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The p bootstrap is considered critically by comparing the results of a é-function and a Breit-Wigner
exchange. It is found that the self-consistent solution that exists for the s-function case is not reproduced
by the Breit-Wigner input. The reason for this is traced to an abnormally large repulsive long-range con-
tribution in the 5-function case that is absent in the Breit-Wigner exchange. It is concluded that the p boot-

strap is in serious trouble.

1. INTRODUCTION

INCE the present paper is but the latest addition to
an already extensive literature on the p-meson boot-
strap, a preliminary apologia and a justification of the
particular viewpoint of this work may be considered
desirable. While there seems to be reasonable agreement
among the various partial-wave calculations that a p
bootstrap is possible, but that it corresponds to an un-
physically wide ‘“‘resonance,”*~% there is no such una-
nimity as to whether this should be regarded optimistic-
ally, as suggesting the possibility of a quantitatively
acceptable bootstrap in a more comprehensive calcula-
tion, or pessimistically, as indicating that the exchange
of a narrow p resonance is manifestly incapable of boot-
strapping itself.

In this report, two of the approximations that are
usually made in the calculation are investigated criti-
cally. These are the determinantal approximation for
the resolution of the N/D equations, and the §-function
approximation of the exchange contribution. It is found
that it is possible to improve the determinantal approxi-
mation by choosing the subtraction point of the D equa-
tion in such a way that the norm of the kernel of the N
equation is minimized. The determinantal approxima-
tion is then capable of much higher accuracy than might
have been thought, as is shown by a comparison with a
standard matrix-inversion technique. The details of this
work are given in Sec. 3.

The é-function approximation is investigated by com-
paring it with the exchange of a Breit-Wigner P-wave
resonance. It is found that there is reasonable agreement
between the two cases for the correct value of the width,
viz., 120 MeV; but that there is no agreement at all for
the “width” necessary to achieve self-consistency for
the é-function approximation, viz., 525 MeV. In fact,
there is no self-consistent solution for the Breit-Wigner
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input. The reason for this can be understood in terms of
the much reduced repulsion of the Breit-Wigner left-
hand cut. The implications of this are discussed in the
Conclusion of the report, Sec. 5. It is clear that the gen-
eral import of the result is to cast doubt on the apparent
success of the é-function approximation; because, while
one may not be willing to believe a Breit-Wigner formula
corresponding to a width of some 500 MeV, one should
be even more suspicious of a §-function exchange, which,
after all, is obtained as the narrow-width approximation
of a pole (i.e., a Breit-Wigner term).

What, then, is the remedy? It is necessary to find a
means whereby a narrow exchanged resonance can pro-
duce a narrow output resonance. The idea that exchange
of the whole p Regge trajectory might suffice has been
investigated” and found inadequate. The suggestion
that other channels are important has been considered
by several authors.2” The general finding is that this
does improve the situation materially although no cal-
culation of this nature has succeeded, to the author’s
knowledge, in generating a p meson with a width less
than twice the correct value. Nevertheless, this may be
the correct avenue of approach: perhaps the p is a com-
posite of many different particles. Indeed, in a recent
report® it was suggested that the nucleon-antinucleon
channel was most important in producing the p, al-
though the uniform treatment of all the left-hand cuts in
Ref. 8 is a potential source of inaccuracy that could, per-
haps, be gross.

A further possibility that has been suggested recently
is that the p is produced, after all, by the == channel,
but that the singular tail of the p exchange should be
taken seriously.®~! The influence of the tail does seem
to reduce the required width, but the quantitative de-
tails are not yet clear.

The possibility that other exchange forces are im-
portant seems slight. It is shown in Sec. 3 that the effect
of a ¢ meson is negligible. The effect of the f, meson
seems hard to evaluate because of the highly singular
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tail, which leads to an extreme cutoff dependence. How-
ever, because of its relatively high mass, one might hope
that the f, meson could be ignored in the problem’of the
p meson.

