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(rN. '—4ttt. ')s"

(a) I', (m .) ~

ttt '—4srt ')s/s
(b) I",'(srt.„)~

m..'
I"igure 3 shows the phase shift 51 as a function of ns

corresponding to the forms (a) and (b) both having the
same p width of 150 MeV. The +~ mass distribution

N(rN )= o dcoseodcos8 d&p,

and the asymmetry (Ii 8)/(I/—+8) are very dependent
on the values of 8t. We illustrate this for process (1) in
Figs. 4-7.

A number of different sets of 50 have been obtained
by a variety of methods. ' "We have not attempted to

"H. J. Rothe, Phys. Rev. 140, 81421 (1965); G. F. Chew,
Phys. Rev. Letters 16, 60 (1966); C. Lovelace, R. M. Heinz, and
A. Donnachie, Phys. Letters 22, 332 (1966); I. Fuji, ibid 24$, .
190 (1967);University of Tokyo Report, 1967 (unpublished); M.

compare all these diGerent sets of bo with experiment
since the number of events at low rtt, is quite limited.
For example, it is not clear at all whether (F—8)/
(8+8) change sign at low ttt, for processes (1) and
(2). However, we hope that Tables I and II will be
proven useful in distinguishing between the various
3sr (and bt) at low rl when the data becomes suffi-
ciently accurate.

Finally, there is a nontrivial dependence. of the p's on
the incident energy EJ.. Since most of the relevant
experiments have been done at 4 BeV, we have pre-
sented our results for this energy. However, an experi-
ment determining the mass plot N(rtt, ) for the m'sr'

production process (3) have been done at Ez, 2 3eV.rs
Thus we give the density matrix elements (p,ttt ) at
this energy in Fig. (8).

We wish to thank Dr. Z. G. T. Guiragossian for help-
ful discussions concerning the experimental situation.

G. Olsson, University of Wisconsin Report, 1967 (unpublished);
J. R. Fulco and D. Y. %'ong, Phys. Rev. Letters 19, 1399
(196'/); D. V. Shirkov, USSR Academy of Sciences, Novo-
sibirsk Report, 1967 (unpublished)."I.F. Corbett et al. , Phys. Rev. 156, 1451 (196/).
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The form factors for the Ere decay (Z ~ rrnrrlv~) are derived through the use of the algebra of currents
and the hypothesis of partially conserved axial-vector current. In obtaining the results, two different methods
were used: the single-soft-pion method, in which the momentum of only one pion at a time is set equal to
zero, and the multi-soft-pion method, in which all pions in the matrix element are taken oB the mass shell
simultaneously. The results obtained by the two methods are consistent one with the other; the existence
of a pole in the form factors in the limit of two soft pions indicates, however, that the matrix element ob-
tained in the limit of three soft pions is not a valid approximation to the matrix element in the physical
region. The Em and ~2r scattering amplitudes and the transformation properties and matrix elements of the
a Geld are also discussed, since they are intimately connected with the derivation of the E,& form factors.
The rates obtained for the fourpossible E',&decay modes were found to be ~10 '—10 4sec '.

I. INTRODUCTION
' 'N the course of the past several years many signiicant
& - advances have been made in the theory of weak
interactions through the use of the equal-time current
commutation relations proposed by Gell-Mann' coupled
with the concept of a partially conserved axial-vector
current (PCAC). s The leptonic decay modes of kaons
furnish a particularly interesting example of the ap-

*Work completed under a National Science Foundation Pre-
doctoral Fellowship at Stanford University, Stanford, Calif.

' M. Gell-Mann, Phys. Rev. 125, 1067 (1962).' V. Nambu, Phys. Rev. Letters 4, 380 (1960); M. Gell-Mann
and M. Levy, Nuovo Cimento 16, 705 (1960).

plication of these two hypotheses, since all of the ampli-
tudes for these processes can now be predicted. The E~2
amplitude can be given directly in terms of strong-
interaction coupling constants by an extension of
PCAC and the Goldberger-Treiman' relation to the
kaon, although experimental errors are too large to
draw any deinite conclusions about the success of this
prediction. Through the work of Callan and Treiman4
a relation was obtained between the E&3 and E&2 decay

'M. L. Goldberger and S. B. Treiman, Phys. Rev. 111, 354
(1958).

C. G. Callan and S. B. Treiman, Phys. Rev. Letters 16, 153
(1966).
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( .(p,)~,(ps) l~a; (0) IE,(k))
=-'~(8p. p"k)- "f,( -f-)- ~~.(p.+p.)

+I'.(p -p.) +l(1+~)I'.(k p -p.-) j, «)
where V I' and A, & are the vector and axial-vector
currents, respectively, $=f /f+, and

modes, while Weinberg's' subsequent work related the
E~4 modes to El~3, both of these relations are surprisingly
successful.

