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The basic equations for the statistical system of waves in a randomly fluctuating medium are presented
in the same form as in quantum mechanics, assuming a Markov process for the temporal change of the
medium. A simple model is chosen for the Fokker-Planck equation of the medium which gives rise to a
fluctuation of the Gaussian process, and several results are given to illustrate how the methods used in
quantum mechanics or quantum field theory can be applied almost without change. Thus, the physical
variables are represented by linear operators, and their equations of motion are determined by an equation
similar to the Heisenberg equation of motion. The system has two stationary states (corresponding to the
vacuum states (0] and |0) in quantum field theory), and the rather standard methods in field theory can
be used for the evaluation of the Green’s functions. When the temporal changes of the medium are suffi-
ciently large compared with those of the waves, an adiabatic approximation is possible, and the isomorphic
transformation (corresponding to the unitary transformation) is employed to lead to the result that the
statistical system of the waves for this model is in perfect correspondence with the waves of bosons which
interact with each other only through a two-body potential.

1. INTRODUCTION

HE problems of wave propagation in a randomly
fluctuating medium have been treated by many
authors,’1° and there has been great interest in the
“renormalization” of the propagation constant and in
the evaluation of the correlation function of waves.
The procedures hitherto adopted seem to be more or less
as follows: The basic physical quantities are the wave
function ¥ and a fluctuating part of the medium, say
g, and for the latter a suitable (space and/or time) cor-
relation function is assumed. The average value of the
wave function, (¢) (or, more generally, the Green’s
function) is evaluated in terms of the correlation func-
tion (assuming the multivariate Gaussian distribution
of ¢), and the effective value of the propagation con-
stant or the “renormalized” value is obtained as the
solution of an integral equation. Then the fluctuating
part of the wave function, AYy=y— (¥), is expressed in
terms of {¢) and ¢,"® and the correlation function of Ay
is obtained either by a direct method using the correla-
tion function of ¢ or by solving a differential equation
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corresponding to the Bethe-Salpeter equation!! in quan-
tum field theory.1?-12-1¢ However, although the correla-
tion function of the waves is a most important statistical
quantity, not all statistical information can be obtained
in terms of the correlation function; the description of
the statistical system cannot be complete unless, for
instance, the simultaneous probability density function
of g and ¢ is known (as a function of time). This situa-
tion is analogous to that in quantum mechanics, and
the probability-density function in the statistical system
corresponds to the probability-amplitude function in
quantum mechanics. Hence, it is suggested that, if the
equation for the simultaneous probability-density func-
tion of ¢ and ¢ is found, it corresponds in a certain way
to the Schrédinger equation for the probability-ampli-
tude function in quantum mechanics, and hence the
“dynamics” of the whole statistical system may be
completely determined.

Indeed, when the stochastic change of ¢ is a Markov
process, the probability-density function of ¢ satisfies
the Fokker-Planck equation, which is formally quite
similar to the Schrodinger equation. Further, since the
wave function satisfies a deterministic equation when
g is given, it can be shown that the whole system of ¢
and ¢ is also a Markov process. Hence it follows that
the simultaneous probability density function also satis-
fies the Fokker-Planck equation and its ‘“Hamiltonian”
(which is not generally Hermitian) determines the com-
plete “dynamics” of ¢ and ¢.

In this paper, a Markov process is assumed for the
temporal change of the medium, and a linear equation

1L E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951);
M. Gell-Mann and F. Low, zbid. 84, 350 (1951); J. Schwinger,
Proc. Natl. Acad. Sci. U. S. 37, 452 (1951); 37, 455 (1951).

1217{). B. Kieburtz, IEEE Trans. Antennas Propagation 15, 76
(1967).

B'W. P. Brown, Jr., IEEE Trans. Antennas Propagation 15,
81 (1967).

(1194612)' E. Hufnagel and N. R. Stanley, J. Opt. Soc. Am. 54, 52
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for the waves. A simple model is chosen for the Fokker-
Planck equation to cause a fluctuation of the Gaussian
process. In Secs. 2 and 3, both the wave function and
the relevant medium variable are assumed to be func-
tions only of the time, while in Sec. 4, they are treated
as functions of the coordinates of three-dimensional
space also. In Sec. 3 A, the theory of Green’s functions
is developed according to Schwinger’s method.’® In
Secs. 3 B and 4 E, the isomorphic transformation is used
to show that when the temporal changes of the medium
are sufficiently fast compared with those of the waves,
the “Hamiltonian” of the system is in perfect correspon-
dence with that of a system of boson particles which
interact with each other only through a two-body force.
This result is similar to the theory of Kraichnan, who
assumed a random coupling for each pair of the ¢’s of a
system of wave functions.1

2. QUANTUM-MECHANICAL TREATMENT
OF MARKOV PROCESS

We consider a physical quantity ¢ whose temporal
fluctuation is assumed to be a Markov process. Let
(¢",t2| ¢',t1) be the probability density function defined
in such a way that, when ¢ has a definite (real) value
¢’ at the time #, the probability that ¢ has a value be-
tween ¢’ and ¢'’+dq” at the later time i, is given by
dq"{q" 12| ¢ ,t1)- Then, in the case of the (single) Markov
process (as is assumed), it holds, for arbitrary #, in the
range {32 s> 1y, that

(¢ sl ¢ )= / (q"" 1] ¢" 12)dg"(q" 12 ' 1),

s>t (2.1)

with the conditions

(q";t2l ql>t1>l 2>t = 6(9”_91) ) (22)

/ dg"{q" ¢ ;) =1. (2.3)

Hence, in terms of the notation
” Nee 13 16/ ’
(¢"|H|¢)= lim ArH(e”, t+atlg)
- <q”3tl q/;t>} ’

or, on account of the condition (2.2),

(24)

('|H|¢)=— lim Ar(g" ¢, tHAL)
- <q”,tl q,;t>} , (2.5)

15 See J. Schwinger (Ref. 11).
16 R. H. Kraichnan, J. Math. Phys. 2, 124 (1961).
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Eq. (2.1) gives the following equations:

6/6l2<q’,,l2 l 9',151}:/ (q”lH! 9"')d4'"<9""t2|(I'Jl> )

—0/oulg" | ¢ )= / (0"l g t)dg""(¢"" | H|{'),
>t. (2.6)

Equation (2.6) is the Fokker-Planck equation, which
prescribes the temporal change of the probability-den-
sity function in terms of (¢”’|H|¢’). The latter may be
regarded as a continuous matrix (with respect to ¢’ and
¢"’) operating on the probability-density function, and
(2.3) imposes the condition

