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The model of oscillations of the meson field in the nucleon introduced in a previous paper is developed
and extended. The model provides a dynamical framework for investigating the electromagnetic properties
of the nucleon and gives an excitation spectrum similar to that observed for the nucleon. In this paper we
discuss an improved variational solution for the ground-state meson field and the construction of a conserved
current. We investigate the problems presented by a fixed-source theory and the linearization of the ¢*
theory in constructing this current. Once we have a model for the current, we can calculate all the electro-
magnetic properties of the nucleon on a consistent basis. We calculate the allowed transverse and Coulomb
electron scattering form factors for all the levels of the nucleon up through 2850 MeV, and we compare
with existing data wherever possible. We also compare with what is known from phenomenological analysis
of photoproduction. Using the magnitude of the ground-state field obtained from a fit to the experimental
inelastic form factors, we can compute the anomalous magnetic moment of the nucleon and the pion-nucleon
coupling constant. We also use our parameters to investigate the elastic form factors. We show that our
model is the appropriate limit of the coupled equations of motion for the meson field and the spin and
isospin of the nucleon source. The model is only very crude, but it does indicate some of the interesting
things that can be learned from electron excitation of the nucleon.
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1. INTRODUCTION

HE construction of very-high-energy electron ac-
celerators makes electron excitation a practical
method for investigating the details of the excited
states of the nucleon. Existing machines have already
been used to study the well known J*=3+ T=32 (1236-
MeV) resonance.'~* However, the nucleon is now known
to have many levels, and an exhaustive study of the
higher resonances is being conducted at the Stanford
linear accelerator center (SLAC).5 Important data on
these levels are now “available from the Cambridge

m

M(Mev) Jg0T
3230 1972”7, 372
3030 |5/2: 2,172
2850 1572" 2,372
2650 12" 2,172
2420 e z,3/2
2190 72 172
ees ) 12 (e A
1670,1670 5/2, 1125 /2, 372
1570 —7/ 1400 172* 172 i72_,is2
1525 1236 32 302 3/2°, 172
940 ———— /2,172

F1c. 1. Low-lying spectrum of the nucleon (see Ref. 8).
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electron accelerator (CEA)® and Deutsches electronen-
synchrotron (DESY)? groups. We indicate in Fig. 1
the numerous states that comprise the low-lying spec-
trum of the nucleon.?

From both a theoretical and experimental standpoint
one would like to have some idea of what to expect in
these experiments. From a theoretical point of view one
would at least like to make some predictions before the
experiments are completed ; from an experimental point
of view, estimates of the transition form factors are
useful in planning new experiments and in interpreting,
understanding, and correlating the data as they
accumulate.

The detailed theoretical understanding of these
higher excited states requires a theory of strong inter-
actions, and reliable, quantitative calculations are ex-
tremely difficult at present. Pending the feasibility of
such calculations, one is led to consider models. In the
present work we develop further the model of electron
excitation introduced by Walecka.® This model, which
by necessity is very crude, exhibits a level structure
quite similar to that shown in Fig. 1 and allows us to
calculate the transition form factors. In addition, the
model permits us to investigate interrelationships among
various electromagnetic properties of the nucleon and
its excited levels.
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Price, Matts Roos, Paul Soding, W. J. Willis, and C. Wohl,
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9J. D. Walecka, Phys. Rev. 162, 1462 (1967). Hereafter this
article is referred to as I.
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As described in I, the starting point for the model is
the following pair of observations:

(1) From a dispersion-theory point of view the higher
nucleon isobars are very complicated combinations of
many-meson states. We might get a first approximation
here by going to the other limit and treating the pion
field as a classical field, an approximation which should
be good when there are many (free) quanta present.

(ii) There should be excitations that correspond to
normal-mode oscillations of the pion cloud—similar in
spirit to the collective-shape oscillations one has in
nuclear physics.?

