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Application of the Methods of Quantum Mechanics in the
Statistical Theory of Waves in a Fluctuating Medium
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The basic equations for the statistical system of waves in a randomly fluctuating medium are presented
in the same form as in quantum mechanics, assuming a Markov process for the temporal change of the
medium. A simple model is chosen for the Fokker-Planck equation of the medium which gives rise to a
fluctuation of the Gaussian process, and several results are given to illustrate how the methods used in
quantum mechanics or quantum 6eld theory can be applied almost without change. Thus, the physical
variables are represented by linear operators, and their equations of motion are determined by an equation
similar to the Heisenberg equation of motion. The system has two stationary states (corresponding to the
vacuum states (0

~
and ~0) in quantum field theory), and the rather standard methods in Geld theory can

be used for the evaluation of the Green's functions. When the temporal changes of the medium are suf5-
ciently large compared with those of the waves, an adiabatic approximation is possible, and the isomorphic
transformation (corresponding to the unitary transformation) is employed to lead to the result that the
statistical system of the waves for this model is in perfect correspondence with the waves of bosons which
interact with each other only through a two-body potential.

1. INTRODUCTION

HE problems of wave propagation in a randomly
Quctuating medium have been treated by many

authors, ' " and there has been great interest in the
"renormalization" of the propagation constant and in
the evaluation of the correlation function of waves.
The procedures hitherto adopted seem to be more or less
as follows: The basic physical quantities are the wave
function f and a fluctuating part of the medium, say

q, and for the latter a suitable (space and/or time) cor-
relation function is assumed. The average value of the
wave function, Q) (or, more generally, the Green's
function) is evaluated in terms of the correlation fun. c-
tion (assuming the multivariate Gaussian distribution
of q), and the effective value of the propagation con-
stant or the "renormalized" value is obtained as the
solution of an integral equation. Then the fluctuating
part of the wave function, Af=f (tb), is expres—sed in

terms of (f) and tt,
' ' and the correlation function of hP

is obtained either by a direct method using the correla-

tion function of q or by solving a differential equation
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corresponding to the Bethe-Salpeter equation" in quan-
tum 6eld theory. ' " ' However, although the correla-
tion function of the waves is a most important statistical
quantity, not all statistical information can be obtained
in terms of the correlation function; the description of
the statistical system cannot be complete unless, for
instance, the simultaneous probability density function
of q and P is known (as a function of time). This situa-
tion is analogous to that in quantum mechanics, and
the probability-density function in the statistical system
corresponds to the probability-amplitude function in
quantum mechanics. Hence, it is suggested that, if the
equation for the simultaneous probability-density func-
tion of q and lb is found, it corresponds in a certain way
to the Schrodinger equation for the probability-ampli-
tude function in quantum mechanics, and hence the
"dynamics" of the whole statistical system may be
completely determined.

Indeed, when the stochastic change of q is a Markov
process, the probability-density function of q satisfies
the Fokker-Planck equation, which is formally quite
similar to the Schrodinger equation. Further, since the
wave function satishes a deterministic equation when

q is given, it can be shown that the whole system of q
and P is also a Markov process. Hence it follows that
the simultaneous probability density function also satis-
fies the Fokker-Planck equation and its "Hamiltonian"
(which is not generally Hermitian) determines the com-
plete "dynamics" of q and P.

In this paper, a Markov process is assumed for the
temporal change of the medium, and a linear equation
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(1967).
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order terms can be expressed in terms of the matrices boundary condition (2.20) is readily proven to be

q and B as follows:

(82q/at) I, ;—= lim ht —' dq"(q" q'—)'(q", t+atl q', t)
(2.22)

(8"q/Bt) I, ;

dq" (q"—q')'(q"
I
H

I
q')

dq"(q"
I
q'H 2qH—q+ Hq'I q')

dq" (q"
I [q,[q,Hj) I

q'&

For example, in the case in which

(Bq/Bt) = vq, —(82q/at) =m,

((I"q/(7t) =0 22) 3

v and m being positive constants, (2.22) becomes

H = '2—mP-+2ivPq,

(2 14) and hence, from (2.6),

[~/~t2 2m—(~/~q")' v(—~/~q") q"3(q" t2 I
q' t~t) =o

(2.23)

(2.24)

= lim t2t ' dq"(q" q')"(q"—, t+~tl q' t)
4&~0

dq"(q" ILq, [q,",[q,H]j "llq'& (2.15)

Here, in (2.15), the brackets are Nfold.