/ dg"{¢"|H|q')=0. (2.7)

A. Determination of (¢"'| H|q’)

We first consider (9g/d7)| 4y, which is the expecta-
tion value of the time derivative dq/d¢ when ¢ has a
definite value ¢’, and is hence given by

(09/00)] == lim Ar! / dg"(¢"—¢)
X{q", t+At] ¢ ).
Since, according to (2.6) and (2.2),

(¢", t+At]¢t)
=8(¢'—¢")+{"|H|¢)AH0(Ar), (2.9)

the right side of (2.8) is also expressed by

(2.8)

/ dql/(qll__ql)<quIqul>

- / [ @ tala i 71y

- / / dq"(q"|H1q"")dqg""(¢" |q]¢"), (2.10)

where (g”'|¢|¢’) is the diagonal matrix defined by

¢"lqlg"y=q"8(¢"—q", (2.11)

and 6(¢’) is the ordinary Dirac 8 function. Thus, using
the usual matrix multiplication convention, (2.8) is
found to be expressed by

(00/00)] g = f WL Elle)  (212)

in terms of the notation
[4,B]=AB—BA. (2.13)

In the same way, the expectation values of the higher-
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order terms can be expressed in terms of the matrices
g and H as follows:

2 = 1 —1 e el ’
@0/ gme= Jim A0 [ dg @'~ 10
= / dg"(¢"—¢)%q" | H|¢)

= / dq"{q" |*H—2qHq + H¢*|¢')

- / da"¢" [ LeHT1 ), (2.14)
(anQ/ (”) I a=q'
=, A f dg"(q"—q' )", A1 ¢t)
- f a0\ [olo - [eHT) 1), (@15)

Here, in (2.15), the brackets are nfold.
Now, we introduce the Hermitian matrix p defined by

(" pld)=—i(8/3¢")8(q"—¢) (2.16)
with the commutation relation
Lg,p]=1, (2.17)

and also the constant vector {0|¢’)=1, which can be
regarded as the eigenvector of p with vanishing eigen-
value:

0lgH=1, / 0lg")dg"{q" | p|¢"y=0, (2.18a)

or
(0[p=0. (2.18b)
Then (2.15) can be expressed symbolically by
(97q/31)| gmer =0 [g,Lqs" - -, Lq, ] - 114D
n=1,2, - (2.19)
and (2.7) and (2.3) by
(0lH|¢")=0, (0l¢,t)=1 (2.20)

in terms of the notation
/ Ola"dg"q"|Al¢)=04]g).  @.21)

Equation (2.19) with the condition (2.20) is sufficient
to determine H uniquely in terms of the expectation
values (d7q/dt), n=1, 2, ---; indeed, by the help of
(2.18b) and the successive use of the commutation re-
lation (2.17), the general solution of (2.19) for the
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boundary condition (2.20) is readily proven to be
- (—i)r
H=3 — pn(0mg/0t). (2.22)
a=1 nl
For example, in the case in which
dq/0t)=— %/ ot)=
(0g/dt)=—vq, (9%q/0t)y=m, (2.23)
(97q/3t)=0, n>3
v and m being positive constants, (2.22) becomes
H=—imp*+ivpq, (2.24)
and hence, from (2.6),
[0/dt:—3m(3/8q")*—»(3/0q")q" Kq" t| ¢'s12)=0.
(2.25)

The solution of (2.25) for the boundary condition
(2.2) is found to be [see (2.71)]

(01’ = o) 11— o
XeXp[_m—IV{q”_ ~y(tz——t1)q’}2/{1__ —2v(t2——t1)}],
>t (2.26)

and tends to a stationary distribution, say {(g”’|0), as
to— 11 —")‘l— 0 :

<q” I 0>E <¢]";t2| qlxll>l ta—t1—>0

= (v/mm)* 2 exp[—mq'?]. (2.27)

B. Time-Dependent Matrix Representation of
Physical Variables

As we have seen in the preceding section, the Fokker-
Planck equation (2.6) evidently corresponds to the
Schrodinger equation in quantum mechanics and
(¢",t2|¢,t1) to the probability-amplitude function or
the transformation function. The physical quantity ¢
is represented by the diagonal matrix (2.11), and the
other operator p, which is quite naturally introduced
in the Hamiltonian H, is represented by the matrix
(2.16), which has the commutation relation (2.17), and
hence is “canonically conjugate” to gq.

So far the matrices ¢ and p are independent of time,
and hence they are those of the Schrédinger representa-
tion. On the other hand, there is the Heisenberg repre-
sentation in which the physical variables are represented
by time-dependent matrices, and their equations of
motion often result in clear insights and powerful
methods for the problems.

For any function F of ¢ and p which is represented by
{¢"|F|¢’) in the Schrédinger representation, we define
the time-dependent matrix F(#) by the “mixed” repre-
sentation

(g o| FD | gt/ 1) = / / (¢'st2| ¢',1)dg'(¢'| F | ¢"")

Xdg'"(q" t| g ). (2.28)



170 K.

Hence, for instance, (2.6) is expressed by

8/ 0t:(q" 2| ¢, 1) = (¢ to| H(t2) | ¢' 1),
—3/3t(q" k| ¢’ ) ={q" ta| H(t1) | ¢',11) .

Putting F=gq and {=1{, or /, in (2.28), we find that

(g2 12| q(2) | @1/ 1) = g2 (@2' 1o @ 10}
(g2t () | g’ 1) =o' ta| @1/, t1)g1” .

Hence, the mixed representation (2.28) can be inter-
preted as that in which g¢(¢) and g¢(#;) are diagonal on
the left (column) and right (row) sides, respectively.

Operating d/9¢ on both sides of (2.28) and using
(2.29), we readily obtain

(a/at) <q2”t2 [ F(t) [ql’;t1>= <921:t2[
—HWOFO)+FOH) ¢/ 1) (2.31)

(2.29)

(2.30)

or, omitting {gs’,f2| and |g:’,t1) on both sides,
(8/a)F()=[F®),H(1)],

which corresponds to the Heisenberg equation of motion
in quantum mechanics.

In the special case of F=H, (2.32) yields 0H/8t=0
and hence H is a constant of the motion, provided that
H is not an explicit function of time.