In the rest of this section we discuss briefly how the
model has been extended and the new results that have
been obtained. In Sec. 2 we present the general formulas
for inelastic electron scattering and the inelastic form
factors. In Sec. 3 we review the model as developed in T
and present an improved variational solution for the
ground-state pion field. In Sec. 4 we discuss in detail
the construction of a conserved current and gauge in-
variance and the problems arising in this respect from
the use of a fixed source and from the linearization of
the theory. In Sec. 5 we give the details of the calcula-
tion of the matrix elements and form factors. In Sec. 6
we consider the predictions of the model and compare
them with experiment. In Sec. 7 we present a short
discussion and summary of the model.

The main extension of the model has been to con-
struct a current J,(x) which is conserved: 9J.(x)/
dx,=0. Now the general inelastic electromagnetic
vertex is characterized by four reduced matrix elements,
or equivalently by the four linear combinations™

EEQN" _ /2j+1\"
7= 2) z(——-) (416l 417 3+9)
J

82 2741
X (et | 3Ol g rs), (1.1)

with p==1, 0, and
fo=(EE'Q2/8x M)V ¥z g J || Jo(0)||g*xT). (1.2)

In these expressions E and E’ are the initial and final
target energles, M is the isobar mass,  is the normaliza-
tion volume, J,(0)=(3(0),i75(0)) is the electromag-
netic current operator taken at the origin, and J*% is
the angular momentum and parity of the isobar. In the
rest frame of the isobar one has

(1.3)

Current conservation provides one relation among these
four quantities, and it simply eliminates fo:

fo=(q0/q*) fe-

(1;06’1‘) deForest, Jr., and J. D. Walecka, Advan. Phys. 15, 1
(111 ])D Bjorken and J. D. Walecka, Ann. Phys. (N. Y.) 38, 35
966,

g.= (q*iq0) .

(1.4)
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In our model we calculate | fy|2, |f-|% and |f.|? or,
equivalently, the matrix elements of the transition
multlpoles T (g®), Tru™=(g*), and MpuCoul(g*).
There is no longitudinal term corresponding to fo. In
general, the three multipole operators 71®, 7 1y™
and MpaCu! are independent But for the normal
parity transitions there is a relation well known in
nuclear physmsm between the matrix elements of 7'z !
and M in the long-wavelength limit:

Go

AT = (—) <le>l<fHMLC°“‘Hi>l2- (1.5)

In our calculatlons we use current conservatlon to re-
place V-J by — 5 in the expressmn for Tzl Conse-
quently, the relation (1.5) is automatically satisfied in
our model."?

A second extension has been to find a better varia-
tional solution for the ground-state pion field. The
variational form contains three parameters rather than
one, as was the case in I. At large distances the varia-
tional solution reduces to the Yukawa tail, and we can
identify the renormalized pion-nucleon coupling con-
stant f.x% It should be noted that our model has a
finite coupling-constant renormalization since Gy is
different from G, where G is the coupling constant that
enters into the original Hamiltonian.

We give predictions for the transverse and Coulomb
form factors for all the allowed levels up to the J=
=15+ (?), T=% (2850-MeV) level. (Allowed levels are
those that can be connected to the ground state of the
nucleon by the operation of a single creation or destruc-
tion operator.) In addition, we give predictions for all
the background states which are supposed to resonate
in the region of each main level. Taking the limit
g,2— 0, we can compare our predictions with the various
phenomenological analyses of photoproduction'® which
have been carried out in the higher resonance regions.
The relation between the usual photoproduction ampli-
tudes and the multipole operators used in the present
work is derived in Appendix A.

The current in our model has a ground-state expecta-
tion value proportional to the square of the ground-state
pion field, and so we can compute the anomalous iso-
vector magnetic moment of the nucleon. We also calcu-
late the elastic form factors and give values for the
root-mean-square radius for the charge and magnetic
moment of the nucleon.

2. ELECTRON SCATTERING

We give here a brief review of the theory of electron
scattering. We consider the case where only the final

12 Note, therefore, that all the general properties of the theory
coming from current conservation, or equivalently gauge invari-
ance, are actually built into the calculation at the start.

