op dM'.

From (4.19), one sees that

e '~e' (4.25)

APPENDIX A: GENERALIZATION
OF THE MODEL

In the absence of leptons, the total electromagnetic
current g„& and the total weak-interaction current g„~
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become, respectively, their hadronic components J„&
and J„".It is useful to decompose J„&into an isovector
part (J„~)z i and an isoscalar part (J,~)r=o,

and to decompose J„"~ into a sum of vector parts
(V„"")8 and axial-vector parts (2„"k)s,

J wk= cos8[(V wk) +(A wk)

+sin8L(V„" )s=i+(~ "")s=ij, (A2)

where 0 is the Cabibbo angle and the subscript 5
denotes the change in strangeness. %e assume that
these current operators (J„&)r, (V„wk)s, (~,"k)e and
their Hermitian conjugates are members of a set of )V

operators

{J a}—{J 1 J 2. . .J /V} (A3)

called the set of observed hadron current operators. In this
Appendix, these current operators are assumed, in the
absence of leptons, to satisfy the complete field algebra
related to a symmetry group g, where g can be either
SUS)&SU3, or some other groups, and E is the total
number of generators of g.

For clarity, we erst discuss the system without lep-
tons. The field current identities (1.9) and (1.10) imply
that there should exist a corresponding set of E inter-
mediate bosons {W„}.These intermediate boson fields
8'„are related to the observed hadron current operator
J„by

W a —b W a+Cabc((bn)W c (A10)

4'b ~ ipb+7' (Vn)i',
where P $~ are constants depending on 4d.

The total Lagrangian 2 for a system without leptons
can be written as

+/iclti+ @b q (A12)

where, similarly to (2.13) and (2.21),

24;,ig ————2'mw'(W ')'—-'4(1+4/)(W„„)'—-'F ' (A13)

where all superscripts a, b, and c, vary from 1 to S, b8
is a set of in6nitesimal numbers, C ' is the totally anti-
symmetric structure constant of the symmetry group g,—iT is the matrix representation of its Hermitian
generators on Pb which satisfies

t T Tbj —Cab''c

3„ is the electromagnetic field, and pb represents all
hadron fields which can be of either half-integer or in-
teger spin.

The usual electromagnetic gauge transformation of
the first kind

exp(iQn)

is assumed to be a member of g, where n is a corbst/srbt

denoting the angle of rotation and Q is the total charge
operator in units of e. Under the transformation
exp(iQn), the electromagnetic field A„ is invariant, but

where f is given by (1.8), f2/miv2 Gr/v2. ——
For example, if b=SU3XSU3, the set {W„}con-

sists of eight vector intermediate bosons lV„~" and
eight axial-vector intermediate bosons 8"„~", where
X= 1, 2, , 8. In the usual notations of SU3 indices the
charged interinediate boson field W„ in (1.9) and the
neutral intermediate boson field W„' in (1.10) are re-
lated to these t/t/' " and 5' " by

Zb= Zb(gb, D„Pb,W„„),
W a W a+ i(e8/ f) rCaA

8 „ l9

W„,'= W„W„'+2—fC "W„'W„',
BXp 8$v

(A14)

(A15)

(A16)

(A17)
W„=2L(W v' iW ') cos0+—(W„2W„')sin0-

+(W„~' i W„"')cos0-
+(W„"4 iW„~') sin8j (A5)—

W 0 (3)1/2LW v, 3+3-1/2W v, 8j

The field-current identity (A4) becomes

(V wk) 1(m 2/f)(W v, l zW v, 2)

(& " )8=3= —2(mw2/f)(W„"' —iW„" '), etc.

(A6)

The infinitesimal transformations of the symmetry
group g can be represented by

The function Zb can be an arbitrary function of lt b, D„gb,
and S'„„.Furthermore, except for the electromagnetic
gauge transformation, ZI, is not required to be invariant
under g. The factors 2 and —,

' in these expressions are due
to the corresponding factor —,

' in (A4) and (A5), so that
f satisfies (1.8).