In the case of the example (2.23), H is given by (2.24)
or, adding some extra terms for later convenience, by

H=H,=—}mp*+ipg+jo+lp.  (2.33)

Here j and % are ordinary numbers and have no physical
meaning at present; they are to vanish in the final re-
sults. Using (2.33) and the commutation relation (2.17),
the equations of motion (2.32) for ¢ and p become
dq/dt=—imp—vq+ik,
ap/dt=vp—ij,

which, for arbitrary times #; and ¢, give the solutions

(2.32)

(2.34)

=gk [ dler O pO-mp),
t2

, (2.35)
p(t)= —v(tz—t)p2—|—'i-/- dt'e_"“'_')j(l')

in terms of the notation g1=g¢(#) and p.=p(¢;). Hence,
using (2.17),

Lg(t2),p(ts) J=ie™ ),

It may be noted that ¢(#) given by (2.35) is not always
Hermitian, even though it is so at some particular time.
However, this fact is not contradictory with the original
definition of ¢ given by the diagonal matrix (2.11)

In the case of 7=k=0, (2.35) means, for £{,>>14,

(2.36)
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that

(g2t () | gt 1) = €7 =0 (g 1o g1 | q1' 1)
t

—i’”/ e (g | p() g, (2.37)
t1

(g0, p@) @ 11y =€7=0(ga o] pol ', 12).  (2.38)
Here the right side of (2.38) is significant for all values
of ¢ as long as #,> 4, and it gives an explicit expression
for the matrix elements of p(f). Hence it {ollows that
the right side of (2.37) is also significant for all values
of £. Now, since (g2',t2] q1|¢1',1) and {go',ta| p(£) [ ¢’ ,11)
tend to Hermitian matrices as #, — #1, it follows from
(2.37) that {g:",1] ¢(?) | g1',t1) is not Hermitian for #5%¢;.
However, this fact simply means that there is no such
representation in which ¢(#) and ¢(#) (/%#) are simul-
taneously Hermitian.

The abbreviation (gs"|¢:’) will be used hereinafter
for <q2lat2[ ql’,t1>7 and <g2’ I F<t) [ q1,> for <(I2/,f2[F(t) l ql,:tl>-

C. Stationary States

The probability-density function of ¢ may tend to a
time-independent function, say (¢’|0), as time elapses
[refer to (2.27)]. Then, by (2.29),

(¢/|H|0)=0 or H|0)=0. (2.39)
Hence, when H is given by (2.24), (2.39) yields
—3mp~+irg]|0)=0,

and (2.27) is obtained as the solution.

Another time-independent density function is (0|¢’),
defined by (2.18) and, as is evident from (2.20),
satisfying

(2.40)

(0|H=0. (2.41)

However, (2.39) and (2.41) are not true for H, of (2.33),
on account of the additional terms j¢q and kp, and hence
also (0]0)s%1 for j5%0. In this general case, we shall
define (0] by

Olp(t2)=0, s>+ (2.42a)
instead of (2.18), and |0) by
q(t)[0)=0, H— —oo. (2.42b)

D. Expectation Values and Correlation Functions

‘We now suppose that the values of g are known to be
g4’ and ¢," at the times £, and 4 (44> #), respectively, and
we ask for the expectation value E[gsg.] of the product
gsge when the times #; and {; are involved between f,

171t is noticed that, since {g¢:1",t1|¢’,t) generally does not exist
for 11<t, (q:",t1lq(®)[q1',1) cannot be constructed directly by
(2.28) in this range.



168

and 7. Then, when 3> {5,

E[gsq2]= [ f dgs'dgs (g4 | gs")qs' (g5’ | g2 )g (g’ | ¢1")

/g4 | @)= 4a4"| gsq21 91"}/ g4’ | @'} ,

L>>0>0 (2.43)

while, when #3<fs, the order of gsgs on the right side
is exchanged. Hence, in terms of the notation

T[AM)B()1=At)B(L), 4>l (2.44)
=B(t)A(), H<t
(2.43) is expressed by
Elgsg2]={g4' | TLgsg211 91"}/ {gd' [ ¢1) - (2.45)

More generally, if F is any functional of ¢ involved
between the times /4 and #;, the expectation value of F
for the same condition as in (2.45) is given by

E[F]={(¢/|T[F1|q)')/{g< |q1')-

On the other hand, when the medium is already in
the stationary state at the time # and the expectation
value is required for all possible values of ¢4, then
(2.46) is replaced by

E[F]=(T(F])=(0| T[F]|0)/(0]0).

For instance, the correlation function g(#s,t) in the
stationary state (j=k=0) is given by

gta,t1)=(TLg29:1)= (0 g24110),
which becomes, by using (2.40),
m(2iv) 0| g2p1| 0)=m(2iv) (0| [g2,:1]0) (2.49)

on account of (2.18). Hence, using (2.36) for the com-
mutator, we find that

(2.46)

(2.47)

to> (2 48)

glia ) =m(2) el 24, (2.50)

The correlation function in the general case is given
by

g(”) (tny' : ':t27t1)= <T[qﬂ o '42‘11]>, n= 1; 2; e (251)

and can be evaluated by the successive use of the
method used for (2.48). However, there is the more
simple method, as follows.

We suppose an infinitesimal variation 8H(f) of the
Hamiltonian H(¢) in (2.29). Then the resultant varia-
tion of the probability density function, §(¢s"’|¢’), is
given by

800" | a1y = (g2 / SH()dlg!).  (2.52)
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Hence, for any variable F=F (i) (t,>t> 1)),

8g2" | Flqu")

= 6[ f / (@:"19")dq'(q' | Flq")dg"(q"| q1’>]

o / WTLRSH)|0), (2.53)

where g=¢(#). The expression (2.53) is true also in the
more general case where F is a time-ordered functional
F=T[F] of g and/or p involved between # and .

Now, when 8H is caused by the variations of j and
k in (2.33),

SH =g+ pok. (2.54)
Hence, from (2.53),
{6/85(11)}(0]0)=(0] (1) | 0},
{6/07(8)}{8/87(£2)}(0]0)= (0| T[q(t1)g(1)110), (2.55)
tc.
Thus, according to (2.51), o
g(n)(tn, te )t2;t1)= {6/6.7“")} T
{8/07(82)}{8/87(11)}{0]0) | jmim0, (2.56)

and hence (0]0) is found to be the generating function
for the correlation functions.

E. Evaluation of (0|0)
Using the notation (2.47), we have from (2.55)

{8/87(1}(0]0)/{0/0)={g()).