13 R. Walker (private communication); and (to be published).

14Y. C. Chau, Norman Dombey, and R. G. Moorhouse, Phys.
Rev. 163, 1632 (1967).
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F16. 2. Kinematics for in-
elastic electron scattering in
the one-photon-exchange ap-
proximation.

electron is detected as in most of the experiments per-
formed so far and in those being carried out at SLAC.®
Bjorken and Walecka have given a relativistically
covariant analysis of the process of electron excitation
of the nucleon and have discussed all that can be said
about the transition form factors on general grounds.
They have also shown the relation to photoexcitation
of the nucleon resonances. We summarize their results.
Figure 2 illustrates the kinematics of electron scatter-
ing in the one-photon-exchange (OPE) approximation.
The angular momentum analysis is best carried out in
the rest frame of the final isobar because one then has
an eigenstate of angular momentum and parity. The
electromagnetic vertex is characterized by the four
quantities fi, fo, fo given in Egs. (1.1) and (1.2).
Current conservation eliminates fo in terms of f. [see
Eq. (1.4)]. The electron scattering cross section in the
laboratory is then shown to be (we set m,=0)

o cos?(36) (

dcr) q"l B
(fzs_z w 4e sint(BO)[14 (2¢/m) sin2(30)] Lg* fe

q*4

+<—qz—+f‘f tnt@0) )14+ 1173} 20

2 q*2 m?

In this expression e is the initial electron energy, 6 is
the electron scattering angle, » is the nucleon mass,
and ¢?=g¢,? is the invariant four-momentum transfer.
We see that electron scattering measures two inde-
pendent combinations of form factors, the Coulomb and
transverse form factors. These may be separated experi-
mentally by keeping ¢ and the energy loss —go=e—¢
fixed and varying 6 or by working at §=180°, where
only the transverse contribution remains. The trans-
verse form factor can also be measured at one mo-
mentum transfer, namely ¢g,2=0, or

q*threshold = (M2— mz)/ZM H
in photoexcitation

47’
/; oy (w)dw=

ab; over resonance M2—m? m

XL fe 24+ -1 gm0

Thus with electron scattering, we can add a new dimen-
sion onto the photon problem. In addition, there is also
the possibility of direct Coulomb excitation.

(2.2)

M2

(2.3)
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Detailed properties of the form factors f., fi. are
hlgh.Iy nElodel-dependent. However, in the limit ¢*— 0
(yvhlch implies —go— M —m) the form factors have
simple threshold behaviors:

(1) Normal parity transitions 1+— 8- 5+ ...
fume (%),
far (g7,

(2) Abnormal parity transitions 1+ — 1~ 8+ 5— ...
f~ (@,

far~ (g7,

Experimentally, only spacelike momentum transfers
[¢*>0] are available, and it is not clear whether the
threshold behavior still persists in this region since this
implies a minimum three-momentum transfer

q*_>_ q*threshold= (M2——m2)/2M .

This is an interesting question on which we would like
our model to shed some light.

For the normal parity transitions there is an addi-
tional relation between f; and f. valid near threshold:

[flijllfl“(jw(;q“)

which is just Eq. (1.5).

(2.4)

With a well-localized source, as is the case in nuclear
physics, one can give expressions for the transition form
factors in terms of the Fourier transform of the transi-
tion charge and current densities:

471' 0
02= ALCO\ll * i 2’ 2.5
e 2 O, @)
dr = .
|f+12+lf—l2=2h+1L=1[I(JfllTLel(q*)IIJ»l?

+ AT mee(@)T 1205 (2.6)

Muac®i(g*) = / (V1 @), @.7)

o) = (1/%) / [VX (g )D10(@2)) ]
J(x)dx, (2.8)
TLMmag(q*)z/[jL(q*x)g)LLlM(Qz)]' j(X)de (2.9

where the nuclear electromagnetic current operator is

Ju=Jx),i8(x)), (2.10)

and 911 are vector spherical harmonics,'> which can
be written as

@LL],M(Qx) = ——z[:L(L-{—l)]‘”?(xX V) YLM(Qz) . (211)

15 We use the angular momentum notation of A. R. Edmonds,
Angular Momentum in Quantum Mechanics (Princeton University
Press, Princeton, N. J., 1957).
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Integrating by parts and using VX x=0, we can write
(2.9) as