It is the purpose of this paper to obtain the form
factors for the E&5 decay modes through the use of the
current algebra and the PCAC hypothesis. ' While the
muonic decay E„s (E~rrrrrrljv„) is energetically im-

possible, the decay E,s (E~~s.s.ev,) is a possible pro-
cess with about 80 MeV available; the predicted rates,
unfortunately, are too small to be measured. The E~~
form factors, however, are of considerable theoretical
interest. In addition to a kaon. pole which appears
in E~5 as well as in Eg4, there is a pion pole that adds
considerably to the complexity of the matrix element;
rather surprisingly, there is a singularity in the form
factors for Eg5 at one of the soft-pion limits.

Furthermore, since the calculation is performed both
by taking all the pions off the mass shell simultaneously
(as in the E«work of Weinberg') and also by an alterna-
tive, simpler procedure involving only single soft pions,
some light is thrown on the specific assumptions that
are commonly used in work with current commutators.
It is notable that the 0. fields which arise when several
pions are simultaneously taken o6 the mass shell have
matrix elements which are determined by the isotopic
transformation properties of these fields.

The Ex and mz scattering amplitudes obtained by
Weinberg' are also discussed briefly in an Appendix
since they are intimately connected with the X~5 form
factors.

(
8 8 8'i

!
i j a&

is the antisymmetric SU(3) Clebsch-Gordan coef-
6cient. "The indices u, b, , m, rc are used to indicate
SU(3) transformation properties, with a= (F,I,Is) and
4= (—V,I, Is); t)(Y—,I,Is) = (—1)r'+&" is a phase factor
that occurs repeatedly in calculation.

Callan and Treiman related the E&3 and E&2 decays, '
finding

~~(f++f )=(m -f )/(m. f-), (5)

while, by relating E~4 to E~3, Weinberg' found the
following relations"

I"t =n(~) ~(i)~..o~*.~, (6a)

8 8 8' (8 8 8'~
Il;=6 g at mti jm)' (6b)

k (p —p)I"s=I"r+~s-
k. (pt+ ps)

(6c)

Finally, the current commutation relations suggested
by the free quark model' are stated in spherical tensor
form as

II. DEFINITIONS

The spherical basis of SU(3) is used throughout this
paper, and a brief discussion of this basis will be found
in Appendix A. Since this formalism is not too common
in the literature, it will prove useful to bring together
the delnitions of the otherwise familiar matrix elements
and operators that will be used in the subsequent sec-
tions of this paper.

Thus the +~2, K~2, E~3, and E~4 form factors are
defined as'

Ll'.'(*) I' "(0)jh(*')

p8 8 8
I&."(*)6'(*), (& )

c (8 b ci
LU.o(x),A os(0)$8(xo)

~8 8 8
IA, (x)P(x), (7b)

~ &a b c I

o(g) g os(0) j8(go)

(8 8 8'~=-v3'P
I IV,v(x)8'(x). (7c)

c kG b cl

(pl&2+o&(0) Irr (p))=i'(a)b, r(2p') '"m f pv
—(1)

(ply@,&(0)
I K;(k))=it)(i)8;,,(2ko) 'Ismrr"flak", (2)

)8 8 8')
{~.(p) lv2~, "(0)IE;(k))=2v31 . . I«p'k') '"

a&

XLf,(k+p) +f (,k p)"], (3)—
& S. ~einberg, Phys. Rev. Letters 17, 336 (1966).' P. McNamee and R. J. Oakes, Phys. Letters 248, 629 (1967).

The notation used in this letter has been changed slightly for use
in the present paper.

~ J. S. Bell, in Proceedings of the 1966 CERN School of Physics
at Noordwijk-aan-Zee, CERN, Geneva, 1966 (unpublished); and
(private communication}.' S. Weinberg, Phys. Rev. Letters 17, 616 (1966); N. Khuri,
Phys. Rev. 153, r4l7 (r96r).

9 The vector form factors do not contribute to the E'~4 amplitude
in the soft-pion limit and are presumably suppressed in the physical
region by the centrifugal barrier. The same observation holds
true for the axial-vector form factors in the case of X~6.

III. X)5 FORM FACTORS FROM SINGLE-
SOFT-PION METHODS

The method of utilizing single-pion reduction i.n
multipion processes is due to Bell" and has the advant-
age of a maximum of physical intuition combined with
a minimum of assumptions. The procedure to be

"J.J. de Swart, Rev. Mod. Phys. 35, 916 (1963);P. McNamee
and F. Chilton, ibid, 36, 1005 (1964)."In Eqs. (6) a si.gn error in Kq. (24) of Ref. S has been corrected.



Z)5 FORM FACTORS 1685

followed is to construct the amplitude for the process
to be considered, taking into consideration all inter-
mediate states that give rise to form factors that,
while not constant, are of zeroth order in the pion
momenta; this amplitude is then compared with pre-
viously known amplitudes by letting the momentum of
each of the pions in turn go to zero. Using this method
in the case of E~4, it is possible to derive the results ob-
tained by %einberg' without ever considering the
commutator

[A.o(x),B„As"(0)5b(x') =o.o(x)h'(x). (8)

In the case of E&5, however, the situation is not quite so
simple.