Hence, in the case of the preceding example, we can
use (2.35) for ¢(f), and hence

(2.57)

=i die k() —m(p(1))},

(2.58)

t2

p@)=i| dter=v5(),

where (¢(#)) is assumed to vanish at ¢t=#; and {p(f)) at
t=t,; these boundary conditions correspond to those of
(2.42) and are valid for #;=— o and fs=-+ . Thus, we
find from (2.58) that

t 12
{gt))y=1 / dt'e—v“—t’)k(t’)+m(2y)—1[ / ave1=vij()
) 21 t1

2
_ _y(z_tr)f dtle—v(:’—tl)j(t')], (259)
t

1



172

Now Eq. (5.57) with (2.59) gives the solution
2 t
(O[O)=exp|:i / dt f arj(t)er k()
t1 t1

+m(4u)—1{ / [ t ddt j(B)e1=1(¢')

([ atewe-w i)} e

1

where the integration constant is chosen so that (0| 0)=1
for j=k=0.

The results (2.60) is obtained on the condition (2.42)
for finite values of #; and ;. If {y=— o0, fs=- 0, and
k=0, (2.60) becomes

(0{0)=exp[m(4v)—1 / /_ i didt’ (et j(t’)]. (2.61)

Hence, (2.56) gives

g(2"+1)(t2n+1, .o -,t2,11)=0,
Joyt) =2 gtanstan—1) - - - g(layts) g2, 1),
where the summation ) is over all possible combina-
tions of pairs of fan,* * *, f2, f1; and g(fs,t1) is the same as

given by (2.50). Thus the fluctuation of ¢ is found to be
also a perfect Gaussian process.

(2.62)

g(2n) (12"’ o

F. Evaluation of the Characteristic Function

As in quantum mechanics, the probability density
function {go'|¢:’) used so far can be interpreted as the
transformation function between the eigenvectors lq1
of ¢1 and {g’| of gs, and this fact is explicitly shown in
(2.30). In the same way, if (po’| is the eigenvector of
P2 having the eigenvalue p,’ ,we can obtain the trans-
formation function {p.’|¢:") between {p.’| and |g:") as

' la)= ] (ps'] g2 Vg {gd ¢y, (2.63)

which is usually called the “characteristic function.”
Here

(P | p2l @) =p2'(p' | ¢}, (2.64)
which, using (2.16), gives a solution
(P’ g2y =exp[—ips'qe'], (2.65a)

and the integration constant is chosen so that it agrees
with (0| g2’} defined by (2.18) for ps’=0. The correspond-
ing {go’| po’) will be defined by

(g’ | po)y= (2m)* explig.'ps'], (2.65b)
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with the relation
/ (g2 | pa)dps (o' | ¢2')=08(g""— o). (2.66)

Hence, for instance, using (2.11), we find that

(P2 | q2] ") = (19/8ps")8(ps" — ps”) .

Now, expanding (p=|¢1) in a power series of py/,

(2.67)

(bl g)= éo (n)2pa"*(3/3p")*(p2" | q1'}| par' =0,
(2.68)

which can be expressed, on referring to (2.67) and (2.55),
as

z () (—ps") (0] g2 | g2y

= z=: () —ips'8/67(1)} (0] gr').

Hence, we find that

(P2 |91 )=101 @) itr-icor—iny sty - (2.69)

In the same way, we can express (0]¢:/) in terms of
(0]0) and thus have

(21 @1 )= (010} it i =i s (—ta), k() k (a5 (1—tr)-
(2.70)

Now, using the result (2.60) for (0|0) and putting
7=k=0 in (2.70), we obtain

(P |ty =exp[—ips'qie~ i

—m(d) 1=y p,7] - (2.71)

which gives (g2'|g1) of (2.26) after the transformation
by (2.65).

Thus we have seen that all the statistical character-
istics of the system can be derived from (0|0)

={ps'| 91| pyr=ayr=0-

3. EXTENSION TO THE TOTAL SYSTEM OF
WAVE FUNCTION AND MEDIUM

In the preceding sections, we have seen that any
system following a Markov process has a mathematical
basis similar to that of quantum mechanics, and several
results were illustrated by a simple example. In the
following, we shall consider the total system of waves
and fluctuating media, and the latter will be assumed
to be a Markov process. Thus, the (real) wave function
Y={¢a}, a=1, 2, --- is assumed to satisfy a linear
equation of the following form:

(0/ 000 a=(@aptDapq)¥s+ne s (3.1a)
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or, symbolically,
(8/0tWp=(a+bgh+n. (3.1b)

Here aas and b,p are constant matrices with respect to
the Greek subscripts, 7, is the external source of wave,
and ¢ is a fluctuating quantity of the Markov process.
The repeated subscripts are to be summed.

The probability-density function {g”’¥",t2|¢’ ¥ t)
for this system will be defined so that, when ¢ and ¥
have definite values ¢’ and ¢’ at the time &, the prob-
ability that they have values between ¢, ¢ and
¢""4dq"”, ¢'+dy" at the later time f, is given by
dq"'dy"(¢" W' i2| ¢ W 11). Here, it is not difficult to show
that, when ¢ is a Markov process as assumed, the total
system of ¢ and ¢ is also a Markov process, because of
the deterministic wave equation (3.1) for ¥ when ¢ is
given. Thus, using the notation

(2" 2" |1’ ") 3.2)
instead of (g2 2" t2| ¢/ W1’ ,11), we have, for £;> 1> 1,

(s’ s’ | g’ )= / / (g5’ s | g2’ ")

Xdgd'ds (g’ W | /' W'y, ' =Tladpe’. (3.3)

Now we can develop the theory in the same way as
in the preceding sections. In particular, no change is
necessary for the medium part and the corresponding
Hamiltonian remains the same. For the wave part, we
have from (3.1)

<8¢/0i>l Y=y, ¢=¢' = (d'{-bq')l[/-i-‘l) ’
(0mp/ot)| ymir, 4= =0, n>2

in terms of the notation of (2.8) and (2.15), since, when
¥(2)" and ¢(#)" are given, Y({+ At)’ is deterministic to the
first order of At. Hence, according to (2.22), the Hamil-
tonian of the wave part, say Hy, is found to be given by

HW= _ill/a*{(aaﬂ'l'baﬂq)wﬁ"l' 'ﬂa} _inauba- (35)

Here, ¢, is an operator having matrix elements similar
to (2.16), and satisfies the commutation relation

el 1=104s,
[Wats]=[¥a' W5 ]=0;

and all the wave variables ¢ and ¢f are to commute
with the medium variables q and p. Also, the additional
term —i4n,"Y, has no physical meaning, and 7. is an
ordinary number to vanish in the final results.

