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The nonrelativistic Bronzan-Lee model is solved by the method of old-fashioned strong-coupling theory.
The isobar physical states are derived in terms of the bare parameters, and all the renormalization constants
are calculated. It is argued that taking all the bare couplings to infinity leads to a bootstrap solution.

INTRODUCTION

N a previous note,! the author has given the solution
of the ordinary Lee model? in the strong-coupling
limit.? In this paper, the same method will be used to
solve an extended Lee model first introduced by Bron-
zan.* Though the model is still extremely crude it has
some of the properties of a quantum field theory. In
particular, the elementary U~ particle in the two-meson
sector may be subject to a bootstrap mechanism similar
to that which can be imposed® on the V (neutron in
my notation), which is in the one-meson sector. The
simplicity of the solutions presented here will allow
easy physical interpretations of the results.

Perhaps most important is from the author’s point
of view that static models with extended sources are
quantum-mechanics problems defined in terms of bare
parameters. Renormalization constants are to be cal-
culated from the solutions; they are not to be varied
indiscriminately as independent variables. A well-
known example of this is that the Lee-model re-
normalized coupling constant may not be raised past
a critical value without obtaining nonsense, whereas
the bare coupling may be varied from 0 to e« . Obviously,
this approach fails in a local field theory; however,
some insight is gained in the simpler case of an ex-
tended-source static model.

Finally, we shall be concerned in this note with
bootstrapping the baryon states; no reference will be
made to a baryon field. We shall see that there is an
ambiguity in defining the physical U state because of
its mixing with a “bound” state having the same
quantum numbers. The ambiguity would only be com-
pounded then if we tried to work with renormalized U
field operators.

SOLUTION OF THE MODEL

The nonrelativistic Bronzan-Lee model is defined
by the Hamiltonian

* Supported by U. S. Atomic Energy Commission Contract
No. AT-30-1-2171.
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where e equals m-+k2%/2m; m is the meson mass;
ay equals the 7~ meson destruction operator; # is the
cutoff function for the sources; g equals (7~,P,N), bare
coupling; f equals (7—,V,U), bare coupling; 8x,v may
be regarded as bare NV, U, masses; and the 3)X3 matrices
operate on the bare (P,N,U) states.

We proceed now as in I® by splitting the meson
destruction operator into “bound” and ‘quasifree”
parts. As shown in I, this leads to a Hamiltonian which
is the sum of two commuting parts when the source
radius is taken large enough. We may disregard the
quasifree excitations since their frequencies are large
compared to the isobar frequencies we are trying to
calculate; we must then diagonalize only

wa'a Gal 0
Ga  8x+wd'e Fa ,
0 Fa Su+wata

Hbound =

)

where the bound-meson desctruction operator ¢ is
given by inverting
ax=1uxa/\, (3)

>\2’_—;Z wi?, [aaa-r]: 1,
k

with

and
W= Z Ekukz}\h2 ’
k

G=g\, F={\.

Fortunately, the eigenstates of HPeund are easily

6 The limitations of the method are (1) that Eq. (3) be valid
when taken between the discrete isobar states, i.e., that the isobar
separations be much less than the meson mass; (2) that terms
coupling the bound and quasifree states be small, i.e., that the
source radius be large. Both conditions will be fulfilled if 1<Kmgo%/
(mR)3< (mR)*, where R is the source radius.
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found to be”
Y
V=B | @n¥n (43.)
'Yn‘l’n—z
with eigenvalue(s) E, defined by
Hvouwdy, = F 9, , (4b)

and the ¢, are harmonic-oscillator wave functions,
such that

d'ay=m,,

L@/ (n]) Wo=n. ©®)

For general #, the conditions on the coefficients an,
Yn, Bn, and the energy E, are

wn+aGv/n=E,, (62)
GVnta[Ext+wn—1)]+F(n—1)"2y,=anE,, (6b)
F(n—1)20,4[8u+wn—2) Jyn="nEn, (6¢)

e Ba=(1+4an*+va.?). (6d)

For n=1, the solution is trivial and equivalent to the
ordinary Lee-model results given in I: y; =0, a1= —w/G,
and the choice §y=G?/w causes the neutron to have
zero energy along with the proton.