The E~5 form factors are dined as'

(~.(Pi)xs(P2)~ (Ps) l~~l'"(o) lK*(k))
= (16Pi'Ps'Psok') '"LGiPi "+GsPs"
+G.p + ', (1+~)G.-(k- p. P. P)-"5 -(~)

In the case of E~4, it was not possible to assume that the
form factors were constant; E-pole diagrams gave rise
to terms which, while zeroth order in the pion momenta,
still varied considerably in passing to the di6erent soft-
pion limits Lcf. the last term in Eq. (6c)5. In the case of
E~5 there are both E-pole and x-pole diagrams that
give rise to such terms. These momentum-dependent
parts of the form factors are separated by defining

G,=g*+grcK;+g.11;.

(b)

FIG. 1. A-pole and m.-pole contributions to the E&& form factors.

Here K; and II; represent the E-pole and m-pole con-
tributions shown in Figs. 1(a) and 1(b), respectively,
gz and g being the strengths with which they enter.
These momentum-dependent terms being explicitly
included in the IV~5 matrix element, it will be assumed
that g;, g~, and g behave as constants when extrapolat-
ing to zero pion momentum.

The E-pole contributions can be written in terms of
the E~3 form factors and the E —+ E7rx amplitude. By
crossing symmetry, the E~Evrx amplitude can be
taken from recent work' on the low-energy Ex scat-
tering amplitude (cf. Appendix 8):

(mrs(ps)K&(ks) l
S

l m'a(pi)K&(ki)) = —3s(2ir) & (ki+pi ks ps)(16piopsokiokso)
—il&

8 8 8'~ 8 8 8'
X(m.f.)-'~(h) ~(i) g l (p,y p, ) (k,+k,).

a 5mii j m

Using Eqs. (3) and (11) to calculate the contribution of Fig. 1(a), one finds

8 8 8'i|8 8 8'i 8 8 8' k. (p,-p, )Ki= 12~~v(~)n—(j )f+(m.f-) ' 2
b c mi'ki e ml is j a k (p,+p,)

(12)

E& and Es are generated from E& by the simultaneous cyclic permutation of the indices 1, 2, 3 and a, b, c, while
Ks Ki+Ks+Ks. ——

The ~-pole contributions can be written in terms of the E~3 form factors and the ~~ scattering amplitude in a
similar manner. Taking the mx scattering amplitude from recent work in the literature, '

(ir~(pi)srs(ps) I&l r, (sp ) s(iPro4))= i(22)'i—r8 (Pi+Ps Ps P4)—(1 6—PiPosPosPo4 )o' '(m f ) '
X(g(u)g(c)B, , sB.,s[m (pi+ps) 5+—B~,.Bo,opm~' (pi ps)'5+——B, qhs, [nz '

, (p, ,—p,—)'5) (13)

one can calculate the contribution of the diagram in Fig. 1(b) and find

)8 8 8'y
II;=8asf, (m.f.) ' g(b)l iso, ,lm. s —(ps+ps)s5+perm. Lm,.s —(p,+ p,+p) 5- (14)

where "perm. " denotes the other two terms generated by the simultaneous cyclic permutation of the indices
j., 2, 3 and u, b, c.

Finally, the constants g;, gz, and g are determined by relating E&5 to I&4 in three separate soft-pion limits.
Using the PCAC relation obtained from Eq. (1),

&28„A.o(x) =m. 'f.(q.(x))t,
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and the commutator, Zq. (7b), one finds

lim (2p, o)'/2&7r. (p,)2r,(p,)2r, (p,) I V/'to)
I e;(k) &

y3mO

t/8 8 8'~= (v'6)(~-f-) 'v()ZI . I& -(P) (P)l~-"«)I&'(k))
m kc j 2ni

and two similar equations obtained by the simultaneous cyclic permutation of the indices. Using Eqs. (4), (6),
and (9), one obtains a set of simultaneous equations for the constants after equating coeKcients of linearly in-
dependent terms. The general solution for the form factors is then

8 8 8' (8 8 8'q p8 8 8'q
~(&»b, -—

21 . . I~(&)&.. -—
21 . . I~(a»b. —.

i j a
'

Ei j bi
'

Ei j ci
|'8 8'l, (8 8 8''t k. (P2—P)+

I ln( ) ...-—I . . I~V»~..-+-'~(c)~(i)~'..
Ii j 7/

'

Ei j c
' 'Ea 7/ ci k(p, +p,)

—
)8 8 8')

+ I ~'g( ) b, c( n (ps+ps)')+pe™ t m '—(p,+p,+p,)'j-, (17a)
ki j a i

|8 8 8'y ) 2N.2—(p,+p,)'
G.=g

( (&(f)Sb -( —1+4j ai '

4 ~. -(p,+p,+p,) i
/'8 8 8') (8 8 8') ~8 8 8'~ - k (p,—p,)+ i ln(&)~b, -—

I . . I~(a)&..3+2~(c)n(i)~;.;~ ( +perm. , (17b)
Ei j ai '

i j bi ' 'ka 7/ ci k(p+p)
where g= 2%3f+(2/s,—f ) '. The quantities G2 and Gs are obtained from Gl by the simultaneous permutation of
the indices. Since the structure of these terms is quite obscure, it is convenient to write out the form factors for the
four observable E,5 decays.