Trame(g)= i)Y 1 (@)

i
[L(L+1)]“2/

Xx-[VXI(x)Ddx, (2.12)
and (2.8) as

. 1
T el( %) — -
() ig* [L(L+1)]"2

XIV-[xX (VX J(x)Jldx. (2.13)

Expanding the divergence term we can finally write

. 1 1
Tl (¥ =— —
O T

X7t (@*®) Y u (@) — ¢*%(g*%) ¥ 2 (Q) x
() )dx. (2.14)

When we evaluate 775°!, we shall replace V- J by — 5.
Our model will thus eufomatically satisfy the threshold
relations depending on current conservation.

What we shall do when we make our model is use
the form of the cross section of Eq. (2.1), which was de-
rived in a Lorentz-invariant way and which has the
relativistically correct kinematic factor extracted. We
shall then use the above expressions, which are ap-
plicable to a fixed-source theory, to evaluate the
transition matrix elements. The transition multipoles
will be evaluated for a momentum transfer ¢*. For a
fixed-source theory there is no ambiguity; when the
source recoils, however, there is no unique prescription.
We use ¢* since the original analysis! was carried out
most directly in the rest frame of the final isobar. We
are thus evaluating the kinematic factors correctly and
neglecting recoil only in the transition matrix elements.
Such a treatment must break down at very large mo-
mentum transfers, and our results there are at best
qualitative. A better treatment, while greatly desirable,
is very difficult [witness the situation in the much
simpler case of elastic scattering from the deuteron at
large momentum transfers].

/ Ju(@*0)Y 11 ()

/[(V-j(X))(1+x-V)

3. REVIEW OF THE MODEL

As in I, we start from the following Hamiltonian for
a symmetric, pseudoscalar-meson field'¢:

1
H= 'Z—/dx(‘#aqsa'l' V¢a ‘ V¢a+ﬂ2¢¢¢a)
+in / dx(@upo)— 16 [ 0% buse
: 0
+@ﬂM/hn&V%B@.@ﬂ

16 W, Pauli, Meson Theory of Nuclear Forces (Interscience
Publishers, Inc., New York, 1946).
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Fic. 3. Assumed form of S(x), the nucleon source distribution.

a is an isotopic spin index which runs from 1 to 3, S(x)
is the nucleon source distribution function, and A, 8,
and G are coupling constants. ¢ and = are the usual
Pauli matrices.

To make the Hamiltonian a little more realistic, we
have included a phenomenological attractive potential
scattering term with strength g inside the core region.
This is to represent particle exchanges such as vector
mesons, baryon pairs, etc. We have also assumed a
repulsive (\>0) ¢* meson-meson interaction for reasons
which will become apparent. To simplify the problem
still further, we assume that S(x) has a uniform gradient
out to radius ¢, as shown in Fig. 3. Thus we write

S(x)= (3/ma®)(1—x/a)f(a—x).

Since we are interested in the oscillations of the pion
cloud, we neglect the dynamics of the spin and isospin
of the nucleon source. Thus we assume that

3.2)

Ga=0, T,~0. 3.3)

(We discuss this assumption further in Sec. 4 and
Appendix B.) o and = are included so that we have the
correct over-all transformation properties.

To find the ground state of the Hamiltonian, we
minimize H with respect to a time-independent ¢o®:
3H/5¢y*=0. This leads to the following nonlinear
differential equation:

[V2— pu2—\goPdoP+B0(a—x) Jbo*(X)

=—(G/2m)r2(0-V)S(x). (3.4)

We are interested in excitations of the system, and so
we expand the pion field about its ground state:

o (X,[) = ¢'0°‘(X)+"7°‘(X,t) .

Inserting this expansion in H and using the differential
equation satisfied by ¢o*(x), we arrive at the following
equation for n<:
[V2—0%/02— u2+B0(a—x) —N(po’po®) In*

=ML po%doP+do’o”].

The ground-state pion field thus creates an additional

3.5)

(3.6)
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potential in which the field can oscillate.’” We can ex-
pand the field 5 in the same manner as is done for the
free-meson field,

7%(x,0) =2

’_—'—[Cnlmannlm(x)e—‘iw"”
nlm [Zw"ljllz

+Cnlma1‘77nlmf(x)eiw"n] .