2. FORMULATION OF THE BOOTSTRAP
PROBLEM

Some care will be taken to define all the quantities
that arise in the calculation, despite its elementary
nature, since the numerical results seem to be quite sen-
sitive to apparently trivial changes, as a cursory com-
parison of the various published results will tesitfy.

A resonance in either the isospin 0 and angular mo-
mentum O state, or in that for I=1, J=1, will be written
in the unitary, Breit-Wigner form

T150%/(s)

mryi—s—il1sp2+1(s) ’

Jra(s)= 2.1

where
p(s)=[(s—4)/s]* (2.2)

is the usual phase-space factor, s being the invariant
square of the total four-momentum. Here, mr; is the
mass of the resonance in units of the pion mass, and I'z;
is proportional to the width. If Az is the full width of
the resonance in the center-of-mass (c.m.) system, in
units of the pion mass, then

Ary=Q1/m15)p* " (m1s*) 1. (2.3)

The phase-space factor in Eq. (2.1) is not unique, but
the particular choice seems to be a good one since, in
addition to its simplicity, it incorporates the correct
threshold behavior, has a good asymptotic behavior, and
is fairly symmetrical in shape. (Experimental data seem
to suggest a symmetrical shape in the s variable for
resonances.) For the §-function approximation (see
below), the choice of phase-space factors is immaterial.

The discontinuity on the left-hand cut is given in
terms of the discontinuity on the right-hand cut by the
relation'?

4—s

1
Imfrs(s)= i > QI+ Do

—s5Ja I,J’

2s
XImfr g (S')PJ(1+ )
s'—4

7

A}
XPJI(I-}-——-—;)ds', sS0 (2.4)

s—

where azy is the crossing matrix

2 2 10/3
a= [g 1 —5/3]. (2.5)
z 1 1/3

12 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960);
Nuovo Cimento 19, 752 (1961).
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Fic. 1. The discontinuity on the left-hand cut from ¢ and p
exchange in the Breit-Wigner approximation, with the same width
for both mesons. Note that the p scale is ten times the ¢ scale.

It must be pointed out that the full crossing relation,
Eq. (2.4), involves an infinite series of Legendre poly-
nomials, which is convergent only for certain restricted
values of s determined by the Lehmann ellipse. How-
ever, in the present simple model, it is supposed that
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only S and P waves need be retained in the crossed
channel for a reasonable description of the low-energy
resonances. In view of the negative results of this report,
it may be questioned whether this assumption, which
is indeed implicit in most bootstrap models, is valid.

In this section, contributions from possible ¢(7=0,
J=0) and p(I=1,J=1) resonances are considered by
inserting the corresponding imaginary parts of Eq. (2.1)
into the sum on the right-hand side of Eq. (2.4). The
remainder of the program is to unitarize these forms, by
the N/D method, and to require consistency between
input and output, if possible.

In Fig. 1, the contributions of the ¢ and p to the right-
hand side of Eq. (2.4) are plotted separately (the curves
A, and A,), for m,2=8.1u? and m,2= 30u? and for several
widths. It can be seen that the ¢ contribution is much
smaller than the p contribution. In fact, not only does
the o have little effect as input, but it is not produced as
a resonance in the /=0, J =0 wave, even for large ¢ and
p input widths.*? Accordingly, there is no possibility of
bootstrapping a ¢ meson; and in the rest of this paper
only the p meson will be considered.

It is a function of this paper to examine the accuracy
of the so-called é-function approximation, in which the
imaginary part of Eq. (2.1) is replaced by a & function.
The error is expected to be small only for very narrow
resonances. The p contribution to the left-hand cut dis-
continuity is given by

s or )

s— mi—4

2m?

xPJ<1+ )0(4-—m2—s), sZ0 (2.6)