I+(k) ~ ~+(p,)~-(ps)irs(ps)e+3, :

(pl+ p2)' —2/3. 2

61=3—l/2g 1—2
(p+p.+p.)'- .—

(P+P)'- -' k (p-P)-
62=3-'I'g 1—2

(pi+ ps+ ps)' —2/3. 2 k (pl+ ps)-

(pl+ps)' —2N
' k (pl —p,)-

G L(3)—1/sg 1+A

(pl+ p2+ ps) 2/sw k ' (pl+ p2)-

(P.+P.)' m- k (P.--P.) k (P.-P.)-
G 1 (3)

—1/2g 1 +'
(pl+ p2+ p3)' 2/3. ' k (pl+ p.) k —(pl+ ps) - .

z+(k) -+ srs(pl) ir'(ps)2r'(ps) e+3,:

lt o(k) ~ ~-(p,)~-(ps) ~+(ps) e+~,:

(pl+ps)'+(ps+ps)' —2m ' k (ps—ps)-~
G 6—1/2

(pl+ p2+ p3)' —2l-' k (p2+ p3)-

(pl+ ps)'+(ps+ ps)' —22/3. 2 k (pl —ps)g 6—1/2g

(Pl+P2+Ps) k (Pl+Ps)-

(Pl+Ps)'+ (Pi+Ps)'+ (Ps+ Ps)' —32/3.2-
G —G —G G4 L(3) 1/sg 3 A

(P+P+P)' —2/3 '

(18b)

(18c)

(18d)

(19)

(20a)

(20b)
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(pl+ p,)'+ (p2+ p3)' —2422 '
G3=4(6) '~2g 1—

(Pl+P2+P3)' —2N.'

(pl+ P3)'+(P2+ P3)' 2223.' &'(Pl P3) ~'(P2 —P3)
O4=6-~~2& 2—4

(pl+p2+p3) 224 ~'(pl+p3) ~'(p2+p3)-

E(73}~'2r (P )ir (P )9r (P )e+p, :

(Pl+P.)'—m-' ~ (P2—P3)
Gl= —(6) '"g 2—4 +

(Pl+P2+P3)' —m-' & (P2+P3)-

(Pl+P2)' 224-' — &. (Pl—P3)
G2= —(6) '~2g 2—4

(Pl+P2+P3)' —~-' & (Pl+.P3)

(Pl+P2) ill—6—1/2g 1+4

(pl+ p2+ p3)' —222.2-

(Pl+P2)' m-' —& (Pl—P3) & (P2—P3)
G4= —(6)-'~2g 1—4 + +

(Pl+P2+P3) 233+ ~'(Pl+P3) ~ (P2+P3)-

(20c)

(20d)

(21a)

(21b)

(21c)

(21d)

IV. X)g FORM FACTORS IN THREE-SOFT-PION LIMIT

The E&5 form factors can also be calculated in a more traditional manner by going to the limit of all three pions
being soft. While this calculation is of considerably greater complexity than the calculation in the previous section,
it is of interest since it sheds some light on the matrix elements of the o 6eld t Eq. (8)].Reducing in all three pions,
one 6nds

(ir.(pl)ir 3(p2)ir, (P3) i
V;&(0) i E;(13))= 22&22—i(u) 21(b) 2i(e) (ir4.2 p12) (—223.2 P22) (2—33.2 —p32)

P(8P13P2'P3')-'I'(222 'f ) 3 d4xd yd ze'&»*+"'~»'&(OJT(8.A- (x)8 A3e(y)8vA;~(z)V;"(0))~E4(k)). (22)

To simplify this equation, the identity given in Appendix C is used. In addition to the commutators of Eqs. (7),
some assumption concerning the 0. field must be made. According to the suggestion of the free quark model or of the
Gell-Mann-Levy o model, ' it is here assumed that when a, b are pio22 indices (0,1,I3), o transforms as an isotopic
scalar:

$A,3(x),8„A3"(0)]8(xo)= tl(a) 8,,
-o (x)84(x),

LA.'(x),o (0)]8(x')= 8„A.1'(x)84(x) .