As shown in I, we can interpret ¢,m®' and cum® as the
creation and destruction operators for the normal-mode
excitations of the pion field. We impose the commuta-
tion rules

3.7

(3.8)

’
[Cnlmaycn’ rme® T:I = 6aa'6nn’5ll’6mm’

in order to quantize these excitations.

We can try to get a crude solution to the nonlinear
differential Eq. (3.4) by using the following three-
parameter variational form:

Bo*(x)=r1%(0-£)o(¥),
¢0(x)=5 ) (39)

e—p(a—a) g k(z—a)
= [ (1—e+ y e], x>a.

x/a x/a

¢, p, and € are the parameters to be varied. At large
distance the solution for ¢e® must reduce to the Yukawa
tail arising from the (OPE) pole;

v Gy e
$%(x) &> — —7% - L—-.
2% 2m 4w x

(3.10)

We thus obtain the following expression for the re-
normalized pion-nucleon coupling constant:

fon?= (1/47) (u/2m)?G - n?= 4w (ca)?e®e, (3.11)

which depends on two of the variational parameters.
Thus our model has a finite renormalization with G.»
#G, where G is the coupling constant in the Hamil-
tonian (3.1). Note that we assume for simplicity that
o 1s constant for x<a.

The equation for 7* then takes the form

[V 4+ —v(x) n*(x)=0, (3.12)

where

v(x) = —B+SAc, x<a

e k(z—a)

2
e], a>a (3.13)
x/a x/a

and where % is defined by
(3.14)

W—p2=F.

17 This approach was first used in another context by L. L
Schiff, Phys. Rev. 84, 1 (1951). See also D. Yennie, bid. 88, 527
(1952) for a criticism of treating a A¢?* theory as a classical field
theory when \ or ¢ are large. He points out that quantum fluctua-
tions then become large. This point is discussed in detail in I.
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v(x)

-px-a) -p(x-a) 22.
sxc? [Sp— -0+ 7]

X

-B+5xc2
F16. 4. The potential v(x) in [V2+£2—2(x) Jn=0.

We thus have to solve a Schrodinger equation with the
potential illustrated in Fig. 4. The repulsive meson-
meson interaction gives us an additional barrier which,
when added to the centrifugal barrier 2(I+1)/a?, allows
us to have sharp resonances high in the continuum.
Assuming that we can extend the barrier to infinity, we
can immediately write down the solutions for 7:

nnlm(x) = Rnl(x) Ylm(ﬂm) »

2 1/2
Rnl(x)=|:——‘—‘—-:| jz(Knlx) N
@1 (X )

where X, ;=K and 71(X,)=0. kn; and K,; are re-
lated by

(3.15)

ko= (1/a®)[ X n2—Ba45\c%a?]. (3.16)

The resulting spectrum is shown in Fig. 5 for the follow-
ing choice of parameters:

pve=1,
Ba*—5SAc?a?=16, (3.17)
SAc2a?=40.

The last relation gives a barrier which is high enough
so that the states we are interested in will show up as

SPECTRUM
pa s
Buz-ﬁ)\ 2a?= 16

[KEEPING HIGHEST ¢ STATES]
W-M

I Jea ( ~ dexe
2t R
9/2*3-— 5 126
972" -
7/2'3— 4 10.3
w2* .

s/ +:3—— 3 79 62
5/2" -

3 2-:3— 2 se 47

|/2+ I 26 27

2t e 0.0 0.0

. (a
127 7

957

EXCITATIONS HAVE
T=1/2,3/2

F16. 5. Spectrum for the choice of parameters in the text:
pa=1, Ba?—SAc2a?=16.
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resonances as discussed in I, but the exact value here
is not very well determined. We note the following
features:

(i) Coupling the spin of the nucleon to the meson
excitations and keeping just the highest / states as we
go up in energy (these are the states which will have a
large enough barrier to show up as resonances), we get
a spectrum very similar to that observed for the nucleon.