The total Hamiltonian H is given by

H=H,t+H,, 3.7

and the equations of motion for ¢, p, ¢, and ¢! are
obtained according to (2.32). Using Hy and H, given
by (3.5) and (2.33) with the replacement j— j,, the
equations for ¢ and y are found to be exactly the same
as the one given by (2.34) and the original wave equa-

(34)

(3.6)
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tion (3.1), respectively. On the other hand, the equa-
tions for p and Y become

dp/dt=vp—ij,
— Yt/ dt=y(a+bg)+1',
j=—o+ je.

Here, it is remarked that the equation for p includes a
term depending on the wave variables through ;. Hence
it formally follows that the media affect the waves, and
vice versa. Of course, this mutual interaction is of
mathematical products and has no physical meaning;
it simply means that the matrix elements of the medium
variables, e.g., (g2’ ¥ | ¢() | ¢/ ;¢1’), cannot be free from
the values of .’ and Y1’ or from the knowledge of the
values of the wave function at the times ¢, and #. As
a result, it generally follows that the wave variables
and the medium variables do not commute at different
times, although they do at the same time.

Many times, the representation corresponding to
(2.63), ie., {(p'¥2""|q ' ¥1’), is more convenient than
the original probability-density function (3.2), and we
shall define the states |0) and (0], for £z— +  and

hh— —o, by
<Ol q,)‘p,) = <P2/>‘!’2ﬂ I q,y'pl) l Yalt=py'=0, (393')

<q,7¢, | 0) = (‘Z';'V ! ql’)\bl’) l Y1'=q1'=0, (391))

where ¢/=¢(f)’ and ¢’=¢(#)’. Hence, for t,—+ o and
t1— — o, they satisfy the equations corresponding to
(2.42):

Ot t)=(0|pt2)=0, t— -+ (3.10a)
Y1) |0)=¢(t)|0)=0, ti—>—o.  (3.10b)

When 7'=7,=0, Eq. (3.10a) holds for the whole
range of #; in view of (3.8). Thus

<0]9’;‘V>=1, 77*=j6=0'

(3.8)

(3.11)

A. Expectation Values and Green’s Functions

The expectation value of any physical quantity can
be treated in the same way as in the preceding sections
and, for instance, when F is any functional of ¥(¢) and
q(?) (+ 0 >t>— ), its expectation value for the boun-
dary conditions y/(— e )’=¢(— «)’=0 and for all possi-
ble values of Y(+ «)’ and g(+ )’ is given by the same
formula as (2.47).

The Green’s functions of the wave and the medium
are defined by

Goap(tito) = {8/ 0np(t2) } Weltr))| y=st=0,
Gap.yo(biyta; ta,te) = {8/8n,(83) } {8/ 8ns(ts) }
X Wa(ts(t) D] 1=nql=0,
D(ts,ta) = {8/87(t2) }{q(t1)) | g=st—0, etc.

in terms of the notation (2.47). Here the external sources
n, ', and & are to vanish after the differentiation, while
Je will be assumed to take on some fixed value for a

(3.12)
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given moment. Hence, it follows that the expectation
value of any functional of the wave function can be
expressed in terms of the Green’s functions, provided
that the wave is excited only through the external
source 7 and the power-series expansion of the expecta-
tion value with respect to % is possible.

On the other hand, for infinitesimal variations &7,
o', 8k, and 8., (0| T[F]|0) undergoes the variation
8{0| T[F]|0) given by

i dT[FSH(1)]]0),

80| TLF]|0)= (0| (3.13)
with -
0H=—i(6na'YatVa 0na)+qdj+pok,  (3.14)
as in (2.53). Hence we have
XI[F])= | af{(TLFsH®)])
h —(ITFDEH®D)) . (3.15)

Thus, from the definition (3.12), we find that, since
W) 1=0=0,
Gapltryte) = — (T Ya(t)¥s (22) 1),
Gap yoltsyto; Ials)
=—(T¥alt)¥stiy )s' (1) 1), ete.

On the other hand, since {(7)= j. for n'=0, we have,
on using (3.8) and (2.59),

00

(qO)=m(2)~1 | dile1="15o().

—00

(3.16)

(3.17)

Hence, according to (3.12), D(t1,l2) coincides with the
correlation function g(f1,2) of (2.50).

Schwinger’s Green’s-function theory'® can be devel-
oped in the same way as in quantum electrodynamics:
From the wave equation (3.1),

(8/dt—a))—blg)=n, (3.18)
where, using (3.15),
(q)y=(8/87 )W)+ (W) (3.19)

Hence, according to the definition of (3.12), the single
Green’s function is found to satisfy

[9/0t—a—b{{g))+8/8].()}IG(1¥) = 8(1—1').

Here the Greek subscripts are suppressed and (g(f)) is
given by (3.17).

The “mass” operator Aa(t,¢') and the “vertex” oper-
ator B(¢,t,t"") are defined by

(3.20)

b(5/87 L)) Gltn) = / Bl f)Glth)

8G(t1,82)/8(q())
= / / dvdt’G () B LG 1)

(3.21)

FURUTSU

168

and it is straightforward to show that

Aa(tty) = / / drdt"vG () B W 1) gt 1)

Blautts) (3.22)

=b8(ti—)8(ti—12)+{8/8{q(D))} Aa(t,ts)

with g(4,¢) given by (2.50). Hence these operators can
be evaluated by successive approximation, using the
system of Egs. (3.21) and (3.22).

Also, for the double Green’s function in (3.12), we
can employ thesamemethodsas in quantum field theory
and obtain the results as follows:

[3C(£1)3C(82) — T1a(ty,t2) JG s, to; Ls,ts)
=8(li—13)8(ta—1a)+8(t1— ta) 8 (ta—ts) .

Here, the Greek subscripts are included in the coordi-
nates t; (i=1, 2, 3, 4);

Gc(tl) = a/atl—al_Adl, GC(h) = 3/(%2'—02- Aas (324)

(3.23)

are operators only with respect to the coordinates #
and f;, respectively; and the interaction operator
Is(ty,t5) 1s characterized by

Lo(t1,82) G(t1,t2; L,8s) = b1Bog(t1,t2) G (trta; t3,14)

+61/ dt'G(t,h"){8/87.(t")}

X{Ta(t )G ta; t,t0)} . (3.25)

B. Isomorphic Transformation

When the temporal change of the medium is suffici-
ently fast compared with that of the waves, so that the
latter do not appreciably change within the time inter-
val »71, then an adiabatic approximation may be used
for the medium variables, in the sense that the medium
is always in a stationary state for the “excitation” by
the waves. .