For n=2 the situation is more complicated since we
must solve

2w+ta:GV2=E,, (7a)
GV2Has(G*/wtw)+Fyo=aaFs, (7b)
Fast-8uye=7:E;. (7c)

Now as and v, may be eliminated to give a cubic equa-
tion for E; with the free parameters F, G, v appearing
in the coefficients. The three parameters are constrained
by the field-splitting hypothesis [validity of Eq. (3)].
We may satisfy this requirement by causing the roots
of Egs. (7) to cluster about E;=0and E;= . The roots
near the origin will correspond to strong-coupling
isobar states, whereas the large roots correspond to
fictitious states which are decoupled from the isobar
subspace because of their large energy separation. For
this discussion we shall always take G/w>>1, and we
shall choose 8y so that one root is at E.=2w?/G?. This
last facilitates comparison with Gerstein’s paper,? since
this is the value that we would obtain for the bound
state in the absence of the U particle; c.f. I. We shall
find that for either small or large F the strong-coupling
requirements on the roots will be met, and these two
cases will require separate consideration.

7 A few other versions of the Lee model may be solved by
harmonic-oscillator wave functions; to name two: the Lee model
with several neutrons (V’s); the Lee model with an elementary
U- ‘1, or U~~~ etc. These models probably lead to no new physical
results.

8 1. S. Gerstein, Phys. Rev. 142, 1047 (1966).
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We may rearrange Egs. (7) to obtain

as=(E,—2w)/N2G, 8)
veo=[Es?— Es(G*/w+3w)+2w*]/V2GF, 9)
and E; is to be obtained from the cubic
— Ep*+ ExX(G*/w+3w+8v)
+E2(F2'— 27,2)2—“3‘108(7— 8[]62/71))— 2wk?
+2w28y=0. (10)

If we force one of the roots to be at E.=2w?/G? we
obtain 8y=F?G?/3w?. Qualitative examination of
Eqg. (10) shows that for 8y very small there is one large
root (of order G?) and two small roots, whereas, for §y
very large there is one low-lying root with two that are
very large. In each of these cases we may work within
the subspace of low-lying states since the higher states
are assumed to be only weakly coupled to these. We
proceed then with a separate discussion of the two cases.

Case (1): F2G?/3w’<m, G/w>1

There are two low-lying states in the n=2 sector;
their energies are given by

ExA=FG*/3w?, (11a)
EyB=2w%/G?, (11b)

where A and B are used to label the states. Neither of
these states may be called the physical U state since
this “state’” mixes with the 7=, N bound state. We may
define, therefore, renormalization constants for each
of the states. The probability of finding the bare U in

state 4, Zy4 is given by
Viw? 2w\ T2
<1+ > , (12)
FG

FG?
which approaches unity as we decouple the bare U
particle. For the state B we obtain

FG F2G2\~1/2

<1+ ) »
VIw? 2wt
which tends to zero as the bare U is decoupled. Ob-
viously, as the bare coupling F is increased, the bare U
particle moves from state 4 into state B.

Note that in calculating the Z’s we have ignored the
overlap integral taken between the bound-field wave
function, ¥, and the wave function representing the
ground state of the free-meson field. In the Lee-type
models this integral goes to 1 for large enough source
radius. The integral goes to 0 for small radii (Haag’s
theorem) and gives rise to the characteristic e
(I is a cutoff integral) dependence found in most other
strong-coupling models.