(23)

(24)

Equation (24) follows from the fact that o transforms as an isotopic scalar, as can be seen through the use of the
Jacobi identity. After considerable manipulation, one finds

(~.(pl)x3(P2)~. (P3) I v4 "(0)
I E'(&))= 2~&n(&) nP) n(e)(8Pl'P2'P3') '"

&((222 '—Pl')(21 '—P2')(224 '—P3')(2N 'f )-' Q X„~, (25)

El~ P,.P»P» d xd yr14z e'&——» *+» ~»' (0
~
T(A.—.(x)A 3e(y) A P(z) V;~(0))

~
E;(k)}, (26a)

8 8 8')
%21'= iV3 Q —

~

or, 'xd y e'& '*+ &(0~ T(8 A3 (x)8eA4e(y)A (0))~E4(k)}+perm. ,
44 j 2N&

(26b)

lV3"= 42iit(a)8~, 3 d4x e'» ~(0( T(8~A;~(x) V;~(0)) )E;(k))+perm. , (26c)

"M. Gell-Mann and M. Levy, Nuovo Cimento 16, /05 (1960).
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~,»= 4i—rl(—a) b. , s d'x e'&»+»+»'*(0
~
T(B.A; (x) V,s(0))

~
E,(k))+perm. , (26d)

~, =-,' g Lg(a)b. , sb„„-g—(b)bs, ;b.,=+/(c)b. ,;5/, „)p-,. d'xe' -'-+ '*(0~ T(FI .(x)V; (0))~E,(k))+pen . , (26e)

(8 8 8'
iltsl =s ',v3-p

~
(pr —p, )copse d4xd4y e'l~»+»& ~+» ~l(0[ T(V~ (x)Ass(y) V,&(0))

~
E;(k))+perm. ,la b m

(26f)

1V,s= rl(a)8. ;ps. d'xd'y e'l&»+»"+»»(0~ T(o(x)A; (y) V;&(0))~E,(k))+penn. (26g)

Retaining only the termsin the form factors that are of zeroth order in the pion momenta in the limit p&, ps, ps —+ 0,
it is apparent that most of these terms can be handled fairly easily. E&& contributes form factors that are first or
higher order in the pion momenta. .'V&& is related to the E&4 matrix elements. S3& and 5 4& are related to the E)3
matrix elements. X~5& may be obtained from a consideration of the E~3 matrix element'3:

p8 8 8'
d'x e'" '(2k')'~'(0~ T(A,-"(x)V; (0)) ~E,(k))=V3m.f.f+(1 $)rl(—a)~ g "+0(P).

J 8
(27)

)Vs& has zeroth-order terms that arise from a kaon intermediate state; using Eq (27). and the fact that the isotopic
spin current of the kaon is conserved, one hnds

d'xd4y e'&"' +"''"l(2k )'~'(0~ T(V (x)A;~(y) V;&(0))~E;(k))

p8 8 8'q~8 8 8'q gek-
=»m-f-f+(1 &) ~ I .— (28)

ki m e) ke j c l(k —p)' —mrr'

3,'"7, 6nally, is a matrix element of the cr 6eld and will
be neglected. LThere is no singularity arising from a
kaon intermediate state since the right-hand side of
Eq. (32) vanishes. ]

When all of this has been substituted into Eq. (25),
considerable manipulation reveals that the same results
are obtained that are found in Eqs. (17), with the ex-
ception that pr' ——ps ——ps' ——p~. ps ——ps ps ——ps p, =0;
I e Lm-' —(p+p)'Xm-' —(pr+ps+ps)'3 '=1.

7. DISCUSSION OF MATRIX ELEMENT

One of the more interesting features of the E~5 form
factors is that they can have a pole in the limit of two
soft pions Le.g., pr ——ps ——0 in Eqs. (18)j, and for this
reason the matrix element obtained in the limit of all
three pions soft is not a valid approximation to the
matrix element in the physical region. This singularity
arises from a matrix element of the 0 6eld: If one goes
to the limit pr=ps=0 in the manner of the E~4 cal-
culation of steinberg, ' one arrives at an expression
whose only singular term is of the form

d'x e'l + & (~,(Ps) ~
T(o(x) V; (0))~E;(k)). (29)

This is singular by virtue of a pion intermediate state

"S.Adler and Y. Dothan, Phys. Rev. 151, 126/ (1966).

and the nonvanishing of the right-hand side of Kq.
(83).

Of central importance to the calculation of the E~;
form factors is the transformation property of the t7

field; this enters the single-soft-pion calculation through
the xx scattering amplitude and the three-soft-pion
calculation through Eqs. (23) and (24). If it is assumed
that 0 transforms as an operator with I=2, then a
different (though similar) set of form factors is obtained
for E~5 '4

Finally, it is somewhat surprising that the matrix
elements of the 0 6eld are determined by the speci6ca-
tion of the field's transformation properties, at least
within the context of the parametrization of the Em
and m~ scattering amplitudes. It is particularly im-
portant that not all of these matrix elements can be
neglected —e.g., Eq. (B3), and especially Eq. (29),
which is singular.