Now, we introduce the Hermitian matrix p de6ned by

(q"
I pl q')—=—i(a/Bq")B(q" —q') (2.16)

(2.25)

The solution of (2.25) for the boundary condition
(2.2) is found to be [see (2.71)$

(q" t2lq' t|)=(v/1rm)'"{1—t' '"'" "') "'
Xexp[—m

—lv{qtt t;v(t2-tt)qt) 2/{1 t,
—2v(tt-tt)) g

t2) t2 (2.26)

and tends to a sta, tionary distribution, say (q" IO), as
t2 tl ~+~ ~

with the commutation relation

[q,pJ=i, (2.17)

(q" lo)—= (q",t, lq', t,) I,, „„
= (v/2rm) '" exp[—m

—'vq" 2g. (2.27)

and also the constant vector (olq')=1, which can be
regarded as the eigenvector of p with vanishing eigen-

value:

(olq')=1, (o I
q"&dq"(q"

I p I
q') =o, (2.18a)

or

Then (2.15) can be expressed symbolically by

(2.18b)

(oIHI q')=o

in terms of the notation

(2.20)

(olq")dq"(q" IA lq')=(0IA Iq'). (2.21)

Equation (2.19) with the condition (2.20) is sufficient

to determine II uniquely in terms of the expectation
values (8"q/R), 22=1, 2, ; indeed, by the help of

(2.18b) and the successive use of the commutation re-

lation (2.17), the general solution of (2.19) for the

(a"q/at&l. =. =(ol[q, [q "[q,HZ. "1lq'&,
22= 1, 2, . (2.19)

and (2.7) and (2.3) by

(q2', t2 I ~(t? I qi', ti) =
&q

' t
I
q', t)dq'(q'I ~

I
q"&

Xdq"(q", tl qt', ti&. (2.28)

B. Time-Dependent Matrix Representation of
Physical Variables

As we have seen in the preceding section, the Fokker-
Planck equation (2.6) evidently corresponds to the
Schrodinger equation in quantum mechanics and
(q",t2lq', tt) to the probability-amplitude function or
the transformation function. The physical quantity q
is represented by the diagonal matrix (2.11), and the
other operator p, which is quite naturally introduced
in the Harniltonian LI, is represented by the matrix
(2.16), which has the commutation relation (2.17), and
hence is "canonically conjugate" to q.

So far the matrices q and p are independent of time,
and hence they are those of the Schrodinger representa-
tion. On the other hand, there is the Heisenberg repre-
sentation in which the physical variables are represented
by time-dependent matrices, and their equations of
motion often result in clear insights and powerful
methods for the problems.

For any function F of q and p which is represented by
(q" IF lq') in the Schrodinger representation, we define
the time-dependent matrix F(t) by the "mixed" repre-
sentation
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Hence, for instance, (2.6) is expressed by that

a/ate(q", t,
I
q' 'i& = &q"~ts

I a(ts) I
q', t,), (qs', ts I q(t) I

qi' ti& =e "i'-'»&qs', ts I qi I
qi', ti)

—~/~ti(q" ts
I
q' ti) = (q" ts

I fI(ti) I
q', ti).

Putting F= q and t= ts or ti in (2.28), we find that

&qs, ts I q(ts) I qi', ti) = qs &qs, ts
I qi, ti),

(qs', tel q(tr) I qi', tt&= (qs tel qi ti&qr .
(2.30)

(it/itt) F(t) = [F(t),II(t)], (2.32)

which corresponds to the Heisenberg equation of motion
in quantum mechanics.

In the special case of F=H, (2.32) yields BH/Bt=o
and hence B is a constant of the motion, provided that
H is not an explicit function of time.

In the case of the example (2.23), H is given by (2.24)
or, adding some extra terms for later convenience, by

Hence, the mixed representation (2.28) can be inter-
preted as that in which q(ts) and q(ti) are diagonal on
the left (column) and right (row) sides, respectively.

Operating 8/Bt on both sides of (2.28) and using
(2.29), we readily obtain

(~/@)&q.', ts IF(t) I qi', ti) = &q.',t. I

—&(t)F(t)+F(t)If(t)
I ql ti) (2.31)

or, omitting (qs', ts
I

and
I
qi', ti) on both sides,

dt'e "" "i(qs', ts I p(t')
I
qi', t,), (2.37)

C. Stationary States

The probability-density function of q may tend to a
time-independent function, say (q'10), as time elapses
[refer to (2.27)j.Then, by (2.29),

(qs'
I Hlo) =0 or H10)=0. (2.39)

Hence, when H is given by (2.24), (2.39) yields

&qi', ts
I p(t& I qi', ti& = e ""~"&qs', t.

I ps I qi ti) ~ (2 38)

Here the right side of (2.38) is significant for all values
of t as long as t2&t~, and it gives an explicit expression
for the matrix elements of p(t). Hence it follows that
the right side of (2.37) is also significant for all values
of t "No. w, since (qs', tslqilqi', ti& and (qs', tslp(t) 1qi', ti)
tend to Hermitian matrices as t~ —+ t~, it follows from
(2.37) that (qi",ti

I q(t) I
qi', ti) is not Hermitian for tetr

However, this fact simply means that there is no such
representation in which q(ti) and q(ti) (tati) are simul-
taneously Hermitian.

The abbreviation (qs'Iqi'& will be used hereinafter
for (qs', ts

I
qi' ti) a"d (qs'I F(t) I

qi') f» (qs', ts
I F(t) I

qi', ti).