In this case, it is convenient to introduce the iso-
morphic operators ¢, p, 1, and ' defined by

g=UqU, p=UpU~, ¢=UyU™,
q p=UpU™, 4=Uy (3.26)
Y=y,
with
U=exp[—m(4) " (p+iv='j)* ] exp[—vYjq], (3.27)
and express the physical operators in terms of them.18
Here, the new operators have the same algebraic rela-
tions as those for the old operators, and hence their

commutation relations do not change. Thus, since
U=UUU'=U (U being the same function of g, p, and

18 In the following, boldface letters will be used for all isomorphic
operators obtained with U.
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jas Uis of g, p, and 7), we find that
g=U"1qU=q—im(2) ' p+mv?,

P=p+lw—-1]7 ]=Ji (328)
y=wi, Y=4w,
with
W =exp[ —m(4v) " 2p+ 2iv~Y) (1v~1) — v25%} ]
Xexp[—»~1bq]. (3.29)

Here, in the derivation of (3.28), the following lemmas
are used:

l[{]"=(]+b)"l]!, J"lUT:'@T(J‘*“b)"; ’}’L=1,2,
G =10+, [ =4 f(+D). (3.30)

In the same way, for the Hamiltonian H of (3.7), we
have, using (3.5) and (2.33),

H=—i'(ay+n)+m(2?) > +ivpg. (3.31)
Here, we assumed j.=79'=%k=0, and
n=Wy,
a=WaW =a+v="[b,a]g+m(4v)1 (3.32)

X {2iv1[5,a)(p+ 2 )~ b%a Ty 4 - -

Hence, using the expression (3.31) for H, the equations
of motion for the new operators are found to be.

6q/6t= EQ)H] =—vq— 7"I{T[qra]d{_ ’i‘IJT[q,ﬂ] ’
3p/dt=vp— i’ p,alb— [ pn]. (3.33)

For the wave operator ¥, we notice that the second
term on the right side of (3.31) can be expressed also by

—m( 28 H{ Yo} —iftm(20%) 0%, (3.34)
Hence,

y/dt= (a+ Aa+mv2b)+n

- “I{.r[ﬂ{)a]‘('!'— i‘UDﬁm] ’ (335)
Nt/ ot=—t (a4 Aa+mv—2bj)
— i [ a—a' Y], (3.36)
with
Aa=m(2v%)~1b2, (3.37)

Here, referring to (3.32), Aa can be regarded as a cor-
rection to @ and, indeed, agrees with that given by (3.22)
to first order. Also we notice that the term my—2bj takes
the same form as the potential of the field of boson par-
ticles, which interact only through a two-body force
with the “charge” j. On the other hand, the last two
terms in (3.35) are of the higher-order “interaction,” as
may be seen from the expansion of @ on the right side
of (3.32); it is of the order of the magnitude of av?,
which becomes very small when the temporal change of
the medium is sufficiently large compared with that of
the wave function, as is assumed. In particular, they
vanish exactly when [5,6]=0, or when j is a constant
of the motion. The situation is the same also for the
last two terms in (3.33).
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On the other hand, according to (3.31), the neglect of
these higher-order terms is equivalent to the approxi-
mation a~a and n~, and H is then divided into the
two independent parts, for the wave and for the medium.
The original probability-density function is given by
(g2’ W' | ¢’ W1') and, as has already been noticed, it can
be regarded as the representation of the eigenvector
|qi/¥1") (of the operators q; and ¥; for the eigenvalues
¢’ and ¥’) by the eigenvector (g2’ >’ | (of the operators
g2 and ¥, for the eigenvalues g5 and ¥,’). On the other
hand, the solution of the Fokker-Planck equation (2.6)
for the Hamiltonian (3.31) may be expressed by
(g’ ' | @' ’) in terms of the new operators in the
same way as for the original operators. Here, using
(3.26),
U= q)=U"q|q)=qU"|q), (3.38)

and hence it follows that U~!|¢’) is the eigenvector of
g of the eigenvalue ¢’ or

U g)=1g) o= (3.39)
In the same way,
(U= ¢~ (340)

Thus,
(g2 W' | gt ")y = (@ W' | UU T @' ), (3.41)

where g2'=g', {2'=¢2/, gi'=q1, and {'=¥".

The two stationary states |0) and (0| were originally
defined by (2.40) and (2.18b) with respect to the medium
and, using (3.28), the equations for these states are
found to be expressed exactly by

g]0)=(0[p=0,
3.42
410)= 0140, 42
and, of course,
H|0)=(0|H=0 (3.43)

for vanishing external sources n=1n=k= j,=0. Hence,
these stationary states are found to be the eigenvectors
of the new operators, and the evaluation of expectation
values of physical quantities may become easier in view
of (2.47).

In the case of the approximation a~a and p=zn, the
Hamiltonian is divided into the two independent parts
for the wave and for the medium, as has already been
noted, and hence we may put

(D" | @ )= (B’ | @) [ ). (3.44)

Here, the solution of (3.33) for this approximation
becomes

Q=c7qy, p=epy, Im=h—1h, (345)
and hence
18/9py (P’ | qu")y= (0’| g:| @)= (p:' | e qn| q")
=g’ (py|q)'), (3.46)
which gives a solution
(pe'| @) =exp[—ip'eqy]. (347)
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The Hamiltonian of the Fokker-Planck equation for
W'’ |4") is given by (3.31) with the omission of the
medium part ivpq.

In order to obtain the probability-density function,
we need to evaluate (g '|Us and Ui 1| g/ '), in
view of (3.41). Now, using (3.27) and the lemma (3.30),
we find that

(¢1Ulp)
=(g'| exp[—v~Yjq] exp[ —m(4»)~(p+2iv~Y)*]| p')
= (2a)  expliq’ (p'+iv 1) — m(4) "1 (p'+- 20 )?],
(3.48)

where the definition (2.65b) is taken into account.
In the same way,

(#'|U|q')=exp[—iq'(p'+i7%j)
) /20 )1].
Hence, in the case of the approximation (3.44), the
probability-density function is given by

(3.49)

(@ e | '’y = (2m) (| f %

Xexpligy' (be'+iv2) —m(dv) (s + 2iv~j2)* ]
X exp[—ig1'(p'+iv Y1)
+m(4v)~ ()20 0) 2] ),

with p1,= ‘”‘2‘p2', 1Lf2,=ll12,, and 11,51’= |h'. Here, for
viar>>1, pi’~0, and hence

(@' W' | ¢ ') = (v /mm) V2~ Im a2’
X (| &' it i),
V121>>1 .