(ii) The excitations have T'=2% and $ since we couple
the isovector excitations to the isospin of the nucleon
core. We therefore appear to have a doubling of states
compared with experiment, but it is probably too strong
a statement to assume that our 8 is independent of
spin and isospin. Notice, however, that every level
which has been experimentally identified for the nu-
cleon has its counterpart on this figure.

(iii) There is a low-lying s-wave state, but its exact
position is, of course, very sensitive to what goes on in
the inner region of the nucleon. The low-lying 1+ state
will get pushed up by its interaction with the ground
state.

We can now proceed with the variational calculation
for the ground-state pion field. Using the result

1 & 2
V(- £)o(x) 1= (o-aa(— [—l—x——)qso(x) . (3.18)

xdx?  a?

we can write H for the ground state ¢o* as

H0= Hcorc+Htail, (319)
where
3 a
Hecore= E / Ax[ Vo- Vot (2/42) o>+ o>
0
+3Nbo'—Boe*+ (3G/mmat)po], (3.20)
and
3 0
Htail= E/ dX[:V!ﬁo . V¢0+ (2/x2)¢02
+up+3Ndet]. (3.21)
For x<a, ¢po=c. Thus,
Hcore= (2m/a)c?a?[ 6+ u*a®-+ $\c2a?
—Ba*+3G/nmaca]. (3.22)

Note that Hcore does not depend on either p or e. Using
the explicit form of ¢, for x>a, we have

H o= (67/a)ca?[3N2a2A se' -+ 3Nc2a24 5
+ (Bat-3Nc%a?4 )+ (Bi+$Nc2a?4 ) e+ By

+ENc%? (4pa)], (3.23)
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with
As=1(4pa)—4I (3pa+pa)+6I (2pa+2pa)
—4I(pa+3ua)+1(4pa),
Az=—4I(4pa)+121 (3pa+upa)—121(2pa+2ua)
+41(pa+3ua),

A= 61 (4pa)— 121 (3pa-+ua)+6I (2pa-+2ua)
A= —41(4pa)+4I(3pa+pa),

Be= (1/2pa)[ u2a?+ p*a®+2pa ]+ 21 (2pa) (3.24)
—[2/ (p+w)allua®+pua*+ (p+p)a]
—4I (pa+pa)+ (1+pa)+21 (2pa),
By= — (1/pa)[p?a®+p*a+2pa]—41 (2pa)
+[2/ (p+w)a]lu2a*+pua*+ (o+u)a]
+41(pa+ua),
Bo= (1/2pa)[p*a*+p*a*+2pa ]+ 21 (2pa)
and where
I(ya)=ere / 12 vetdL. (3.25)
1

The procedure we adopt is to minimize Htait With re-
spect to p and e while keeping ¢ fixed. This determines
values of p=po and e=¢. Using the values pe=1,
3\c?a?=24, and Ba?=56 from our approximate fit to
the spectrum, we obtain pga=2.54 and €,=0.09. Using
these values of po and e, we then minimize H with
respect to ¢: 8H/8¢=0=08H core/dc+0H tait/6c. At this
point it is convenient to introduce the dimensionless
parameter o defined as

a=G/2(ma)(ca). (3.26)
0H /6¢=0 then yields the following equation:
(3/7)a=[Ba®— 6— p2a?— 3\c%a?]— 3[ 3\c?a?A sec
+3\c%a? 4 ze®+ (Bat3Nc%a?A4 5) e
+(Bi+3Nc%a?41) e+ Bo+3Nc2at (4poa) . (3.27)

At this stage all the parameters in the model have been
determined with the exception of ¢, the magnitude of
the ground-state pion field. ¢ will be determined by
fitting the observed strength of the inelastic form fac-
tors. But note that ¢ appears in Eq. (3.27) only in the
combination 3\¢%?, and we have already determined an
approximate value for this quantity from the fit to the
spectrum. Thus Eq. (3.17) and the variational solution
for the ground state determine « uniquely. The numeri-
cal value obtained is a=11.1. One can easily show by
looking at 62H/8¢? that the variational solution we have
obtained indeed corresponds to a minimum in H. We
must consider Eq. (3.27) as just a very crude order-of-
magnitude estimate of a however, since the right-hand
side depends on differences of large numbers which are
only poorly determined in this model. The main virtue
of our new variational solution is that it gives us a
fairly realistic determination of the tail of the pion field,
once the value in the source region ¢ is determined.
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4. CURRENT OPERATOR
A. Standard Field Theory