From (A12), it follows that the Maxwell equation
becomes

~~pv = e8J„~,
Xts

where
W ~ W '+C'"(08)'W '

kb ~A+T'(&0) tPn,

3„—&3„, (A9) J„&=—(msv2/fb) W„'

(A7) J ~= PJ '= '(msv'/f) PW '—-

(A8) In the absence of leptons, (1.10) becomes
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Thus, one identi6es quantities eo and A;" by

and

where

W, '(*)= (V/r) W,.(*)

fo= (2f/k),

~= (vv)'t'.

(A22)

(A23)

e(A,")„„=epA,". (A35)

Equations (A32)-(A34) are valid to all orders in e and
Gp, provided that there is no lepton. Ke note that the
coefficient of the gauge-covariant derivative (5 bV';

—eC'"g'PA, '"(r,t)g...) in (A29) is

For the case of g=SUpXSUp, by using (A6), one sees
that.

(2&2G») '—3.5 X 10'mip',

and, therefore,

)=2/v3, fp &3f—— (A24)

(fp'/ms ') = 3Gr/v2. (A25)

instead of (m, /g, )'=2X10 'mb'given by Refs. 2 and 3.
The presence of the leptons requires the total Lagran-

gian (A12) to be replaced by

Similarly to (2.27), the intermediate boson field W„
satisfies

8
(1+rt) W„„'—my'W„

BXp =2f(1+rt)C'"W„cbW„'+2fs, (h) (A26)

where

s„'(h) = C"'f(BZ—b/BW„, b) (BZb/BW—,„b)]W„'

+(8/Bx„)f(BZb/BW„„) (82—b/BW„„)j
—2 (~~b/~D4b) TV (A27)

where the sum extends over all hadron fields.
Just as in Sec. II, for convenience, we use the Cou-

lomb gauge and choose pb, W, and the transverse elec-
tromagnetic 6eld A;" as the generalized coordinates;
their conjugate momenta are, respectively,

Pb ———i (8Zb/BD4&b), (A28)

-),= ir(1y ~)W„' {acb/—aW4,')
+ (BZb/BW, 4 )j, (A29)

and
II"= L& "=(BA "/Bt)— (A30)

Thus, for i =4, (A26) becomes

W4a=mbr 'fiV' (Pg ); 2i fC "(Pw.'),W—
+2if Q PbT+b j. (A31)

(A36)

8«= —& «(x)'7 v, ifpW„'—I+(m&+~mi) t(x)
Bx„ i

8—k Z ~i(x)'VbV. (1+vb)~i(x)
BXp

fP—L' (*) „(1+ )«( )W„+H. .), (A37)

where W„ is given by (AS), and, similarly to (A21), W„P
is related to 8'„by

W.'(*)= (k'/k) W. (*) (A3g)

From (A36), it follows that the Maxwell equation is the
same as (2.26),

(epms'/—fp)W„P,

L8'"(» «) 8'(»' «)j=F84'(» «) 84"(»' «)j=o

E~ "( «) a "(",«)j=(2~G.)-V~ ~'(r-"),
(A39)

(A40)

and that the total electromagnetic current operator cl„&

satisfies an almost identical set of equal-time coramuta-
tion relations as in the case of the SU2 model of 8'+ and
WP discussed in Sec. II. Equations (1.13) and (1.14) re-
main valid. Equation (1.15) has to be slightly modified,
since fp is now given by (A22). We have

Sy following the usual derivation of field algebra' '
and by using (A4), one finds that independently of the
detailed structure of Zy„ the hadron currents J„satisfy

Lj,'(r, t),J,'(r', t))=0, (A32)

1J a(r «) jbb(r «)j Cabc j&c(r t)$3(» r ) (A33)

and

J4 (r, t),J,b(r', t)j=Capej.c(r «)gp(» r )+(2v2G&)—
X(~ ~V ec "~&a "(rt—)) )~'(r—r') (A34)

where e is the renormalized electric charge and (A,b')„„
the renormalized field, related to the unrenormalized

