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New superconvergent dispersion relations for the forward, crossing-even xN scattering amplitude have
been derived and compared with experiment. The essential point is the assumption of dominant Regge
behavior at high energy and the inclusion of the real part of the scattering amplitude. Sum rules for the
P and P' residues involving only experimentally accessible quantities are computed, using data of Holer
and Lindenbaum. The Regge P' parameters are found as ap =0.39 yp —$,82'

where y; and o.i are the residue and the intercept of the
ith Regge trajectory at t= 0 (F=Pomeranchukon,I"=f' meson), we obtain the following superconvergent
dispersion relations:

~N an earlier paper' we derived a new type of super-
- convergent dispersion relations for the forward pion-

nucleon charge-exchange scattering amplitude C& '(v)
=A & &(v)+vB& &(v).' Tests of such sum rules have been
found to be satisfactory' because only experimentally
accessible quantities are involved. An application of
such dispersion sum rules to determine the 5-wave wg
scattering lengths was noted by Gilbert4 a long time
ago; Olsson' was also able to determine the Regge p
parameters within the same formalism.

In this paper we apply the same technique to the
sr' crossing-even forward-scattering amplitude C&+&(v)

=A&+&(v)+vB&+&(v). We shall obtain three supercon-
vergent dispersion sum rules, and shall demonstrate
how a better determination of a~ and u3 as well as the
I"Regge parameters can be obtained.

tA'e start by considering the function

dv ImF(v+ie) =0
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(1) with a&tv= s(P&1.When P —v 1—0, Eq. (3) reduces to

where v and p, are the laboratory energy and the
mass of the incident pion, ImC&+&(v) =—'(v' —ts')'»
X[&r (v)+o+(v)j, and p is an arbitrary real constant
less than unity. We normalize (v' —ts')e to be real posi-
tive as vv b+i0", b)tt. In this way, ImF(v) =0 for
~v~ (&u, except for the pole contributions at v=+vt&
= +t&s/2r&t (rrt=nucleon mass) and at v=0. Accepting
the Regge behavior for C&+&(v) as v v&&o, i.e.,
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which is nothing but the ordinary dispersion relation
at v=0. Numerical evaluation shows that. C&+'(0) is a
large quantity of the same order as the Born term
(gs/2r&t)sr/(t&' —vt&'); consequently, we combine (3) and
(4) to eliminate C&+&(0), obtaining

*Work supported in part by the U. S. Atomic Energy Com-
mission.

~ Yu-Chien Liu and S. Okubo, Phys. Rev. Letters 19, 190
(1967).

We follow the notation of K. Nishijima, Iig&amewtal Particles
(W. A. Benjamin, Inc. , New York, 1964).' See Ref. 1. In that reference we used an S-wave scattering-
length approximation to evaluate the integral near v=p. Results
are slightly improved on using ReC& &(v) =ReC& &(&s)+C(vs—t&s),
with C determined by plotting ReC& &(v) versus (v' —p,'). (Theo-
retically, the constant C is related to P-wave scattering lengths. )
Such a modification, however, is important in this calculation,
because in the range from 0 to 0.02 BeV/ RecC&+&(v)/ReC&+&(ts)-3 )while ReC& &(v)/ReC& &(v)=1j.

4 W. Gilbert, Phys. Rev. 108, 1078 (195It}.
s M, G. Olsson, Phys. Rev. Letters 19, 550 (1967).

dP 1
—( [cossrP+ (v' —1)~'j ImC&+&(v)
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+sinsrP ReC&+&(v) }=—
2m 1—Page

X[(1—vt&')' e—1j+sttrC&+&(t&) (5)

where we have set. ts=1 for simplicity. As p v -'&rv+0,
we obtain a sum rule for the residue of the Pomer-
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anchukon: TABLE I. Test of Kq. (3), with f'/4n = (v/2m)'g'/4v=0. 081.