IJ=H, = ', Pr'r—4+-i Pqv+ jq+kP (2.33) [—-', rrip+ ivqg I 0)=0, (2.4o)

Bq/Bt = —imp —vq+ik,

Bp/Bt=vp ij, — (2.34)

which, for arbitrary times ti and 12, give the solutions

Here j and k are ordinary numbers and have no physical
meaning at present; they are to vanish in the final re-
sults. Using (2.33) and the commutation relation (2.17),
the equations of motion (2.32) for q and p become

(01@=0. (2.41)

However, (2.39) and (2.41) are not true for 8', of (2.33),
on account of the additional terms jq and kp, and hence
also (010&W1 for j&0. In this general case, we shall
define (01 by

and (2.27) is obtained as the solution.
Another time-independent density function is (0 I

q'),
de6ned by (2.18) and, as is evident from (2.20),
satisfying

q(t)=e "" "'qr+s

p(t) e v(ts4) p +i—-
dt'e "" 'leak(t') —mp(t'))

dt'e "i' 'ij(t')

(0 I p(t,)=0, t, ~+~

(2 35) instead of (2.18), and 10) by

q(ti)10) =0, t, ~ —oo .

(2.42a)

(2.42b)

in terms of the notation qi= q(ti) and ps
——p(ts). Hence,

using (2.17),
(2.36)

It may be noted that q(t) given by (2.35) is not always
Hermitian, even though it is so at some particular time.
However, this fact is not contradictory with the original
de6nition of q given by the diagonal matrix (2.11)

In the case of j=k= 0, (2.35) means, for ts) t) t, ,

D. Expectation Values and Correlation Functions

We now suppose that the values of q are known to be
q4' and qi' at the times t4 and ti (t4) ti), respectively, and
we ask for the expectation value E[qsqs] of the product
q3q2 when the times t3 and t2 are involved between t4

It is noticed that, since (qz", tz
~
q', t) generally does not exist

«» 4&t, (q4",t4~q(tl ~q4', t4l cannot be constructed directly by
(2.28) in this range.



168 APPLICATION OF METHODS OF QUANTUM MECHANICS 171

and t~. Then, when t3&t~,

E[q3qg J=

/&q4'I qi') = &q4'I qsq2I qi'&!&q4'I qi'&

dq3 dq2 &q4' I
q3'&qi'(q3'

I
q2'&q2'&q2'

I
qi')

Hence, for any variable F=F(t) (t2) t) ti),

~&e"IF I
qi')

&q2"
I
q')dq'&q'IF

I
q"&dq" (q"

I q '&

t4) ts)' tg) ti (2.43)
=&q "I dt'T[FbII(t') J I q '), (2.53)

T[A(t,)a(t,)$=A(t, )fI(t&),

=B(t,)A(t,), t,(t2
(2.43) is expressed by

(2.44)

while, when t3&t~, the order of qsq2 on the right side
is exchanged. Hence, in terms of the notation where q=q(t) The .expression (2.53) is true also in the

more general case where F is a time-ordered functional
F= T[Fj of q and/or p involved between t~ and ti.

Now, when 5II is caused by the variations of j and
k in (2.33),

~[q8q~l= &q4'I 2'[qsq23 I qi')/&q4'I qi'& (2 45)
5B=qej +peak. (2.54)

More generally, if F is any functional of q involved
between the times t4 and t~, the expectation value of F
for the same condition as in (2.45) is given by

Hence, from (2.53),

{t/»«i)) &ol o&=(oI q(ti) I o),
{/»(ti)&{&/»«2)) &olo)=(oI TLq(t )q(t,)qlo&, (2 ss)

&[F)= (q4'I 2'[F1
I qi')/(q4'I qi'). (2.46)

Thus, according to (2.51),
On the other hand, when the medium is already in

the stationary state at the time ti and the expectation g "'(t, ,t2, ti) = {8/5j(t„)&.
val« is «qui«d f«all p»sible val«s of q4', then
(2.46) is replaced by

etc.

~l F)=O'[F3)=—(OI T'[Fl
I 0)/(o I o).

and hence (0 I 0) is found to be the generating function
2.47 for the correlation functions.

For instance, the correlation function g(t2, ti) in the
stationary state (j=k=o) is given by

g(tp tz) = (T[quqiJ&=(ol quqil o), 4) ti (2 48)

E. Evaluation of &0IO)

Using the notation (2.47), we have from (2.55)

{~/»(t) )&o I o)/(o/o) = (q(t)). (2.57)

on account of (2.18). Hence, using (2.36) for the com-
mutator, we 6nd that

which becomes, by using (2.40),

yn(2')-'&Olqgpilo&=m(2&) '(ol[q2 plJIO) (2.49) Hence, in the case of the preceding example, we can
use (2.35) for q(t), and hence

g(t2 t,)= yg(2p)
—ie—~l ~~—~~( (2.50) (q(t))= t dt'e "&' "{k(t')—m&p(t'))),

The correlation function in the general case is given

by &p(t))= dt'e "&' '&j(t'),

(2.s8)

g&"i(t, ,t, t ) =(T[q qpqi]&, I=1, 2, (2.51)

and can be evaluated by the successive use of the
method used for (2.48). However, there is the more
simple method, as follows.