$(8/Bt) j;&(r,t) i%,j4&(r,t),jb~(r'—,t)j
= —i(2&2G») 'Pm pPb.bb'(r —r') —i(2V2G»)

X gaCalcagbCbla jm(r «)
J' (r «)gb(r'r&) (A41)

provided that (2.41) is satisfied. These commutation
relations of c1„& are valid, with the inclusion of leptons,
to all orders in e' and Gp. It is important to note that
the results derived in Secs. III and IV also apply to the
present general case.

In this generalization, one Ands that without leptons
the observed hadron currents can satisfy the complete
ffeld algebra of any symmetry group g. According to
(A14), the interaction between the hadrons and the
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in.termediate bosons can occur both through Dppb and
the possible dependence of Zb on W„„'.We note that if

g is the chiral SUs&&SUs group, then the D„fb term by
itself preserves the usual isospin symmetry. The viola-
tion of isospin symmetry for the nonleptonic weak proc-
esses must, then, be either due to the S'„„-dependent
term in Zq, or due to some other terlns in ZI, not di-
rectly involving the intermediate boson fields. Similar
conclusions also apply to violations of other symmetries,
such as parity conservation, particle-antiparticle con-
jugation, etc.

(gs/kr) —2.4 .

From (A17), it follows that

D.'4b'=Dgb'+g2' 4.'A'

(87)

(88)

Furthermore, by setting pb to be the column matrix

ready the renormalized 6eld" and g the renormalized
p coupling constant, where

y a~4, a+Cabc(aa)b@ c (81)

For the simple SU2-triplet model discussed in Sec. II,
there are only three relevant strongly interacting 6elds
P„', P„s, and P„', each of which is an appropriate linear
sum of the known spin-1 fields p, P, co, Ai, E~*, etc.
The corresponding transformations (81) for these three
6elds are determined by (2.22) and (1+iQaas), where

Q is the total charge operator and ago is the correspond-
ing in6nitesimal angle of transformation.

In either the general case, or the simple SU~-triplet
model, we formulate the idea of vector and axial-vector
dominance by P„' to mean simply that the entire
hadronic source function which generates the inter-
mediate boson 6eld is proportional to P„'. Such a rela-
tion can be derived by assuming the function 2& in the
Lagrangian (A14) to be of the form

APPENDIX B: VECTOR AND AXIAL-VECTOR
DOMINANCE IN STRONG INTERACTION

We continue the discussions given in Appendix A and
assume that the hadron fields fb consist of a set of Ã
strongly interacting spin-1 meson 6elds p„', ,g„~ and
some other fields, denoted by fb', which can be of either
integer of half-integer spin. Under the in6nitesimal
transformations of g, the fields P„ transform in the
same way as W„e; i.e., similarly to (A7),

one obtains

(D y )a — y a+2fgebcW by c

~&v

and therefore

(810)

Mb' ahab') ahab'
S a —+abc~ + ~y

c

aP„„b a&„„b) aD„'fb'

~...=(2f/g)W. . +(D.~,) (D,~.).-
+gc."e.'~. . (»1)

Thus, the expression (82) satisfies the condition re-
quired by (A14) that Zb is a function only of pb, D„fb,
and W„„,where pb denotes both p„and pb'.

By using (A12) and (82), one can easily verify that
(A26) can now be written in a simpler form

8
(1+rl) W e—mp'5' a=2f(1+rl)Ca "Wa„bW„c

8' —(2f/g)ms'@, , (812)
and p„satisfies

a ( ahab' Mb')
+

~
ms'y„= g—S„(813)

ass E a/ac a/ca ~

where

where

D.'Pb'=( +g& 4: ~4b',
(a
Ear„

(83)

l "(~:)'+~-'(~',D.V',~.:), (82) where the sum P' extends over all hadron 6elds, except
p„. Identical results can also be obtained for the simple
SUs model discussed in Sec. II.According to (812), the
entire hadronic source function (A27), or (2.30), that
generates the intermediate boson field 8'„, is simply