-,'aog(~) =-',ayp=
p 1 p

1
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(v' —1)s v
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+l [C'+'(f)+7 J' (l&P& /2) (8)

where again C&+~(0) has been eliminated by using Eq.
(3). When p —+ ss—0, Eq. (7) reduces to the Gilbert'

type of inverse dispersion relation

Imc&+l(v)- " dv 1——,'s. lim +""'+ - (v' —1)"' (v' —1)si' v

X {(v —1)'I Imc&+l(v) —[Rect+i(v) —Rec~+l(p) j)
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6 K. J. Foley et al. , Phys. Rev. Letters 19, 330 (1967); 19, 193
(1967).

g 7P

X[Imc&+l(v)+(vs —1)'"Rec&+'(v)]+
2m 1—vg

X [(1—va')"' —1j—-'a C + (p) . (6)

In principle, this sum rule serves to determine y~
if o.p=1 is assumed. However, using the same experi-
mental data as in Ref. 1, and neglecting the contri-
bution of I" as compared to I' above 20 BeV/c, we

found yv= o~(eo) =26 mb. If one takes into account the
contribution from the P' trajectory, with values of
ap and y~ to be determined below, one can pull this
value down to the experimental one: y~=22.12&0.94
mb. '

To this end we consider subtracted forms of F(v),
s.e.,

~ops

G( )= -[c'+'( )—c'+'( )]("—~')' ~

and
~s pi

H(v) = — [C'+-'(v) imp—(vs fs')"—'5
(v' —ps)s v

Sy an argument similar to that above we obtain the
following superconvergent dispersion sum rules:

1
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2541—
pgg

1.0
0.9
0.8
0.7
0.6
0.5

Left-hand
side

0.0076
0.016
0.040
0.062
0.085
0.11

Right-hand
scde

0.0076
0.016
0.040
0.064
0.088
0.11

while as p —& —',nv+0, Eq. (8) reduces to
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by using the validity of Eq. (2) for large v. Equation (10)
is a sum rule for the P' residue, if np. is known.

In practice, sum rules (7) and (9), as contrasted with
Eq. (5), are insensitive to reasonable choices of the I"
parameters, because in such Gilbert-type sum rules,
even the dominant P contribution is very small at
high energies. Therefore, they serve to determine the
low-energy parameters aj and u3 accurately. Using the
data from Hohler and Strauss~ and from Lindenbaum, '
we found that the best values are ar=0.173fz ', as
=—00g7p ' with at+2as= —0.001' '.' On the other
hand, Eqs. (8) and (10) are insensitive to reasonable ar
and a., and offer a better determination of av and yv .
o,~ =0.39, y~ =1.82p, '=10.9 mb BeV.' These so-
obtained low- and high-energy parameters for C&+l(v)

are then used to test the sum rule (5), with the result
displayed in Table I. The agreement of the left- and the
right-hand side is satisfactory.

G. Hohler and R. Strauss (private communication). Also for
an earlier report of such data in the c.m. systeIn, see G. Hohler,
G. Ebel, and J. Giesecke, Z. Physik 180, 430 (1964).

'Another independent way using the broad area subtraction
method of Adler t S. L. Adler, Phys. Rev. 137, B1022 (1965)g
enables us to obtain aI+2a3=0.000@ ' and a1—a3=0.290p, '.
This yields a1=0.197 p ' and a3= —0.093 p '. What are essential
in our calculation are the combination o&+2a~ for C&+&(v) and
o& —a& for C& ~(v) (as in Ref. 1), but not a& and a& separately

~ A 6rst guess for these values is obtained by several authors,
using the nonsuperconvergent 6nite-energy sum rules. See, M.
Olsson, Phys. Letters 268, 31.0 (1968};and R. Dolen et al. , Phys.
Rev. Letters, 19, 402 (1967). The normalization of y„(or y„') is
conventionally specified by either of the following asymptotic
conditions:

C+() '(/) ' o C" () y (/ o)"
where E0=1 BeV. Thus, it is convenient to adopt normalizations
of y„(similarly of y„') so that it has the dimension p ' for the
erst case (i.e., pion natural unit) and mb BeV for the second case
(i.e., we use a scaling factor Es 1BeV). Unfortunately——, the
conversion formula from one unit to the other requires us to
specify values of a~'.
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%e comment on our result. Concerning the S-wave
scattering lengths, Hamilton's' new values are
44o- —0.091+0.005 and 2ai+a, =0.270&0.008, which
yield ai+ 2ao ———0.002&0.008. As regards the I"
parameters, a diversity of results appears in the liter-
ature. Barger and Olsson" gave n~ =0.39&0.24; Rarita
et at. '- gave n~ =0.57 with 7~ ——14.8 mb BeV or

"J.Hamilton, Phys. Letters 20, 687 (1966)."V. Barger and M. Olsson, Phys. Rev. 146, 1080 (1966)."W. Rarita, R. J.Riddell, Jr., C. B.Chiu, and R. J.N. Phi11ips,
Phys. Rev. 165, 16j.5 (1968).