We suppose an infinitesimal variation BH(t) of the
Hamiltonian B(t) in (2.29). Then the resultant varia-
tion of the probability density function, B&q&"lqi'), is
given by

~&qm" I qi') = &q~" I ~&(t)«l qi'& (2 52)

(q(t))=i dt'e —"&' "&k(t')+nz(2p) —' dt'e —"~ '-"~j(t')

dt'e-"& '- ~&j(t') . (2.S9)

where (q(t)) is assumed to vanish at t= ti and (p(t)) at
t=t2, these boundary conditions correspond to those of
(2.42) and. are valid for ti —~ and t~=+ ~ .Thus, we
find from (2.58) that
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Now Eq. (5.57) with (2.59) gives the solution with the relation

(0(0)=exp 2 (tt dt'j(t)e "(' "k(t')
fl gl

&q2 IP2)dp2 &P2 lq2 &=~(q2 —q. ) (2.66)

+ ttt(4) )-' dtdtj'(t)e )
—'1j—(t')

i 2

dt't, "(" ttj)—(t') ~, (2.60)

Hence, for instance, using (2.11), we find that

(P2'
I q2IP2') = (2~!~P2")&(P2"—P2') (2 67)

Now, expanding &P2'~ ql') in a power series of p2',

where the integration constant is chosen so that (0
~
0)= 1

forj=k=o.
The results (2.60) is obtained on the condition (2.42)

for finite values of t2 and tl. If tl= —~, t2 + tc, —a—nd
A=0, (2.60) becomes

&P2'lq ')= 2 (~)) 'P '"W~p ")"&P"lq ') I. -=o
n=o

(2.68)

which can be expressed, on referring to (2.67) and (2.55),
as

(0~0)=exp 233(4t)
—' Ctdt'j (t) ") t ")j (t') .—(2.61) =t)

Hence, (2.56) gives
= ~ (I ) '( —2P2'~/»(t2)) "&Olql')

n=o

&p, lq, '&=&Olq, '&i j(t).j(t) „„,(, „).
g (t2 l ''' t2ttl) Ot

(2.62)
Hence, we hnd that

g (t2ttt ' ' 'ttqttl) Q g(t2tttt2tt-1) ' ' ' g(t4tt3)g(t2ttl)t (2.69)

where the summation P is over all possible combina-
tions of pairs of t2~, , t2, tl, and g(t2, tl) is the same as
given by (2.50). Thus the fluctuation of q is found to be
also a perfect Gaussian process.

F. Evaluation of the Characteristic Function

As in quantum mechanics, the probability density
function (q2'~ ql') used so far can be interpreted as the
transformation function between the eigenvectors j ql')
of ql and (qq') of q2, and this fact is explicitly shown in

(2.30). In the same way, if &P2'~ is the eigenvector of

p2 having the eigenvalue p2', we can obtain the trans-
formation function (p2'~ql') between &P2'~ and ~ql') as

(P2'I ql') = &P2'I q2')&q2'&q2'I ql &

In the same way, we can e~press (Olql') in terms of
(0(0) and thus have

P2 I ql )= &01o) It(t) j(t) (pt'3(t —tt), tt(t—) ttt(t) —iqt'3(t —tt) ~

(2.70)

Now, using the result (2.60) for (Oj0) and putting
j=k=O in (2.70), we obtain

&P2'I ql') =ex' —2P2'ql'~-"" "'
—m(4))—'(1—t,

—'"('~'»)P, '2), (2.71)

which gives (q2'
~
ql') of (2.26) after the transformation

by (2.65).
Thus we have seen that all the statistical character-

istics of the system can be derived from (0
~
0&

=(P2'lql'&I. , =q, =o.

which is usually called the "characteristic function. "
Here

&P2'
I P2 I

q2') = P2'&P2'I q2')

which, using (2.16), gives a solution

&P2'I q.')=exp' —2P2'q2'),

(2.64)

(2.65a)

and the integration constant is chosen so that it agrees
with (0 q2') defined by (2.18) for P2' ——0.The correspond-

ing (q2' P2') will be defined by

3. EXTENSION TO THE TOTAL SYSTEM OF
WAVE FUNCTION AND MEDIUM

In the preceding sections, we have seen that any
system following a Markov process has a mathematical
basis similar to that of quantum mechanics, and several
results were illustrated by a simple example. In the
following, we shall consider the total system of waves
and Quctuating media, and the latter will be assumed
to be a Markov process. Thus, the (real) wave function
tp={tp ), (2=1, 2, . . . is assumed to satisfy a linear
equation of the following form:

&q2'IP2'&= (2~) ' expL2q''P '), (2.65b) ( f~ )4-=(~-s+f-(q)A+n-, (3.1a)
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or, symbolically,

(~/~t)4 = (~+bq)4+v. (3.1b)

tion (3.1), respectively. On the other hand, the equa-
tions for p and ft become

Here u p and b p are constant matrices with respect to
the Greek subscripts, g is the external source of wave,
and q is a Quctuating quantity of the Markov process.
The repeated subscripts are to be summed.