VI. NUMERICAL RESULTS

The only decays that are energetically possible for
the E~5 decay modes are the E,5 modes, and these
ha,ve about 80-MeV phase space available. Since the
mass of the electron is negligible over almost all of
phase space, it will consistently be assumed that m, =0.
The total decay rate for these modes can then be

"P. McNamee, Ph. D. thesis, Stanford University, Stanford,
Calif, I95$ t',unpublished).
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written as in the frame tr=0, t= s

G sin gv d prd pod ps
[GIPI "+G3P3"+G3P3"]'

4ko(23r)stt t 2pro 2p, o 2p, o

dksd(t ps)d(k r)
p= 7p -d4t Il,

[A(ks ts as)]3
(38)

X [GIPI +G2P3 +G3P3 ]Icy(k Pl P2 P3), (30) and finally to perform the integration over t in the frame

where 1/N. is a statistical factor which occurs if there
are &z identical pions in the final state. The matrix ele-
ment of the lepton current is contained in It"", which is
defined by

dtsdo'dhsd(t ps)d(k r)
p

A(k' t' o')

m3

(39)

I""(E)= 2
In the matrix elements of the four possible E„-decay

modes [Eqs. (18)—(21)], GI ——Gs except for terms con-
dsP,d3P„(2sr)-stt'(E- P.—P,) taining the factor k (p,—p;)/k (p;+p, ) which, in the

region available for the decay, is &g. Since these are

X(a+v li"(0) I0&*(e+"li"(0)Io& (31) '".e ony terms ""a' in«'«r P' c ' Eq' ( 6 )
will be neglected. The decay rate for E,5 may therefore

This may be integrated by covariant methods" to give be written, in the rest frame of the kaon, as

Iv"(E)= (48~')-'(E~E"—gv"E') . (32)

d prd psd ps

2pro 2pso 2pso
(33)

where F is a Lorentz-invariant function. It will be
convenient to de6ne a new set of variables:

t=PI+Ps,

PI P»
o'=k p1 p2)

X=k —pI —ps+ p3,

(34a)

(34b)

(34c)

(34d)

and to choose the six independent Lorentz scalars of
which Ii is a function to be t', o', X', t ps, k r, and r ps.
After a simple substitution,

d'P3
d'td 'pI 8(PI' —mr') 8([t—pr)' —ms')F (35)

30

it is possible to perform the integration over p~ in the
frame t= 0, 6= i; since this frame is a center-of-mass
frame, there are no kinematic constraints on the polar
and azimuthal angles of p~. The integration is greatly
simplified by assuming that F is independent of r P3

P= g7l

d(k r) d'p,
d4t- — —F,

A(k', t', o') 2ps'
(36)

where

A(x y s) = [x'+y'+s' —2xy —2xs—2ys]'" (37)

It is then possible to perform the integration over p3

"J. D. Jackson, Weak Irtteroctiorts il Etelrterttary Particle
Physics and Field Theory, Brandeis Summer Institute, 1968
(W. A. Benjamin, Inc. , New York, 1963), Vol. 1, p. 263.

'6 W. Williamson, Jr, Am. J. Phys. 33, 987 (1965).

After the lepton variables have been summed, the
E,5 decay rate depends on an integral of the form"

G2 sln20y

192(2sr) 'tt!mx3

dt'd odom'd(t ps)d(k r)

A(mxs t' o')

XLGIt"+G3P3"]LGIt"+G3P3"]

X[(k—t—p,)„(k—t—p,)„—g„„(k—t—p,)'], (40)

where n is the number of identical pions in the final
state. The limits on the integrals are

k ry= (1/2ts)[(mrr +t —a )(mt —m' )
+A(mx' t' o. )A(t,mI', ms )] (41a)

t P3~= (1/4os)[(mxs —t' —os)(lI' —o' —mss)

~A(mx2 t2 tr2)A(os p
2 m32)] (41b)

[(o')"'+m ]'&X'& 2(o'+m ') (41c)

ms &0'&[mx (ts)'t'—] (41d)

(mt+ms) ' & t' & (mx —m3) '. (4ie)

The parameters f, and f+ are evaluated from the ex-
perimental rates for the ~„2 and E.3 decays. It will be
noted that since f, and f+ are inversely proportional
to cose& and sin8~, respectively, the only dependence
of the E.5 decay rate on the Cabbibo angles is a weak
dependence on 8~. I'(E.o) cos'8~. The numerical
values of the experimentally determined constants"
were taken to be G~=1.35IOX10 22 MeV 4, sin'Hy
=0.044, sin38g=0. 07, F(sr+~ tt+v„)=3.92X10' sec ',
and F(E+~ sr'e+v, ) =3.61X10' sec ' These give the
values

I f. I
=0.967 and

I f+I = o 747.
It was possible to perform the integration over k. r

and t ps in Eq. (40) explicitly; because at the complexity
of the integrand, integration over the variables t', 0',
and X' was done numerically. Electromagnetic mass
differences were neglected and all constants have the

"N. Brene, L. Veje, M. Roos, and C. Cronstrom, Phys. Rev.
149, 1288 (1966); A. H. Rosenfeld et a/. , Rev. Mod. Phys. 37, 633
(j.965); G. H. Trilling, in Proceedings of the International Con-
ference on Weak Interactions, Argonne National Laboratory
Report No. ANL 7130, 1965 (unpublishedl.



