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A new sum rule which is valid for both |AI|=1 and |AI|=2 mass differences is derived. It gives a
reasonable value for the kaon mass difference which cannot be computed by Cottingham’s sum rule. It is
shown that the new sum rule reduces to that of Cottingham if the latter sum rule exists.

T is well known that the conventional method of

computing electromagnetic mass differences within
an isomultiplet using perturbation theory and form-
factor cutoff generally leads to incorrect results. In
particular, it is difficult to obtain even the right sign
for the | AI| =1 mass differences by this method. Some
time ago, Cottingham! derived a sum rule for electro-
magnetic mass differences under the assumption that
the scattering amplitude of spacelike photons off par-
ticles in an appropriate isomultiplet satisfies an un-
subtracted dispersion relation. Recently, Harari? has
argued that Cottingham’s formula may not be valid for
|AI|=1 mass differences since the corresponding
Compton amplitudes seem to require a subtraction.

In this paper, we derive a new sum rule which is
applicable to both |AI|=1 and |AI|=2 electromag-
netic mass differences. This sum rule collapses to the
conventional result in case the latter exists. A rough
estimate of the kaon mass difference, where the sum
rule is saturated with single-particle intermediate
states, leads to a qualitively correct answer.

Cottingham started from the equation

i T'(¢?%,g0*
A= e d4q (Q »qo ) ,
8r? g2—1e

P=q—q%, T(g%90")=Tuu(g%qe»),

and €,*¢,T (g% q0?) is the forward Compton-scattering
amplitude of a virtual photon with laboratory energy
momentum (qo,q). Assuming an unsubtracted dispersion
relation for 7'(¢%go?) in ¢o%, when ¢? is held fixed, he
obtained the sum rule?
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* Work supported in part by the U. S. Atomic Energy Com-
mission.

1 On leave of absence from Institute of Physics, College of
General Education, Osaka University, Toyonaka, Osaka, Japan.

1W. N. Cottingham, Ann. Phys. (N. Y.) 25, 424 (1963). We
note that Cottingham’s sum rule is not in general equivalent to
the conventional graphical formula. Although for spin-0 mass
differences the contributions from the elastic part (that is, the
contributions from the single-particle intermediate state composed
of the external isomultiplet itself) of Cottingham’s sum rule is the
same as those of the graphical formula, it is not the case for spin-%
mass differences. This was shown by Y. Taguchi and K. Yama-
moto, Progr. Theoret. Phys. (Kyoto) 38, 1152 (1967).

2 H. Harari, Phys. Rev. Letters 17, 1303 (1966).

3The sum rule (2), while it looks similar to Cottingham’s
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We also start from Eq. (1). Instead of a fixed ¢2
dispersion relation, however, we use a fixed g2 dispersion
relation which can be proved rigorously from the
Jost-Lehmann-Dyson representation.? Bjorken® has
shown that the leading term of 7'(g%go% for fixed q*
is of O(1/qe?) at go* — 0. Our major assumption is that
this leading term may be interpreted as a source of the
tadpole-type contributions of Coleman and Glashow.®
The reasonableness of such an assumption has already
been discussed in a quark model by Bjorken.® After
subtracting the leading term from 7', we have

T(g?%q0?) —leading term
e (a>—¢0"®) ImT'(q*—¢0'%, go'®)
qul2 .

7I'q2 0

©)

90'2_902

Here we have assumed the convergence of the integral
on the right-hand side. Inserting the right-hand side of
Eq. (3) into Eq. (1) and integrating over ¢o and the
angular direction of ¢, we have for non-tadpole-type
contributions

1 o ® dgo?
Am=—— / da? / Al /go—1—g¥/20]
4 0 0 q2

XImT(q*—gd* ¢o%). (4)
Changing variables from q2 to ¢?=q?—g¢* and inter-
changing the orders of integration, we obtain our basic
formula

1 redg?
Am=—*/ ——/ dgo’L(14¢%/q0*)'"?
4w Jo 92 0
—1—3%¢%/(¢>+¢e®) 1 ImT (g% g0
1 0 dq2 0
—- [ = [ astaraae
ir J_o (12 —q*

—1—3¢%/(g*+qo®) 1 ImT'(g%q0%) .  (5)

original one obtained in Ref. 1, is not in fact identical to it. It was
derived by W. N. Cottingham and J. Gibb, Phys. Rev. Letters
18, 883 (1967). [Insert their Eqg. (9) into their Eq. (2).]