The probability-density function (q",It",t3Iq'pp', ti)
for this system will be defined so that, when q and P
have definite values q' and P' at the time ti, the prob-
ability that they have values between q", P" and
q"+dq", p"+df" at the later time t3 is given by
dq"dp" (q",p",t3 I q',f', ti). Here, it is not diKcult to show
that, when q is a Markov process as assumed, the total
system of q and f is also a Markov process, because of
the deterministic wave equation (3.1) for f when q is
given. Thus, using the notation

&q3"4 3"
I
qi' It i') (3.2)

instead of (q3",f3",t3I qi', pi', ti), we have, for t3& t3& ti,

(q3', It 3'
I
q3', It 3')

+dq3@3(q3 It'3 lqi It'3) de =II d~ (33)

Now we can develop the theory in the same way as
in the preceding sections. In particular, no change is
necessary for the medium part and the corresponding
Hamiltonian remains the same. For the wave part, we
have from (3.1)

&W/~t) I p=t '='=(~+fq')0'+~
(8+/Bt)I t, p, ,=, =0, N&2

(3.4)

in terms of the notation of (2.8) and (2.15), since, when
It (t)' and q(t)' are given, p(t+ At)' is deterministic to the
first order of ht. Hence, according to (2.22), the Hamil-
tonian of the wave part, say H~, is found to be given by

g'a {(43ap+~apq)Pp+'ga} i'ga It'a ~ (3 5)

Here, f is an operator having matrix elements similar
to (2.16), and satisfies the commutation relation

LII' ht'p j=i~ p

L4-Itpj=IIt 'Ap'j=o;
(3.6)

and all the wave variables f and ft are to commute
with the medium variables q and p. Also, the additional
term iit tp h—as no physical meaning, and 4t,t is an
ordinary number to vanish in the final results.

The total Hamiltonian B is given by

H=Pt+H„ (3.7)

and the equations of motion for q, p, It, and Itt are
obtained. according to (2.32). Using Hp and H, given
by (3.5) and (2.33) with the replacement j~j„ the
equations for q and f are found to be exactly the same
as the one given by (2.34) and the original wave equa-

Bp/Bt=vp i j—,
%—'/~t=4'(&+&q)+n',

j= if—hp+ j,
(38)

A. Expectation Values and Green's Functions

The expectation value of any physical quantity can
be treated in the same way as in the preceding sections
and, for instance, when P is any functional of f(t) and
q(t) (+~ & t& ~), its expectat—ion value for the boun-
dary conditions f( ~)'= q(—~ )'=—0 and for all possi-
ble values of f(+~ )' and q(+ 00)' is given by the same
formula as (2.47).

The Green's functions of the wave and the medium
are de6ned by

G.p(ti, t3) = {8/84Ip(t3)}(pa(ti)) I „„t„
G p, „4(ti t3 t3 t4) ={8/84I,(t3)}{8/8g3(t4)}

&& V'I:4-(t )A(t.)l) I.=,t-o,
3.12

D(ti, t3) = {8/8j,(t3) }(q(ti))I =,t p, etc.

in terms of the notation (2.47). Here the external sources
g, q, and k are to vanish after the differentiation, while
j, will be assumed to take on some 6xed value for a

Here, it is remarked that the equation for p includes a
term depending on the wave variables through j.Hence
it formally follows that the media a6ect the waves, and
vice versa. Of course, this mutual interaction is of
mathematical products and has no physical meaning;
it simply means that the matrix elements of the medium
variables, e.g. , (q3',f3'I q(t) I

qi', pi'), cannot be free from
the values of f3' and, fi' or from the knowledge of the
values of the wave function at the times t2 and tj. As
a result, it generally follows that the wave variables
and the medium variables do not commute at diRerent
times, although they do at the same time.

Many times, the representation corresponding to
(2.63), i.e., (p3',p3'Iqi', fi'), is more convenient than
the original probability-density function (3.2), and we
shall define the states IO) and (OI, for t3~+ ~ and
],~ —m, by

&Ol q' It")= (p3' It 3'I q' ~t ') I p4t =» =o (3 9a)

(q', O'I o)=(q',O'I qi', Iti')
I pi =.4-o, (3 9b)

where It'=g(t)' and q'=q(t)'. Hence, for t3 ++4C an—d
t&

—+ —, they satisfy the equations corresponding to
(2.42):

(OIy~(t, )=(OIp(t,)=0, t, ~+~ (3.10a)

P(ti) IO) = q(ti) IO)=0, ti —+ —~ . (3.10b)

When q~= j.=O, Eq. (3.10a) holds for the whole
range of t3 in view of (3.8). Thus

(Olq'8') = 1. , ~'=q.=o. (3.11)
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given moment. Hence, it follows that the expectation
value of any functional of the wave function can be
expressed in terms of the Green's functions, provided
that the wave is excited only through the external
source q and the power-series expansion of the expecta-
tion value with respect to g is possible.

On the other hand, for infinitesimal variations bq,
8)tt, bk, and bj„&0l T[F]l0) undergoes the variation

01 TLF] I 0) given by

a&0 l T[F]l 0)= (ol «T[F»(t)]
I o), (3»)

with

8H= i(brt "—)P +)P tbrt )+qbj.+Pbk, (3.14)

as in (2.53). Hence we have

b&T[F])= dt((T[FbH(t)])

and it is straightforward to show that

Aa(ti, t2) =

B(ti,t, t~)

dt'dt"bG(t„t')B(t', t",t,)g(t",t,),
(3.22)

[X(t1)X(t2) I12(t1)t2)]G(tl)t2) ta)t4)

't)(ti ta) 8(t'i t4)+ b(ti t4) 8(t2—t,) . —(3.23)

= b6(t t) b(t—t )+—(b/8&q(t))) t))a(t, ,t,),
with g(t, t') given by (2.50). Hence these operators can
be evaluated by successive approximation, using the
system of Eqs. (3.21) and (3.22).