There will be poles in the 7—, N scattering amplitude
at the states 4 and B. The residues of_these poles define

(Z ) 1/2= By Ay A=

(ZyP)1P=— (13)
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the renormalized coupling to states 4 and B. We cal-
culate these parameters by taking matrix elements of
the bare meson current between the physical states
4, B, and the n=1 isobar. For example, taking the
current form Eq. (1),

000
gai=fl o400 0 Oy
010
0 00
+gf w41 0 O (14)
0 0 0

=B"Bi(a?gtary2*f), (13)
which for very small F becomes
gA.1R%a2G/'yQ)\=FG/w)\. (16)

Equation (16) merely says that as the bare U state is
decoupled . (F — 0); the physical 4 state is also de-
coupled. The corresponding calculation for state B
leads to

23

Viw  F?

N VIwh
The first term of Eq. (17) is the result from the ordinary
Lee model.

It is possible to define a vertex renormalization

constant Z;4-B for the states 4 and B using the
following relation from field theory?:

an

gB.lR': -

(=222 (18)
= . 18
g 7
We obtain ]
. Yelay
V'=—————, i=4,B. (19)
UlzlG/F"‘f‘Ol;[“)’zz
Substituting, we obtain
ZiA=12/G?, (20)

which is independent of F and goes Lo zero as G— .

We also obtain
F2

Viw?

which is independent of G and tends to zero as F — 0.

ZP=— (21)

Case (2): F/w>1, G/w>1

There is only one low-lying state in the =2 sector.
We may arbitrarily interpret the state at E,=2w3/G?
as the physical U particle. Equations (8) and (9) give
for the physical U

Q= —'\/2—70/ G y

(Zy) 2=y, =V2w?/FG.

(22)
(23)

9 The case of more than one state with the same quantum num-
bers has been treated by G. Feldman and P. T. Matthews, Phys.
Rev. 132, 823 (1963). More recent references will be found in
K. Kangibid. 152, 1234 (1966).
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The renormalized coupling is given by

V2w w?
guaf= ———~<1+—> )
A FG

which is very close to the ordinary Lee-model result for
the coupling to the #»=2 bound state. Finally,

Zi=w?/G. (25)

In the higher sectors we may find the energies for
Cases (1) and (2) by solving Egs. (6), using §y=G?F?%/
3w?, 8y=G?/w. This leads to a cubic which always
(n>2) has two large roots and one low-lying isobar.
The small root is given by

E.~wn(n—1)/G*, (n#2). (26)

Couplings can also be easily calculated using the
methods given in this paper. Except for small correc-
tion terms which vanish in the limit, the results in both
cases agree with the ordinary Lee model.

(24)

DISCUSSION

It remains then to ask what is a bootstrapped U~
particle? One definition consists of taking the system of
states which correspond to poles in the scattering
amplitude and whose residues (couplings) satisfy cross-
ing symmetry and whose pole positions (masses) are
constrained by the unitarity requirements; also the
solution should have as few free parameters as possible.
Goebel and his associates!® have solved tbis problem
for the static models with crossing symmetry, and the
solutions agree with the results of the old-fashioned
strong-coupling theory of Wentzel. This suggests that
we may obtain solutions satisfying the usual bootstrap
requirements (Zy — 0, Z; — 0) by letting all the bare
couplings get very large. Turning the argument around,
we might say that strong-coupling solutions are the
bootstrap solutions of S-matrix theory. Although the
Lee model does not have crossing symmetry, we can
study its strong-coupling limit and argue that this is
somehow analogous to the bootstrap solutions of
S-matrix theory.

Therefore, our criterion for a bootstrap solution is
that the low-energy parameters obtained from it
(masses, couplings) agree with those from the strong-
coupling limit of the ordinary Lee model. One reason
for such a roundabout bootstrap definition is that one
might expect the very same phenomena in charged
scalar theory, and in that case the criterion is much
more transparent.

We have seen in the simple model treated here that
we can recover the Lee-model spectrum and renor-
malized couplings in either of two ways; (1) decoupling
the U~ altogether, (2) taking the strong-coupling limit
of the U~ bare Yakawa coupling.