§—

where m is the mass and T' is proportional to the width
of the p meson, as given by Eq. (2.3). In Fig. 2, the p
contribution to the P wave is shown according to the
d-function approximation, and according to the Breit-
Wigner form, for m?=30u? and widths of (a) 100, (b)
500, and (c) 1000 MeV. For the first case (which is close
to the observed width of 120 MeV), the agreement be-
tween the two curves is reasonable. In case (b) (the
order of magnitude required to produce an output reso-
nance of the correct mass), and in case (c), there is no
agreement at all, and one should be very suspicious of
any results from a §-function calculation employing or
resulting in such a large width. In particular, it should
be noted that the relative importance of the repulsion,
in the Breit-Wigner case, is much reduced for large
widths. This is not mirrored in the é-function curves,
which are simply proportional to the input width. This
is an important factor that explains such specious suc-
cess as the § function enjoys; the details will be presented
in Sec. 4.

1B C. F. Kyle, A. W. Martin, and H. P. Pagels, Stanford Report
No. ITP229 (unpublished).
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The bootstrap condition is of course expressed by the
requirement that a resonance be observed in the physical
scattering region, with the same mass and width as the
input p meson. For a narrow resonance (e.g., 120 MeV,
the observed width) the equations are

ReD(m?) =0, (2.7)

) . (2.8)

Since it will only prove possible to satisfy Eq. (2.8) for
a width of about 500 MeV (and then only in the 8-func-
tion case), Eqgs. (2.7) and (2.8) should be regarded as
“normal bootstrap conditions” rather than real self-
consistency requirements for a resonance of width 500
MeV. In any case, one of the results of this report is that
the one-channel cutoff p bootstrap is in dire straits.

= — N(m?) / (p2(m2)(-id—s ReD(s)

8=m

3. N/D METHOD AND DETERMINANTAL
APPROXIMATION

In this section, the N/D method will be considered
from the point of view of the determinantal approxima-
tion, which will be checked against a more accurate
method of resolving the equations. The results, in con-
trast to the generally negative import of the rest of this
paper, are encouraging. The determinantal approxima-
tion, if used in conjunction with a criterion to be ex-
plained below, is capable of high accuracy, even for
quite large given inputs.

The N/D equations for the I=1, J=1 wave are given
by

fu()=N(s)/D(s), 3.1
where
i s—4 0 ds’ ) )
N (s)=—7r—— B mD(s ) Imfu(s”)  (3.2)
and

L W), (3.3)
D=1-— ﬁ(sl_so)(sl_s)p(s)l ). G

In Eq. (3.2), the input discontinuity, Imfu(s"), s'<0,
is given either by inserting the Breit-Wigner form (2.1)
into Eq. (2.4), or by using the é-function approximation
(2.6). In Eq. (3.2), N(s) has been subtracted at the
normal threshold, s=4, and the P-wave threshold be-
havior is thereby observed. In Eq. (3.3), D(s) has been

TasiE I. Values of the optimal subtraction point and the corre-
sponding norm ||K|| at 100-MeV input width, for several cutoffs.
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TasLe II. Input and output widths for the é-function exchange
model. The minimum norm ||K| is included.

A (W) 200 400 800 2000 4000

Input width (MeV) 1060 375 220 135 110
(1400) (410) (230) (140) (130)

Output width (MeV) 172 780 850 840 800
(270) (820) (840) (840) (850)

17| 0.24 0075 0.043 0.067 0.078

normalized at the arbitrary subtraction point s=so. It
can easily be shown that f11(s) is independent of so.

From Egs. (3.2) and (3.3), it follows that N(s) satis-
fies the following integral equation:

N(s)=B(s)+ / RGN, (34)
where '
3 s—4 o ds’ : N 3.5)
(s)—Tﬁmﬂ_—(s’—4)(s’—s) mfu(s ( .
and
s—4 o(s") 0 ds"'(s"" —sq)
K(s,s")=—
7 =50 0 (8" —4) (" —5)(s"—5)
XIlnfn(S”) . (36)