4 '=0 +(2f/g)W'

8 8
e — 4, e j a+ggebcrtp bj c

~Sy ~Sv

and 2b' can be an arbitrary function of fb', D„'fb', and
p„„a. It is important to note that we may choose, for
convenience,

ms= m, = observed neutral p-meson mass. (86)

In this choice, the above Geld operator p„becomes al-

s„(h)= —(ms'/g)P, . (814)

It is convenient to choose A,", W, , pp, and pb' as
generalized coordinates. Their conjugate momenta are,
respectively, II."=—E"

);= (1+ )W; —'(Zf/)
xna~;/ay. ,-)-(a~. /aA:)7, (815)

(&~ )&= iHa&b'/—a44') (a&b'/a4—»4 )3 (816)
's This corresponds to the choice p„e=(csc /sic)(pce)e, where

(p„o)' is the unrenorInalized field and mp' the unrenormalized mass.
See Ref. 1 for further details.
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and
Pb'= i(—It&«'/&D4V b') .

By combining (815) and (816), one finds

i(1+g)N 4,
'——(Pir ), (2—f/g)(Pb ), .

(2) By using (813)—(817), one finds that
(817) e4'= mb 'I i-~~(Pb ), ig—C b'(Pbb) e'

+ig P 'P, 'Ty, 'j. (823)

The fields Pp', therefore, satisfy' '
Furthermore, since (Pb ); commutes with W,'= W,'

', (eo—/f-)A, "at equal time, condition (2.41) is fulfilled.
Thus, the observed total electromagnetic current
„'Jp'= —(mw'/fo)Wp' satisfies (1.15) or (A41), as well
as aH other equations of field algebra, such as (1.13) and
(1.14), or (A39) and (A40).

In the following we will briefly discuss several conse-
quences of the present formulation of vector and axial-
vector dominance:

(1) The matrix elements of W„', A„, W„W„«, etc. ,
between any states IA) and IB) which consist of only
hadrons (and leptons) but without photons or inter-
mediate bosons can be classified according to their
minimum power dependence on e and f. For example,

alw. IA)=o(f),
&BIA„IA)=O(e), (»g)

&BIW„W 'IA) —&vaclW aW 'lvac)=O(f')

(824)

Ly4 (,t),y4'( ',t)]=—(g/, ')
XC"y '(r t)82(r —r') (825)

I 4'4 (r t)A '(r')t)7= —(g/m ')C "i '(«)~'(r —r')

+mp 2ti bV', ti«(r r'), —(826)

where, on account of (86), mb is set to be m, . All these
commutation relations hold to all orders in e and G~.
LSee Appendix A of Ref. 3 for other commutation
relations. j

(3) Let us consider the spectral representation of the
vacuum expectations of the commutators between the
observed hadron currents and those between Pp . By
choosing all space components J and p,' to be Hermi-
tian, we may write

etc. By using (812), setting

eb ——0, It=0, and neglecting O(f'),

one obtains

&BIW..IA) =2u/g)
q2+mw'

&vaclPp. (x) ~ «(0)llvac)= o,.b(M2)~
(819) 0

0 j '(M')I
I

6«I(x)dM' (827)
&ax„ax„l

X h„,+ &Blg:IA), (820)
5$gT

where q„ is the 4-momentum diGerence between the
states A and 8, and q'= (q„)'. To the same approxima-
tion, the corresponding matrix element of the observed
hadron current J„=—2(mw2/f)W„ is, then, given by

mQ mp
&8I~..IA)=-g-

q2+mw'

X ~„.+ &sly. IA). (821)
mg

&»cll 0.'(x)A. '(0)jl»c)=
0

o ab(M2)bp„

( it 2

—~',"(M')I
I ~~(x)dM2 (82s)

&ax„ax„i

where 624(x) is given by (3.7). From CPT invariance,
the (XXtV) matrices oI= ((II ). , crI'= (o.I' ), o e
= (ob '), and o.b'= (o4' ') are all real and symmetric.
Furthermore, (oI' M'oI) —and (a4' M'ab) are —posi-
tive, and o.g and o.~ are positive definite.