Also, for the double Green's function in (3.12), we
can employ the same methods as in quantum field theory
and obtain the results as follows:

Thus, from the definition (3.12), we Qnd that, since

Q) I,=.=0, ~(ti) = ~/~ti ai —)-')ai—, ~(4)= rt/~t2 a2 Aa2 —(3.—24)

—&T[F])&»(t))). (3.15) Here, the Greek subscripts are included in the coordi-
nates t; (i= 1, 2, 3, 4);

G-s(ti, t2) = —i&T[4-(ti)A'(t2)]),

G))p, y8(tl)32') t3)t4) (3.16)= —(T[4-(t )A(4)f.'(t )f '(«)]), «c
On the other hand, since (j)=j.for op=0, we have,

on using (3.8) and (2.59),

are operators only with respect to the coordinates t&

and t&, respectively; and the interaction operator
Iiu(t&, t&) is characterized by

I12(tl)t2)G(tl)t2) 4)t4) =blB2g(ti)t2)G(tit2) ts)t4)

+bi dti'G(ti, ti')(b/b j,(ti') }
( (t))= (2) ' dA-"~ '-'~ j,(t') . (3.17) +(I12(tl )4)G(tl )t2) 4)t4)}. (3.2))

B. Isomoryhic TransformationHence, according to (3.12), D(ti, t2) coincides with t.he
correlation function g(ti, t2) of (2.50).

When the temporal change of the medium is suSci-
ently fast compared with that of the waves, so that the
latter do not appreciably change within the time inter-
val v ', then an adiabatic approximation may be used
for the medium variables, in the sense that the medium
is always in a stationary state for the "excitation" by
the waves.

In this case, it is convenient to introduce the iso-
morphic operators q, P, Q, and Qt de6ned by

Schwinger's Green's-function theory" can be devel-

oped in the same way as in quantum electrodynamics:
From the wave equation (3.1),

(~/~t )9) b&A) =—~ — (3 lg)

where, using (3.15),

&q4) = (~lbj.)&0)+(q)(4) (3 19)

Hence, according to the definition of (3.12), the single
Green's function is found to satisfy

[~/~t —a—b(&q(t))+b/bj. (t))]G(t,t') = b(t—t') (3.20)

Here the Greek subscripts are suppressed and (q(t)) is
given by (3.17).

The "mass" operator ha(t, t') and the "vertex" er-

ator B(t',t, )tare defined by

q= UqU ', p= UpU ', it)= U)pU i— —
(3.26)

Qt —U)pt U—1

with

U= exp[—m(4v)-'(p+iv j)2] exp[ —v ijq], (3 27)

b(b/bj. (t,))G(t„4)= «~a(ti)t)G(t, t2) )

&G(t, t )/b(q(t))

op
and express the physical operators in terms of them. "
Here, the new operators have the same algebraic rela-
tions as those for the old operators, and hence their
commutation relations do not change. Thus, since

(3.21) U= UUU '= U (U being the same function of q, P, and

dt'dt"G(t, ,t')B(t', t, t")G(t",t~), » In the following, boldface letters will be used for all isomorphic
operators obtained with U.
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j as U is of q, p, and j), we find that

q= U 'qU=q i—m(2v) 'p+mv j',
p=p+iv 'J j j
/=WE, Itt=gtW ',

with

(3.28)

W=expl —m(4v) '(2P+2iv 'j)(iv 'b) —v 'b')$
)& expL —v 'bq-$. (3.29)

Here, in the derivation of (3.28), the following lemmas
are used:

4j"=(j+b)"0 i "4'=0'(i+b)", ~=1, 2, "
CfV) =f(f+b)4, fV)4'=0'fV+b) (33o)

In the same way, for the Hamiltonian II of (3.7), we
have, using (3.5) and (2.33),

II= igt(a—q+q)+m(2v') j''+ivpq (3.3.1)

On the other hand, according to (3.31), the neglect of
these higher-order terms is equivalent to the approxi-
mation a~a and g~q, and II is then divided into the
two independent parts, for the wave and for the medium.

The original probability-density function is given by
(q2', P2'I q~'p/i~'& and, as has already been noticed, it can
be regarded as the representation of the eigenvector

I
q~', P~'& (of the operators q~ and P~ for the eigenvalues

q&' and f&') by the eigenvector (q2', P2'
I (of the operators

qu and. P2 for the eigenvalues q2' and P2'). On the other
hand, the solution of the Fokker-Planck equation (2.6)
for the Hamiltonian (3.31) may be expressed by
( q~', Q '2Iq~', Q~'& in terms of the new operators in the
same way a,s for the original operators. Here, using
(3.26),

qU 'lq'&=U 'qlq'&=q'U 'lq'), (3.38)

and hence it follows that U 'I q'& is the eigenvector of

q of the eigenvalue q', or

Here, we assumed j,=q~=k=0, and

g=lV 'q,
a=W 'aW=a+ '$b, a$q+m(4 ) ' (3.32)