With either the Breit-Wigner or the é-function input
p meson, Eq. (3.4) is not Fredholm; and there has been
some interest recently in the nonunique solutions of this
equation.®™!! More usually, however, Egs. (3.4)—(3.6)
are approximated by means of a cutoff, so that Eq.
(3.4) becomes Fredholm. This can be done either by cut-
ting off the integrals (3.5) and (3.6),%5 or the integral in
(3.4).7 The former possibility wil be adopted here: that
is to say, the lower limits —  in Egs. (3.5) and (3.6)
will be replaced by —A, and A, the cutoff, will be re-
garded as a parameter.
The modified equation (3.4) can then be solved by
a number of standard techniques. The method that has
been used consists in transforming the variable s to «,
by
s=2(x+1)/x, (3.7

so that the interval (4=<s< ) is transformed into
(0<x=1); then the transformed integral equation was
replaced by a set of V algebraic equations, corresponding
to a set of points %, #=1, 2, -+, N, in the interval
0=<x=1. Accurate solutions were obtained by matrix
inversion (in most cases with N=8), although, for

Taste II1L. Input and output widths for the
Breit-Wigner exchange model.

A (u) 80 120 160 200 400 800 2000 4000 A (@) 200 400 800 2000 4000
So —32 —8 —200 —280 —280 —360 —600 —800 Input width (MeV) 545 315 210 140 110
K|l 0.0011 0.013 0.027 0.024 0.020 0.020 0.048 0.071 Output width (MeV) 2500 1640 2150 1050 950
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F1c. 3. Input and output p widths as functions of the cutoff A,
with self-consistent p mass m2=30u?.

some of the larger cutoffs, N=16 was necessary. The
accuracy was checked by fitting an interpolating formula
to the IV points of the solution, and then performing the
integration in Eq. (3.4) numerically. This numerical
calculation was done not only to investigate the p boot-
strap but also to check the determinantal approxima-
tion which, as will devolve, is capable of much higher
accuracy than many of its detractors have suggested.
Before the numerical results are presented the determi-
nantal approximation will be discussed.

The determinantal approximation consists in keeping
only the zeroth-order term in the Liouville-Neumann
expansion! of the Fredholm equation (3.4): that is, one

sets
N(s)=B(s), (3.8)

and then D(s) is obtained from Eq. (3.3). This approxi-
mation will be reasonable only if the series converges
quickly. Since it is known that the series certainly con-
verges if the norm of the kernel satisfies

IK|?= / ds / is'| K@) 2<1  (3.9)

one would expect the determinantal approximation to
be excellent if ||K||<0.01, good if ||K|<0.1, and per-
haps indicative of trends for ||K|<0.5. However, for
values greater than unity, there is no reason to expect
the determinantal approximation to have any validity.

Whereas the exact solution f1;(s) does not depend on
the subtraction point s, the norm of the kernel (3.6)
does depend on so, as does the determinantal solution
itself. Clearly, in order that the exact solution be ap-
proximated as closely as possible, the subtraction point

" See, for example, F. G. Tricomi, Integral Equations (Inter-
science Publishers, Inc., New York, 1957).
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should be chosen in such a way as to minimize the norm
of the kernel. In fact, this optimum choice of s often
reduces the norm by a substantial factor from its value
at s50=0, and the usefulness of the determinantal ap-
proximation is accordingly enhanced.!s

In Table I, the optimal s, values are given, together
with the corresponding norms, for a nominal input width
of 100 MeV in the é-function approximation. The norms
quoted in the table correspond in fact to the sym-
metrized form of the kernel (3.6), which may be shown
to possess a smaller norm than the unsymmetrized
one.1s

The final row of Table I indicates that the determi-
nantal approximation should be very good, even for
large cutoffs. However, it is in fact necessary to use
input widths four or five times larger than the nominal
100 MeV employed in Table I. For some cutoffs still
larger widths are necessary; but even in the least
favorable cases, || K[| is appreciably less than unity.

4. NUMERICAL RESULTS

The method of searching for a bootstrap solution con-
sisted in fixing the input mass at the correct value of
m?=30u? and then varying the input width until the
output mass was also equal to this value. The input and
output widths could thereby be compared for a range of
cutoff values. These results are displayed in the é-func-
tion case in Table II. The numbers in parentheses are
the results from the matrix inversion, and they agree
reasonably well with the determinantal approximates.
In the last row of Table II, the minimum norm of the
kernel is given for the actual input width in the second
row.