On the other hand, using the lemma (3.30),
G [ )= e* Uy )= exMfeI [{),

and hence % |{’) is found to be the eigenvector of ¢ with
the eigenvalue ¢2®}’. In this way, we find that

el [)=en), (o=,

(3.50)

(3.51)
ed [ §1)=|¢ee),  ([exi=(e~t].
Thus, using the integral representation
e—mv-:fl'2__- (V/Tm) l/2[ d)\ei2v_1j)\— w/m)r2 , (3‘52)
(3.50) can be expressed by
<q2’,\02/| qll)¢1/>
=@/mm) | dre= ¢ @ |§"),  (3.53)

—0

where

.1!2” =e—v—1bqa'¢2', ¢1/'=6v—1b<q1'+izx)¢l', via>>1 . (3_54)
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In the integral (3.53), the effective range of X is
IN] £ (m/v)12, and hence, when the condition

| 2b(m/v?)112| <1
holds, (3.53) becomes
(o'W | @ Wy v/mm) V2= CTm (|4 ) - (3.56)

where {,”" and 1y’ are given by (3.54) with A=0. Here,
since the right side of (3.56) is appreciable only for
lg’| S (m/v)12, we can put ¥"~4,/, and further, if
(3.56) is averaged over the stationary distribution of
g1/, we can put 0"~

(3.55)

4. CASE OF WAVES IN THREE-
DIMENSIONAL SPACE

The waves and the media we have considered so far
in the preceding sections are functions only of the time.
However, it is quite straightforward to extend the
methods to the ordinary waves and media in three-
dimensional space, and we shall illustrate the results by
an example corresponding to (2.23).

The medium variable ¢ is now a function of space co-
ordinates x, say ¢(x), and changes stochastically with
the time; the temporal change is assumed to be a
Markov process and also to be spatially homogeneous.
The probability-density function {¢"’,f2]¢’,t1) is defined
in the same way as in Sec. 2, except that ¢/ and ¢’ now
represent values of ¢(x) at all points in space.

Now we assume, using a notation similar to (2.15),
that

(9g(%)/dt)=3Cq(x) ,
(9g(21)dq(w2)/ 3t) = m(21—x5) ,
(9g(x1)dg(x2) - - - dg(wn)/8)=0, n>3

(4.1)

for arbitrary points x; (i=1, 2, - - -). Here, 3C is an oper-
ator operating on ¢(x), and, for instance,

H=—r+aV?, (4.2)

where » and « are positive constants and V2 is the
Laplacian. Then, the Hamiltonian H, for the medium
which corresponds to (2.24) is found to be given by

2=} [ s

i f () p(a)oeq(s)+ f (@)i)e). @3)

Here, (dx) stands for the space element, and g(x) and
p(x) are now operators having the matrix representa-
tions

(¢"1q®)|¢)=qx)"8(¢"—¢"),

44
(" p@) | ¢ )y=—1i{8/8q(x)"}8(¢" "), (“4)
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and satisfy the commutation relations

Lg(@),p(=") J=1d(x—2'),
Lg(),g(=")1=Lp(x),p(x)]=0,

8(x) being the ordinary Dirac § function in three-dimen-
sional space. Also, 7(%,?) is an external source introduced
for later convenience, and is to vanish in the final
results.

Indeed, on referring to (2.14), we have, for instance,

(4.5)

(satwdaated /)= lim ot [ (@) a(w)'— ot
X {g(@)"—q(x2) }g", 144t ¢',1)

= f (dg"){q" t| La(wr),La(w),H I ¢',1)
=m(x1—%2), (4.6)

where (dq") represents the product of the elements
dq(x)" at all points in space.

A. Stationary States

For the stationary state |0), we obtain, from H,|0)
=0,

[ @) [ @m=a106) -4t 010, =0,
or
[ @) [ @mG=s2e)+a |j0=0. @
Here

mn(x)=f (@xNw(x—xYmpa(x'), n=1,2,---

(4.8)
mo(x) =m(x),
and w(x) is the solution of
JCw(x)=—(x) 4.9
or, in the case of (4.2),
w(x)= (dra|x|)" e *= | k=(y/a)!2. (4.10)

Since the fluctuation is assumed to be spatially homo-
geneous, we have w(x) =w(—x) and m,(x) =m(—x).
The characteristic function (’|0) is thus found to be

@l0=es] -1 [ [ (@)@t mCa—p) |,

(4.11)
which corresponds to (2.71) for tp.—# — + .
Another stationary state is defined in the same way
as in (2.18), and satisfies

(0] p=(0|H,=0. (4.12)
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B. Equations of Motion and Solutions

The time-dependent representations of ¢(x) and p(x)
are defined by (2.28), and will be denoted by ¢(,f) and
p(x,8). Also, {(go’'|qi’) will denote {g2’,t2| ¢1',f1), as in the
preceding sections.

The equations of motion of these operators are given
by (2.32) with H=H, of (4.3) and, on using the com-
mutation relations of (4.5), are found to be

(9/0t)q(x,0)= —i/ (dx"ym(x—x") p(a',8) +3Cq(x,18) ,
(4.13)
(8/3t)pla,t) = — p(x,)F—1j(x,0).
The formal solutions of (4.13) can be obtained in terms
of the function S(x,f) defined by
(8/38)S (2,t) =3CS (,1)
S(,0) | tpo=8(x),

and are expressed by

>0
- (4.14)

t2

q(wa,te)= | (d21)S(we—21, ta—1t1)q(w1,11) —1 / dt

3

X / f (dx)(dx")S (a— x, ta—O)m(x—x") p(2',1),
>ty (4.15)

P(x%t?) = (dxa)P(xa,ta)S(x3—“x2, ts—1l2)— ’l«/ at

3

X/(dx’)j(x',t’)S(x’-—xz,t’—-iz), B>t (4.15)

Here, when 3C is given by (4.2),
S(x,8) = (k/2)%(wvt)=3/2 exp[— k2x2/ (4vt) —vi] ,

a=v/k?, 1>0. (4.16)
Hence, we find that
Lg(wz,ta),p(21,11) 1= 1S (42— 21, tr—11) ,
[ (wa,t2),p(w1,11) 1=0,
Lq(eea,22),q(x1,1)] 4.17)

- / " / f () (@) S (2— , to— )m(6—3)
" XS(xr' x', 131-'0 .