)((2iv-~I b a j(P+ 2iv j) —
v 2(—j5 —aj)+

U-'I q'&= Iq'&I, =,"
In the same way,

(q'IU=(q'l
l a =,"

Thus,

(3.39)

(3.40)

ha= m(2v') 'b'. (3.37)

Here, referring to (3.32), ha can be regarded as a cor-
rection to a and, indeed, agrees with that given by (3.22)
to hrst order. Also we notice that the term mv 'bj takes
the same form as the potential of the 6eld of boson par-
ticles, which interact only through a two-body force
with the "charge" j. On the other hand, the last two
terms in (3.35) are of the higher-order "intera. ction, " as
may be seen from the expansion of a on the right side
of (3.32); it is of the order of the magnitude of av ',
which becomes very small when the temporal change of
the medium is suKciently large compared with that of
the wave function, as is assumed. In particular, they
vanish exactly when Lb,aj=o, or when j is a constant
of the motion. The situation is the same also for the
last two terms in (3.33).

Hence, using the expression (3.31) for H, the equations
of motion for the new operators are found to be.

Bq/Bt= [q,II)= vq ig—t[q, a—jg igt[q, v—t$,
ap/at =.p zest Lp, a]g zest

—Lp,g]. — (3.33)

For the wave operator g, we notice that the second
term on the right side of (3.31) can be expressed also by

m(2v') —'(Qtb(QtbQ) Q) &Pm(2v—') 'b'Q (3 34)

Hence,

Bg/Bt= (a+Aa+mv 'bj )Q+vt
-i4'LC, aJC-iC'LC, n J, (3.35)

Bg~/Bt= Q~(a+Aa+mv —'bj )
-'~'I e', ale-'~'Le', ~1, (3 36)

with

(q'2 A'2'
I
qi', 4i'&= (e'A~'

I
U2U~-'I e' b'&, (3 41)

where q~'=q2 Q2 =f2 ql =ql and $1 =f1 .
The two stationary states

I 0) and (0 I
were originally

defined by (2.40& and (2.18b) with respect to the medium
and, using (3.28), the equations for these states are
found to be expressed exactly by

and, of course,

ql o&=(ol p=o,
elo)=(ol~'=0,

alo&=&ola=o

(3.42)

(3.43)

(p2', e2'I e'A~'& = (p2'I e'&(e2'I e~'& (3.44)

Here, the solution of (3.33) for this approximation
becomes

q2=e-"' a, p2 ——e"' p, ) tn= t, t~, (3.45)—
and hence

iran/~p2 (p~'I qi'&= (p2'I q2I e'&= (p2'le ""'el e'&
=e-""'q'(p'lq'&, (3.46)

which gives a solution

&p& I
e')= expL —ip~'e ""'eJ (3.47)

for vanishing external sources p= gt= k= j,=o. Hence,
these stationary states are found to be the eigenvectors
of the new operators, and the evaluation of expectation
values of physical quantities may become easier in view
of (2.47).

In the case of the approximation a a and q~g, the
Hamiltonian is divided into the two independent parts
for the wave and for the medium, as has already been
noted, and hence we may put
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(3.55)

&qg', )Pp'
I qi', )Pi'& (v/mm) '"e-'"' ) "&)b"lit/i"&, (3.56)

The Hamiltonian of the Fokker-Planck equation for In the integral (3.53), the eA'ective range of X is
&it/2t'I/i') is given by (3.31) with the omission of the IXI &(m/v)'", and hence, when the condition
medium part ivpq.

In order to obtain the probability-density function,
we need to evaluate &qi', it/i'I U2 and Ui-'Iqi', it/i'&, in
view of (3.41). Now, using (3.27) and the lemma (3.30),
we 6nd that

=&q'I expL —v 'jq3 expL —~(4v) '(p+2iv 'j)'jlp')
= (2ir) ' expLiq'(P'+iv 'j)—m(4v) '(P'+2iv 'j)'),

(3.48)

where the definition (2.65b) is taken into account.
In the same way,

&p'
I
U—'I q') = expL —iq'(p'+iv-'j)

+m(4v) '(yI+2iv —'j)'). (3.49)

Hence, in the case of the approximation (3.44), the
probability-density function is given by

&q2', O'I qi', )pi') = (2~) '&it/a'I cp~'

XexpLiq2'(Ps'+iv 'j2) —m(4v) '(Pi'+2iv 'ji)'j

Xexp( iqi'(p—i'+iv iji)

+ (4) '(P'+2' 'i)')l0'&,

With pi'=e v'»pi', it/2'=)pi', and )b' ——)pi'. Here, fOr

v4i))1, Pi' 0, and hence

& q2$ '2I q',i)pi)=(v/ mir)' /e(v/")&&"

)(&it2 I
ev jgqi'ev jinni' vtvv ji'«I -q I)

vtmi))1. (3.50)

On the other hand, using the lemma (3.30),

e"jle') =e-'t+"&le') ="e"-)le'),

and hence e )
I
Q') is found to be the eigenvector of it/ with

the eigenvalue e «Q'. In this way, we find that

e- le'&=
I
"e') &e"I' = &e'""I,

(3.51)
e tip"&= I@'"-"), &&'le '=&e-"g'I.