In Table ITI, corresponding results are given for the

0.5
A=200p2
———— BREIT-WIGNER EXCHANGE
——— 8-FUNCTION EXCHANGE A=525 MeV
0.4+

03r

0.2
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A =120 Mev

-ou 1 I ! I [
10 20 30 40 50
s ———>

Fi6. 4. Breit-Wigner and é-function Born terms with A =200u2

15 K. M. Ong, Ph.D. thesis, University of California, Berkeley
(unpublished).
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Breit-Wigner input meson, this time in the determi-
nantal approximation only.

On comparing Tables IT and III, one notices that there
is fair agreement between the &-function and Breit-
Wigner cases for cutoffs of 800u? or more, but that there
is no agreement at all for smaller cutoffs.

The input and output curves are plotted in Fig. 3 for
both cases. It can be seen that, for the -function input,
there is a self-consistent point, because of the fact that
the output curve descends very steeply for small cut-
offs. The self-consistent width is 525 MeV and corre-
sponds to a cutoff A=250u% For the Breit-Wigner p
meson, there is no self-consistent solution, and this lack
can be traced to the failure of the output width curve to
turn down for small cutoffs. The reason for this dis-
parity between the é-function and Breit-Wigner cases
must be examined.

It has already been seen that the left-hand cut dis-
continuities do not resemble one another too closely in
the two cases for widths much in excess of 100 MeV
(see Fig. 2). In particular, the long-range repulsive part
is much less pronounced for the Breit-Wigner than for
the 8-function case. For a small cutoff, the repulsion
succeeds in overwhelming the attraction at very low
energies for the 8-function but not for the Breit-Wigner
inputs. The result is that the -function Born term B(s)
is negative for small s and positive for large s. For a
suitably small cutoff, the zero of N(s)=B(s) is close to
the resonance position. Hence the output width is
drastically decreased [cf. Eq. (2.8)]. This explains the
small cutoff behavior of the §-function output curve in
Fig. 3. The comparative weakness of the repulsion for
the Breit-Wigner input explains the absence of a zero
in this case. These considerations are illustrated in Fig.
4, where the Born terms for a small cutoff A=200u? are
plotted for both the é-function and Breit-Wigner cases,
for widths of 120 and 525 MeV. Figure 5 shows the self-
consistent NV and D functions, for the §-function input,
corresponding to a cutoff of A=250u? and a width of
525 MeV.

5. CONCLUSION

The general verdict of this report is that the qualita-
tive success of the 8-function bootstrap for the p meson
is very suspect because there is no self-consistent solu-
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F16. 5. Self-consistent N and D functions for
the é-functoin p bootstrap.

tion for the Breit-Wigner exchange. The reason that the
output-width curve decreases for small cutoff in the é-
function case, and so intersects the input-width curve
(see Fig. 3), is that there is still a considerable propor-
tion of repulsive forces, even for a width of about 500
MeV (see Fig. 2b); and so, for a small cutoff, there is
considerable cancellation in the low-energy Born term.
So much is this so that in fact for a cutoff of 200u?, the
é-function N functions actually have zeros, which
greatly decreases the output width. This cancellation is
lacking in the Breit-Wigner exchange at 500 MeV (see
Fig. 4).

If the p bootstrap is to be saved, there seem to be two
possibilities. First, a many-channel calculation, perhaps
with some very-high-mass external particles, may be in-
escapable. Secondly, there is perhaps the hope still that
by modifying the short-range part of the p exchange
(instead of simply cutting it off) one could preserve the
beneficial cancellations in the low-energy Born term but
enhance the effective binding strength of the exchanged
p, so that a width of 100-200 MeV would suffice to
produce an output meson. In this range of widths, the
§-function and Breit-Wigner forms are comparable, and
would both give substantial cancellations.