4R. Jost and H. Lehmann, Nuovo Cimento 5, 1598 (1957):
F. J. Dyson, Phys. Rev. 110, 1460 (1958).

©J. D. Bjorken, Phys. Rev. 148, 1467 (1966).

6S. Coleman and S. L. Glashow, Phys. Rev. 134, B671 (1964).
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Here ImT(¢%g0? is given by

Im7(g%g0®) =(2m)* 2= [{n] ju(0) [}k | 7u(0) [7) Jav
X[ (p+g—k)—84(p—g—k)], (6)

where Y~ is the sum over the complete set of inter-
mediate states |«), % is the four-momentum of the state
[), |n) is the state vector for the one-particle state
under consideration with the four-momentum p= (,0)
and “‘av” means average over all possible spin states.

The sum rule (5) is different from (2) in two respects.
First, there is an additional term —%¢2/(¢?+¢¢?) in each
of the two square brackets of the integrand in (5). By
virtue of this term, (5) converges even for |AI|=1
mass differences. Second, unlike the Cottingham
formula, (5) has contributions also from timelike
(massive) photons. This is a disadvantage as it is hard
to obtain experimental information on the corresponding
total cross sections. We feel however, that in practice,
where the integrals are saturated with a few low-lying
intermediate states, this disadvantage is a minor one
and that it is much more important to obtain conver-
gent integral representation for Am. We shall show later
that (5) reduces to (2) if the right-hand side of (2)
converges. To compute the kaon and nucleon mass
differences using (5), we assume that the integral (5)
is saturated by the contributions of low-lying levels.

In this paper we shall estimate only the elastic con-
tribution. The elastic contributions to the sum rule (5)
minus that to the conventlonal graphical formula is
given by

3a

/ A (F2—F?)=—130 MeV.  (7)

81rmk

for the kaon mass difference’ m(K+)—m(K"), and by

3(1 ) qz
/ e (s
8rmy Jo ¢*+4mn?

_(Fn1+#nFn2)2}+Fpl2_Fnl2] (8)

for the nucleon mass difference m(p)—m(n), where F
and F; are the usual form factors. Although the approxi-
mation where only the elastic contribution is retained
may be too crude® to explain the observed mass dif-
ferences, Eq. (7) gives®

m(K+)—m(K®) =2.2 MeV (conventional formula)
—4.7 MeV (tadpole contribution)
—1.3 MeV [Eq. (7)]=—3.8 MeV. (9)

The experimental value is —4.0540.12 MeV. For

7 For kaon form factors, we have used Eq. (15) of R. H. Socolow,
Phys. Rev. 137, B1221 (1965).

8 The contribution of the vector-meson intermediate state is
small. See R. H. Socolow, Ref. 7.

?Eq. (9) does not include the contribution from the vector
meson.
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nucleons, the correction given by (8) is rather small.
For pions, although the two sum rules (2) and (5)
coincide when no approximation are made, they are not
equivalent in the elastic approximation. It is therefore
not clear which of the two sum rules is suitable for ap-
proximations. Our opinion on this point is that the sum
rule (5) should be used only for those cases where the
Cottingham sum rule does not converge. A more de-
tailed analysis will be given elsewhere.