Thus, using the integral representation

where it/2" and ib" are given by (3.54) with X= 0. Here,
since the right side of (3.56) is appreciable only for
lq2'I &(t/«/v)'", we can put it/2"~)p2', and further, if
(3.56) is averaged over the stationary distribution of

qi, we cail pll't it/i™)pi.

&Bq(x)/Bt) =Xq(x),

&Bq(xi) Bq(xg)/Bt) =m(xi —x2),

&Bq(xi)8q(xg) aq(x„)/Bt& =0, e&3
(4.1)

for arbitrary points x; (i= 1, 2, ~ ).Here, X is an oper-
ator operating on q(x), and, for instance,

X=—v+cxV', (4.2)

where v and n are positive constants and V' is the
Laplacian. Then, the Hamiltonian II, for the medium
which corresponds to (2.24) is found to be given by

4. CASE OF WAVES IN THREE-
DIMENSIONAL SPACE

The waves and the media we have considered so far
in the preceding sections are functions only of the time.
However, it is quite straightforward to extend the
methods to the ordinary waves and media in three-
dimensional space, and we shall illustrate the results by
an example corresponding to (2.23).

The medium variable q is now a function of space co-
ordinates x, say q(x), and changes stochastically with
the time; the temporal change is assumed to be a
Markov process and also to be spatially homogeneous.
The probability-density function (q",t&l q', ti) is defined
in the same way as in Sec. 2, except that q" and q' now
represent values of q(x) at all points in space.

Now we assume, using a notation similar to (2.15),
that

e—IIvv ~j2—(v/~v/«) i/2 Cpei2v )jX—(v/vN)Xi (3 52)
(Cx) (Cx')p(x)m(x —x')p(x')

(3.50) can be expressed by

&q2', O'I qi', 6'&

i (Cx)—p(x)Xq(x)+ (Cx)j(x,t)q(x) . (4.3)

Here, (Cx) stands for the space element, and q(x) and

( / ~) Cl e ( / ) (q«8+$1)
&g

II
I g II) (3 53) p(x) are now operators having the matrix representa-

tions
where

it/ "=e ""&«')II' ib"——e" "«"+""))piv, vt»))1—. (3.54)

(q"
I q(x) I

q') = q(*)"~(q"—q'),

(q"I p(x)lq'&= —i&~/~q(x)")~(q" —q')
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and, for gt=0, where

(d )Le'( ){a( )4( )+9( )}+I()&q( )j V(x) = (dx')m2(x —x')j(x'), (4.35)

Here

a(x) =W-'(x) aW(x)

=a+I b,al (d*')L~(x—x')q(x')

+ (-,'i) mm(x —x')p(x') —mp(x —x')j(x')j

and the time coordinate t is suppressed for all the
(dx ) (dx )j(x )mg(x x )j(x ) (4 30) variables

As is discussed in Sec. 3, the integral terms in (4.34)
are higher-order terms, and can be neglected when the
temporal change of the medium is very large compared
with that of the waves. Hence, in this case, 0 is divided
into two independent parts for the medium and the
wme, and the latter interact only through the two-
body "potential" m&(x&—x&) with the "charge" j(x).

When K is given by (4.2) and

—(4)ma(o) Lb', aj+",
g(x) =W-'(x) g(x),

m(x) =me-~*~",

(4.31)
mu(x) is found to be

(4.36)

and the last term in (4.30) can also be expressed by

(dx') (dx")m2(x' —x")

&& {0'( ')b(4'( ")K( "))4( ')}

m2(x)=mv '{(kl) ' 1} '—
I e ~'~ + (kl) 'e ~~'~

—4{1—(kl)'}-'(I/I xI){e "~*~—e ~'~ "}g. (4 37)

Hence, when t is sufficiently large so that kl))1,

(dx)gt(x) d ag(x), (4.32)
mg(x)~mv 'e ~*~" kl))1 (4.38)

with
ha =—',m2(0) b'.

while, by replacing m-+ m(8sl3) ' and l~ 0, we can
obtain the result in the case of m(x) =mb(x):

The equations of motion for the boldface operators
are inunediately obtained by the use of (4.30) and, for
instance,

(&/Bt) g(x) = (a(x)+Aa+ b V(x))g(x)+ q(x)

m~(x)=(8s) 'k'mv 'e ~~*~. (4.39)

The original probability-density function and the
equations for the stationary states IO) and (OI are ex-

pressed by the same equations as (3.42). Also, when the
condition corresponding to (3.55) holds, i.e.,

I
2bma'" I«1, (4.40)

+I g(x),~(x'))), (4.34)

(8/Bt) q(x) =Xq(x) i (dx') aP—(x')

&& {Lq(x),a(x') X(*')+Lq(x),e(x')]},

then (q2', QIIq&', It&') is given by (q2', $2'Iqg Ql ) for

qm
——q2', g2' f2', q&' ——q&'——, and Q&'= P&' times the station-

ary distribution function of the medium, insofar as q&'

is not much greater than the rms value of q.