1690 PETER McNAMEE

values quoted above. The rates obtained are

I"(E+~ 7r+vr s.oe+o.)= 2.8X 10 ' sec ',
I'(IC+ —+ s's'vr'e+o, )= 2.7&(10 ' sec ',
I'(E' 7r +e+ .)=8.1&&10 ' sec ',
r(Zo ~ ~o~o~ e+o.)=2.8&(10 sec '.

These rates are substantially higher than previous
estimates indicate, "but they are far too small for the
process to be seen in the near future.
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APPENDIX A

It is convenient to use the spherical-tensor basis for
SU(3) calculations since all matrix elements are then
expressed immediately in terms of physical eigenstates
rather than in cartesian components. The price that is
paid is, of course, the complexity of the "angular
momentum" algebra and the question of normaliza-
tions and phases. For present purposes a few details
are suQicient. '4

The relation of a general octet spherical-tensor
operator Ty, z,q3' to the same operator in cartesian form
T' ls given as

where rt(F', I,Is) = (—1)re+'*". These conventions are
consistent with those usually used with SU(2) in the
more common case of isotopic spin. "Two points are
worthy of notice: (1) The phase rt(m) must be introduced
when crossing symmetry is used; (2) the more useful
convention is that the spherical tensor operator T 8 is
(to )t=rt(m)&p„- Lcf. Eq. (15)j since (p )t creates a
meson of SU(3) index nt.

If the weak Hamiltonian is defined to be

3r.= 2 't 'Gj „J-o+H.c.

with the usual definition of the lepton current

I j&=$„7&(1—yb)P, j, then the hadron current for both
strangeness-changing and strangness-nonchanging in-
teractions is

Jo=v2(cosOv' Vp, t, t"—cosa' cf o, t, to)

+&2(sin8v V t, ;, ;"—sinftg 3 t, ; lo), (A8)

where V & and 3 & are the vector and axial-vector
currents, respectively.

Finally, several useful identities can be derived
through the use of the 6p recoupling coeS.cients for the
Clebsch-Gordan coefficients of SU(3)"; of particular
interest is the general identity

t8 8 8') I8 8 8')
~(a) Z I- Ea c m&Eb d m)

~0,0,0 ~8 p

~0,1,0 ~3 y

Te, t,~ts= W-', V2(TtaiTs),

Tet.l,+4'= ~k~2(T4+iTb),

Tyt, l,pie= —stv2(Ts&iT7) .

(A1)

(A2)

(A3)

(A4)

(AS)

t8 8 8' )8 8 8'q
-~(b) Z I-Et c mEadm]

8 8 8'l (8
I. (A9)

a b tn)&c d mi'

The importance of the spherical-tensor operators lies in
the Vhgner-Eckart theorem, which is stated for the
group SU(3) as"

(X„cITb& IX„a)
N't 1Vs Xs~

=XI IPsllT~'Il&t&. , (A6), (a b c )
where a, b, ~, m, n are used to denote SU(3)
transformation properties, with a= (Y,I,Is) and
a= (—V,I,—Is).

In the assignment of SU(3) transformation prop-
erties to physical eigenstates, there are several phases
that must be determined by convention. For the octet
of pseudoscalar mesons, this is most conveniently done
by de6ning the free-6eld second quantized operator

« (~) p) "'f~'t'-=

&&Lf (*)a-(P)+~(~)f.*(&) '-(P)j (A&)
' V. A. Kolkunov and l. V. Lyagin, Zh. Eksperim. i Teor. Fiz.

45, 2009 (1963) /English transl. : Soviet Physics —JETP IS,
1379 (1964)j. /Pote added il proof. A. Gaifur, Nuovo Cimento

Hy inserting explicit values of Clebsch-Gordan coef-
ficients, one can also obtain the following special cases
which are useful in calculations with pions and kaons.
For a, b pion indices (0,1,Is) and c, d kaon indices
(~1 s Is)

f8 8 8') t'8 8 8')
I= —(1/») b. , -b. ,.—-Ea c m)Eb d m&

t8 8 8' t8 8 8'~
+-', ~(a»(d)~I I I, (A10)

-ka bm c dms'
and for a, b, c, d all pion indices (0,1,Is)

t8 8 8' (8 8 8'i
I

= -s'(B.,ebb, e 8., bB., e) . (A11)
Ea c mob d m

29, 302 (1963); G. W. Intemann and I. R. Lapidus, ibid 52A, .
432 (1967), obtain higher rates through the use of pole models. g'9 P. A. Carruthers and F. P. Krisch, Ann. Phys. (N. Y.) 33, 1
(1964).

'0 M. Krammer, in 8"elk Interactions @md Higher Symmetries,
edited by P. Urban (Springer-Verlag, Vienna, 1964), p. 183;
M. Resniko6, J. Math. Phys. 8, 79 (1967); S. Fubini, G. Segre,
and J. D. Walecka, Ann. Phys. (N. Y.) 39, 381 (1966).