0,~ =0.73 with y~ =21 mb BeV; Meshcheriakov et ul. ,
"

imposing n~ =0.50, obtained y~. = 13.86 mb BeV; while
Igi, ' who was the first one to propose the existence of
P', gave yp =3.05@, '=18.3 mb BeU for o.p ——0.4
(yv ——21.6 mb). Although the experimental uncertainties
in ReC&+&(v) may still be large, we believe that our
method provides a better method for the determination
of all these parameters, since all the integrals LEqs. (5),
(7), and (9)) are superconvergent.

"V. A. Meshcheriakov et a/. , Phys. Letters 258, 341 (1967)."K. Igi, Phys. Rev. 130, 820 (1963).
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The observed total weak-interaction current 4ii, "(x) and the observed total electromagnetic current 4i„» (x)
are assumed to be, respectively, the same local operators, apart from constant multiplicative factors, as the
hypothetical charged intermediate boson Geld W„(x) and the corresponding neutral intermediate boson field
W„(x).The Geld algebra satisfied by these current operators is discussed. It is shown that, neglecting higher-
order weak-interaction eAects, one can obtain finite higher-order electromagnetic corrections for the known

. hadrons and leptons, such as the electromagnetic mass shifts of p, m, e, p, , etc., and the radiative corrections
to the weak decays of these particles.

I. INTRODUCTION

'HE purpose of this paper is to show that within
the general framework of field-current identi-

ties' ' it is possible to derive 6nite higher-order elec-
tromagnetic corrections for the known hadrons and
leptons, provided one identi6es the observed weak and
electromagnetic current operators, 4)„w~ and 4i„», as
proportional to some weakly coupled fields such as the
(hypothetical) intermediate boson fields. In order to
show that such 6eld-current identities are indeed pos-
sible, let us first examine the de6nitions of these ob-
served current operators.

The total electromagnetic current operator 4i„» is,
by de6nition, related to the electromagnetic field A„by4

BF„„= eo4l, »,

*This research was supported in part by the U. S. Atomic
Energy Commission.

' N. M. Kroll, T. D. Lee, and Bruno Zumino, Phys. Rev. 157,
1376 (1967).

~ T. D. Lee, S.Weinberg, and Bruno Zumino, Phys. Rev. Letters
18, 1029 (1967).

' T. D. Lee and Bruno Zumino, Phys. Rev. 163, 1667 (1967).' Throughout the paper, the subscript p denotes the space-time
index, 44=4 is the time component, x4 st, and /4 =s(or j, or it)=
denotes the space component. All repeated indices are to be sum-
med over.

where

Gp BS BS
i gi,""(x)=

gS~wi4(e) C}S~wi4(/4)

Op=10 'm~ ',

(1.3)

which denotes the Fermi coupling constant of the weak
interaction, and m~ is the nucleon mass. In (1.3), the
equality jBS/Bsi,""(e)j= Lc}S/Bsx""(/4)j expresses the
p—e symmetry property of the weak interaction.

where eo is the unrenormalized charge of the electron
(eo(0), and

8
+pp Ap Apy

~&p ~gv

To give a precise definition of the total observed weak-
interaction current operator 4i„w"(x), we assume that
the bilinear product

(1 2)

is an observable, where l(x) and vi(x) represent field
operators of the particles 1 and v&, respectively, /= e or
p, , and the dagger denotes the Hermitian conjugate. The
observed total wea¹interaction current 4)„""(x)is then
defined to be proportional to the derivative of the S
matrix with respect to s&,""(e) or s&,"~(/4). We have