The commutation relations (A34) and (826) imply,
respectively, that

Thus, the form factor relation (2.43) follows; i.e.,

mw ) mp
(FAe")r=i=

I I &AaP,
t q2+-mrr'i q'+mp'

where

aild

&ab(M2)dM2 —(2it2G )
—lgab

o. "'(M')dM'= m 'ha'

(829)

(830)

(PAB )T=l &8I Pp )I=1IA)y
P»'= —

g '(q'+m, ')&&lt.'IA)
For M2&ms 2, the relevant states cannot contain any
intermediate bosons. By using (821), one finds that,
in the approximation (819) and for M2&mtr',

p„' denotes the neutral p-meson field, and it is a member
of the set &4ti„'f =( .'/g)'L1 —(M'/ ')?' (831)
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ag'=(m, '/g)'{o ~'+mw-'[1 —(M'/mw') j '
X [2—(M'/mw') 7o.o) . (832)

8 8
F„„'=—3„'—

BX~ BXv

fo'= zVfo, and eo'= iV"'eo.

(CS)

(C9)

ay'dM~, (833)

In the integral (830), the main contribution should
be due to hadron states. Thus, one may approximate
this convergent integral by

Msg

L t D„„(q),D„," (q), D„," (q), d D„, "(q) b,
respectively, the sum of all Feynman-propagator
graphs in which the (initial, final) fields are (W„',W„'),
(A „',A„'), (A „',W„'), and (W„',A „'). These are, by
de6nition, covariant functions and D„„WW(q) is the
same S„,w(q) given by (4.1).We have

where M.& is a characteristic mass determined by the —i &w

strong interaction. In the case where M, z turns out to Dpv (q) = &~~ (q) =
be much less than m~, (2zr)' q'+M' —ie

mw»~st, &mg, (834)

o g'dM' —(m, /g)'. (835)

APPENDIX C: PROOF OF THEOREM 1

then the matrix gg' satisfies, besides the exact equation
(829), also the approximate equation,

X &„v+ dM'. (C10)
gI gv

M'

By using the theorem proved in Ref. 17, we can readily
establish the following relations:

i 1 ( —q„q„) eo') '
i1——im 4

(2zr)4 q' k q' ~ fo'/

To prove Theorem 1 in Sec. IV, we introduce the
transformation

ow (1 1) q'
1+ dM'

q2+M2 zo (M2 m 2/ m 2
(C11)

where

N= [1+(1+v)(eo/fo)'j '. (C2)

A„'= N '"A „+N"'(1+zan)(eo/fo) W„', (C1)

D Aw D wA
pv

—i p q„q,) eo')

8 8
G„,= 8','— W„',

~Sp ~Sv

8 „8
G„,= — TV,'— t/V„',

BXp, BXv

W„=1VW„+(eo/fo)N'I'A„',

(C4)

(C5)

(C6)

The Lagrangian (3.1) becomes

2= —A' (1+rZ)NG„, '——,'mwz(W„o) '
A~.."+~z—(AD.V,G") (C3)

where

ow p1 1)
~dM', (C12)

q'+M' —zo &m ' M'/

where, apart from some trivial substitutions, (C11) is
the same as Eq. (26) in Ref. 17. For convenience, we
have adopted the Landau gauge in the above
expressions.

By using (C6), one 6nds that the propagator D„,W,

de6ned by (4.3), is

w N2D ww+2(e /f ) +oloD wA

+(/fcoo)2ND AA(C1 3)

8
D,of= +i(fo'W„o+eo'A„')Q f,

-BXp
(C7)

Theorem 1 then follows.
We note that as q'~0, D„„~~ is finite, but D„„~

carries the photon pole.