10 C. J. Goebel, Phys. Rev. 109, 1846 (1958); T. Cook, C. J.
Goebel, and B. Sakita, Phys. Rev. Letters 15, 35 (1965).
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The first case has been emphasized by Gerstein and
Deshpande!® and corresponds to the value zero for
8y, the level shift of the U particle. Of course, if state B
is interpreted as the physical U particle then the level
shift is finite. The author tends to reject this weak-
coupling case on the physical grounds that it is merely
an expression of the reversibility of the theory to
turning on and off the bare coupling.

On the other hand, Case (2) treated in this paper!?
has all the correct properties and is furthermore con-

( ;‘ g) S. Gerstein and N. G. Deshpande, Phys. Rev. 140, B1643
1965).

12 Cases (1) and (2) may also differ in the high-energy limit of
the scattering phase shifts in the #»=2 channel.
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sistent with the usual bootstrap of the neutron.® That
is to say, the single criterion of letting all bare couplings
go to infinity is sufficient to bootstrap all the core
states.

One point not discussed in this paper is what is the
connection between bootstraps in extended-source
static models, and local field theory (point source),
where go probably turns out to be infinite auto-
matically.
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New superconvergence relations, using Regge asymptotic behavior, have been written down for the
meson-baryon and the baryon-baryon systems. We discuss the N, KN (KN), NN (NN) processes for which
enough experimental data on total cross sections are available to evaluate the integrals occurring in the
sum rules. The results obtained are in agreement with experiments.

1. INTRODUCTION

UPERCONVERGENCE relations! have lately
attracted considerable attention. Superconvergence
sum rules for the pseudoscalar-meson-baryon and
baryon-baryon systems have been discussed by many
authors.?~® The major obstacle in writing the super-
convergence relations in the case of meson-baryon
systems arises from the fact that the spin structure of
the scattering amplitude is such that none of the in-
variant amplitudes is superconvergent. There have
been various attempts to write down the superconver-
gence relations for this system.** One has been to
exploit the absence of Regge trajectories in states of
specific quantum numbers in the crossed channel, and
thereby write down the superconvergence relations.? A
second approach is to subtract out the high-energy
contribution from the invariant amplitudes and to
1V. DeAlfaro, S. Fubini, G. Furlan, and G. Rossetti, Phys.
Letters 21, 576 (1966).

2 B. Sakita and K. C. Wali, Phys. Rev. Letters 18, 29 (1967);
G. Altarelli, F. Bucella, R. Gatto, Phys. Letters 24B, 57 (1967);
P. Babu, F. J. Gilman, and M. Suzuki, sbid. 24B, 65 (1967).

3 A. A. Logunov, L. D. Soloviev, and A. N. Tavkhelidze, Phys.
Letters 24B, 18 (1967); R. Gatto, Phys. Rev. Letters 18, 803
?36;3; L. A. P. Baldzs and J. M. Cornwall, Phys. Rev. 160, 1313

1967).
*G. Costa and A. H. Zimerman, Nuovo Cimento 464, 198

(1967).
8 T. L. Trueman, Phys. Rev. Letters 17, 1198 (1966).

write the superconvergence relations for the new ampli-
tudes.® Yet another approach has been suggested by
Costa and Zimerman* (specifically for meson-meson
scattering, but their argument can be generalized to
other systems as well), who consider the asymptotic
behavior in the forward direction of an invariant ampli-
tude which may be supposed to be governed by a single
Regge trajectory corresponding to a definite isospin in
the ¢ channel. They then relate asymptotically, by
SU(3), the invariant amplitudes for different particle
systems in which the same Regge trajectory in the cross
channel dominates in such a way that the leading terms
in the P.(z) expansions are equal. The asymptotic
behavior of the difference of these amplitudes is then
governed by the next term in the expansion, which is
two powers lower in » and is therefore superconvergent.

In the case of the baryon-baryon scattering, the
problem is not so involved. For this system too the
kinematics is such that none of the usual invariant
amplitudes® is superconvergent. However, one can
define® a linear combination of the invariant amplitudes
which corresponds to a definite helicity flip in the ¢
channel such that one can write the superconvergence
relation for the linear combination.

¢ M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and
D. Y. Wong, Phys. Rev. 120, 2250 (1960).