One might think that there may be some convergence
difficulty associated with the singularity at ¢*4¢¢*=0
in the new term of the sum rule (5). If this is indeed
the case, we may use

1
T(g%qc®) —leading term=———
0 m(g*+4?)
(= q*+4% ImT(g*— g4 90
X / o —q0%, g0’ 10
0 q0'*—q¢®

instead of Eq. (3), where 4 is an arbitrary real parameter
introduced to avoid the singularity. Then (5) is changed
into

1 ~dg?
Am=—— / dad] (+at/g -1
4

2
— g ]ImT
qZ+qO2+A2+(q2+q02+A2)1/2(q2_{_q02)1/2

0 dg?
q / qu I:(l i__qz/qoz)lﬂ
—q2

— g2

q2
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Finally we show that (11)!° reduces to (2) if the
tadpole-type contribution is zero and the latter con-
verges. For this purpose, we make use of the Jost-
Lehmann-Dyson representation!!:

ImT=|q|™! /mdx/ du p(u,x)[0(—u—q*+2x|q])
—0(—u—q2—2x|ql)]=lql‘1/ dx/ dv o(v,x)

X[8(v+¢*—2x|q|)—8(v+q¢*+2x|q])],

c=2m[m— (m>—x%)1/%]

(12)
with

and

u(v,x)=/v du p(u,x).

Substituting Eq. (12) into Eq. (11) and integrating over

10We use the sum rule (11) to avoid the unnecessary compli-
cation coming from the singularity at ¢24¢¢*=0.

11 The final expression of Eq. (12) holds when the source of the
tadpole-type contribution [the term of O(1/¢o?) in T] is zero.
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qo* and ¢% we get
¢*ImT

00 dq
/ / ¢ oA+ (g g A g gt

0 dq
/ / dqo?
—e

¢ ImT
2+q02+A2+(q2+q02+A2)1/2(q2+q02)1/2
4
/ i / xa(v x) 13)
¢ v+(2)2—|—4x"A2)”2

PHYSICAL REVIEW

ELECTROMAGNETIC MASS DIFFERENCES

VOLUME 168,

1679

and

0 dq2 00
= [ dwittegrayn=1imr—o, )
—o @ J_g

which proves our claim.
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The determination of the S-wave 7= phase shifts 5o’ at low energy from the analysis of 7N — (2r)N is
examined critically from the standpoint of the one-pion-exchange model with absorptive corrections. It is
found that: (1) The value of 8/ depends strongly on the P-wave phase shifts, which cannot be unambiguously
determined, at m.» <600 MeV, by using a Breit-Wigner formula. (2) The ratio of the production density
matrix elements p (with the == elastic scattering amplitudes factored out) depends strongly on #., for
Mrr <600 MeV. (3) The (F—B)/(F+B) asymmetry shows a sizeable dependence on the momentum
transfer ¢ to the nucleon. It is concluded that more accurate data at low m., are required in order to
determine 8¢ for 7,,<600 MeV. Tables of the p(#s,f) calculated from the absorption model for an
incident-pion laboratory kinetic energy of 4 BeV are included. These could be directly applied to the data

to obtain the low-energy == phase shifts.

HE determination of the S-wave o phase shifts
8ol (mrr) at low energy (mqS600 MeV) is of
considerable importance because of the following
factors: (1) They enter into a variety of processes; in
all of them either the theoretical understanding of the
dynamics is somewhat shaky or more experimental data
is needed, thus no unambiguous values of §, have been
obtained from these experiments.! (2) From the
theoretical standpoint there have been a number of
predictions made by the utilization of current-algebra
techniques together with low-energy theorems.? These
predictions depend critically on the smallness of the
wm S-wave scattering lengths.

* Supported in part by the National Science Foundation.
1 A. P. Sloan Foundation Fellow.
1 See, for example, P. Singer, Finnish Summer School, 1966
(to be pubhshed)
2 See, for example, R. Dashen, in Proceedings of the T hirteenth
Annual International Conference on High-Energy Physics, Berkeley,
1966 (University of California Press, Berkeley, 1967), p. 51.

The production processes

7+ p— " +at+n ¢))
— -ty ©
— m0+704tn 3)

have been widely studied, using the (experimentally
observed) peripheral nature of the interaction, to
determine the 7w S- and P-wave amplitudes 4, and 4,
mainly for #.. in the region of the p resonance. The
purpose of this article is to make a critical analysis of
the possibility of using (1)-(3) to determine the zr
phase shifts at low ... We use the one-pion-exchange

3 W. D. Walker ef ol., Phys. Rev. Letters 18, 630 (1967), this
paper contains references to earlier work ; E. Malamud and P. E.
Schlem, ibid. 19, 1056 (1967).