APPENDIX B

The Ex scattering amplitude can be derived either by the single-soft-pion methods used in Sec. III or by the
Adler self-consistency argument" used by tAteinberg'; in either case, the scattering amplitude is determined with
no reference to assumptions concerning the o. field. The derivation of the xm scattering amplitude is, however, more
ambiguous. Starting from the parametrization

(.(P ) (P.) ~~~-.(P ) .(P ))=(2 )'B'(P.+P -P -P)(16P.P"P"P )-'"~.( }.(.)B., -B..s
X(A+8[(p p)'—+(p p)'—)+C(p +p )')+B.„B, (A+8[(p,+p,)'+(p, p,) —)+C(p,—p,) )

+B.,~Bg..(A+8[(Pi+Ps)'+(Pr —Pg)')+C(Ps —Pg)')J, (81)

one finds either through single-soft-pion techniques or through steinberg s use of the Adler self-consistency
argument that A+m '(28+C) =0 and 8 C= ——2i(nz f ) '. To proceed any further, one must add some ad-
ditional piece of information. If it is assumed that the o. field transforms as an isotopic singlet, then the solution is
A = —2if ', 8=0, and C=2i(m, f ) '; if, on the other hand, it is assumed that o transforms as an operator with
I= 2 [I=1 is ruled out since Eq. (8) is symmetric in a,b], then the solution is A =Si(5f ') ', 8= —6i(5m 'f ') ',
and C=4i(5m 'f ') '. The assumption that o transforms as an isotopic scalar is commonly accepted, and it is
that solution that is adopted in Sec. III.

It is important to note that the Ex and m.m scattering amplitudes determine certain matrix elements of the 0.

field:
lim (4krokso)'"(E;(ks)

~
o(0)

~
E;(kg))=0,

kI ~kg

inn (4k,okso) ' '(y g(ks)
~

o (0)
~

n..(kg)) = —zm 'B., g.
ky~k2

(83)

The former of these relations is independent of the transformation properties of 0, but the latter is based on the
assumption that a transforms as an isotopic scalar; both relations are valid up to terms of the order of (Pr —Ps)'.

APPENDIX C

T(BXBFBZV) = By ByPBs"T(xuvpzyv) ~g(38y B—y Bs )B—*yBysT—([Zo)fxo, va]]v) g(38* By—By )B—yyBymT—

X (fYo,[Xo,z )]V) g~B,yBy, T((8—, +8„+8,")[Zg, [Xo,Y )]V) ~B,y By,T((8,—~+By"+8, }fYo,fxo,z ]]V)
—

s B*yBy.T([fxo)Yo),BZ)V)—s B*yBy*T([[xo)zo]8Y)V) —s B.yBy*T(fY» fzo Bx]]V)
——;B,„B„,T([z„[Y„ax)]v)—B,T([x„v)aYaz) —B„T([Y„v]azax) B,T([z„v]axaY—) ,'B,„T((a:+a„)——
X [Xg,F)BZV) sBy.'T((ay +—8, )fYoz )BXV) sB, T((8. +—8, )fzox )BYV) ,'B,yB,T((8,~—+—By~)

X[Xg,Y )[Zo, V))——,'B„.B T((8„+B.)[Yo,z )[Xo,V)) ,'B..B„T((8.+8 —)[—Zo,X ][Yo,v))
—8, B,„T([Fg, BX)Z V) —8,"B„,T([Zo,BY]X„V) B„B„T([xo,az]Y—V)+B,yBy, T([Yo,fxo, az]]v)
+B.„B„.T(fz„fF„ax)]v)+ B,„B„,T([x,,[z„aY])v) ——,'(a„.—a..)a. B.„T([x„Y.)z,v) ,'(a, - a„-)———
XB.PB„,T(fYoZ.)XpV) ', (8; a;)ayP—B„-T([Z—o,X.)YpV)+-,'(8„—B. }B.yBy, T(fzo, [Xo,Y.])V)

+ ', (8, —8„)B,„B-„,T([X,,[Y„Z ])U)+,'(8, 8, )B.„B„-,T([—F'o, [Zo,X ))U) ——,'B,B„T([Xo,[F'o, V))BZ)

,'B„B,T([Yg, [Z—o,—V))BX) ,' B,B,T([Zo, [X—o,—V))8 Y) ,'B B„T([Yo,fX—o,—V))BZ) ,'B„B,T([Zo, [F—o, V—))BX)'
sB,B.—T([Xo,[Z„V]]8Y) kB.By—B*{[X„fYo, [Zo, V]]]+LXo,[Z„LY„V]])

+[Y„fz„[x„v]]]y[z„LYo,[xo,v]))) .

In the interest of compactness the following abbreviations have been used: X =A (x), Yp=A p(y), Z&=A~(s),
V= V"(0), 8 "=8(ax, B = B(x'), and B,„=B(xo—y').

"S.Adler, Phys. Rev. 137, 81022 (1965); 139, 81638 (1965).