C. Expectation Values and Correlation Functions

If F is a functional of ¢ and p as functions of time
between #; and #;, the expectation value of F is given by
the same equation as (2.46) or (2.47), and hence the
correlation function of ¢ in the stationary state, say
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g(x,1), is given by
g(owe— w1, to— 1) = (TLq(%2,82) g(01,42) 1) -

Here, using (4.7), (4.12), and the commutation rela-
tions (4.17), we find that

(4.18)

g(wa—w1, ty— 1)

=3 / (dx")S(xa—2', |ta—t1] )mi('—21), (4.19)

which tends to $mi(xs—%1) as lo— 4.
In the special case where m(x) =md(x), (4.19) yields

o) =dm / " s (4.20)

by use of the relation

w(x)=[w dt S(x,t).

More generally, the generating function for the mo-
ments of ¢ of any order can be obtained in the same way
as in Sec. 2 E, and is found to be

©| 0)=exp|:% / /_ Z (dx)dt / _: (da')dt

X j0)ga—at, t—t’)j(x’,t’)]- (4.21)

The expectation values are obtained from (4.21) by

E[q(21,11)q(w2,92) - +  ¢(%nyta) 1= {8/87(21,12)}
X{8/87(x2,t2)} - - - {8/87 (%n,2a) }0] 0} | j=o.

Thus, we find that the process is also perfectly Gaussian.

(4.22)

D. Wave-Medium System

We assume a linear wave equation of the same form
as (3.1):

ay/dt=(a+bgl¥+n. (4.23)

Here a is generally a function of the spatial differential
operators V;=9/dx; (i=1, 2, 3) and hence, for instance,

a= a,-V,-—}—ao . (424)

Also, ¥ may consist of several components ¥,
(@=1,2, --+), and then ¢ and b are also (real) matrices
@qg and b,g operating on ¥g.

The Hamiltonian Hy for the wave can be formulated
as in Sec. 2 A and, on introducing an external source
7', it is given by

Hy=—i / (@) W T (a+-bgit T+, (4.25)
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where ' is the operator satisfying the commutation
relation

Wa(@) 6" (&) J=i0(x— ") 3asp. (4.26)

For the total system of the waves and the medium,
the Hamiltonian H=H,+Hy, and we find the same
equations of motion for ¢ and ¢ as in (4.13) and (4.23),
respectively, while for p and ', with the replacement
J— Je, we find

9p/dl=—p3e—1ij,
— oYt/ ot=y (a-+bg)+n",
j=— oY+ .
Also j is a constant of the motion when n=17'=j,=0
and [¢,b]=0, and anti-Hermitian when Tr[]=0 (in
the representation in which ¢ and y' are Hermitian).

(4.27)

E. Adiabatic Approximation

When the temporal change of the waves is sufficiently
small compared with that of the medium, we may em-
ploy the adiabatic approximation as in Sec. 3 B. Thus,
referring to the definition (4.8) for m.,(x), we introduce
U defined by

U=exp[—% / / (@) (@) {p (o — ") p ()
2 Yma(a ) )= Y — 7 j(x”)}:l

xex| - /] () G el =) |
(4.28)

Then, in terms of the notation F=UFU-1, we find that
0(6)= 096 T=g()~ () [ @ ms—)p()

+ / (@ ymala—a)j()
PV =pla)+i [ @uta—)i@), =),
YA=WENE, VO=V@T-E,  (29)
W= 8 [ @)~ mia—2)0)

+m3<x—x'>j<x')}+(%)ma(ow]

Xexp[~b / <dx’>w<x—x’)q(x'>],
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and, for 9t=0,

He=—i [ (@) [ (@) (@@ @)+ n ()} +p(@)3q()]

+3 / / (dx)(da")j(o Yo' — 2" j(x"") . (4.30)
Here
a(x)=W-(x)aW (x)

—a+[b,a] / (@) [w(e— o) g ()

+ (G0 ma(z— ") p(&") — ms(x— ") j(x") ]
—@ms(0)[0%a ]+ - -,

n(@) =W (x)n(x),

and the last term in (4.30) can also be expressed by

(4.31)

—1
2

(dx")(dx"Yyma(x'— ")
XA ()b QT (&) b (x") Wy (2") }

— / (@0 () Aa(x), (4.32)

with
Aa=73m4(0)b2. (4.33)

The equations of motion for the boldface operators
are immediately obtained by the use of (4.30) and, for
instance,

(8/00)(w) = (a(®)+Aa+bV (2))(x)+n(x)

— f (@) ) ) a) ]
U@ D),
(8/00)q(x) =5q(x)—i / (@ W ()

(4.34)

X{[g(x),a(=") (=) +Lg(x),a(=") ]},
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where

V(x)= f (d")ma(x—a")j(x') (4.35)

and the time coordinate ¢ is suppressed for all the
variables.

As is discussed in Sec. 3, the integral terms in (4.34)
are higher-order terms, and can be neglected when the
temporal change of the medium is very large compared
with that of the waves. Hence, in this case, H is divided
into two independent parts for the medium and the
wave, and the latter interact only through the two-
body “potential” mq(x1—xs) with the “charge” j(x).

When 3C is given by (4.2) and

m(x)=me 1o/t (4.36)
me(x) is found to be
ma(x) = mv=2{ (k)2 — 1}~ 7131 14 (kI)le*l=l
— (1= ()2} s e He— ey T (@.37)
Hence, when / is sufficiently large so that 2I>>1,
ma(x)my—2e~ 1211 RIS (4.38)

while, by replacing m — m(8x*)~* and /— 0, we can
obtain the result in the case of m(x)=md(x):

mo(x) = (87) " kedmy2eFl=l (4.39)

The original probability-density function and the
equations for the stationary states |0) and (0| are ex-
pressed by the same equations as (3.42). Also, when the
condition corresponding to (3.55) holds, i.e.,

[20ms1 2|1, (4.40)
then (g/ W'’ ¥y') is given by {(g:/32'|q)' ') for
g2=qo, 4’ =¥/, ¢'= ¢, and {1’ =y’ times the station-
ary distribution function of the medium, insofar as ¢:’
is not much greater than the rms value of g.