In discussing the current operator, we first consider
the standard field theory for the pion-nucleon system
in which the pion is treated relativistically and the
nucleon nonrelativistically. In this standard theory we
start from the Hamiltonian

1
- f 0%(batbat Voo Voatabude)-+ 1A f dx(Bapa)

1

- / 0% B(x)atpat f dx ' Tt (5% 2m) W

+(G/2m) / AX Y ra0 Y Véa. (4.1)

We shall neglect the nucleon recoil term p?/2m. The
pion field equation is

[O— w2 —Nsgps+B (%) e

=—(G/2m)V - 'raoy). (4.2)
To generate a conserved current, we make the replace-
ment V— V—i¢A in the Hamiltonian (4.1). In the
standard theory this is a well-defined procedure, and

in particular the result will satisfy gauge invariance. We
thus obtain the current

j~;= —[éX Vig s+ (G/2mWla =X o1,
i=1,2,3. (4.3)
The first term is the usual Klein-Gordon current. Note

that in the present theory the components of the pion
field commute:

[farts]=0. (4.4)
Using the field equation (4.2), we compute
—v-J=4=[¢X¢/0r]s
’ +(G/2mW (e V)[¢X ). (4.5)

Again, the first term is the usual Klein-Gordon result.
In our model we make the identification

Yiery — S®)ora, (4.6)

and we then assume the explicit form (3.2) for the
nucleon source distribution S(x). The current and time
derivative of the charge density arising from the
standard field theory are then

Ji=—[¢X Vigsm
+(G/2m)S (x)a:[ X ¢ |s™™, i=1,2,3

7
p=[9Xd*¢/0]yvm D
+(G/2m)S (x) (- V)[ X = ]s™™;
the pion field equation (4.2) becomes
[O—#*—Nsps+B0(a—x) J¢a
=—(G/2m)7.(0-V)S(x). (4.8)
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We have chosen to symmetrize ¥ and 5. Because of
Eq. (4.4), this makes no difference in the standard
theory. The current is clearly conserved: v« J+op/0t
=0. (We assume, as in the standard theory, that
[psds,da]=0. We will return to this point later.) Know-
ing p, we can compute all the off-diagonal matrix ele-
ments of . We shall show later that for the diagonal
matrix elements of p we have in addition

ol [ saxim=0, (®9)
where ( is the total charge.
To linearize the theory, we write

é(x,t) = o*(X)+7*(x,0) .
Then

Ji=—[doX VigoJs™+ (G/2m)S (x)o =X doJs*™
—[0X VinJs—[nX VigoJs
+(G/2m)S (x)o[x+Xn]s, i=1,2,3 (4.10)
p=[ 80X 8™/ s+ (G/2m)S (x) (- V)[ goX 7 Js™
+(G/2m)S (%) (e- V)[nX <],

where we have kept terms to first order in 7.

B. Fixed-Source Model

In the fixed-source theory S(x) is taken seriously
from the beginning. Capps and Holladay'® have con-
sidered the problem of electromagnetic currents in a
fixed-source theory. They show that the substitution
VvV — V—ieA is no longer sufficient to guarantee gauge
invariance. To obtain gauge invariance, it is necessary
to introduce model-dependent line currents.

To investigate the fixed-source problem in the present
treatment without the added complications involved in
linearization, we replace the A\¢* term in the Hamiltonian
(3.1) by the following expression:

3\ / dx(¢o°po*)pd=. (4.11)

In Sec. 4 C we consider the additional problems arising
from linearizing the ¢* theory. The corresponding equa-
tion of motion is

[O—u2+B8(a—x) —Apobo? Job*
=—(G/2m)r*(o-V)S(x). (4.12)

For the ground-state (time-independent) field o> the
equation is

[V2—u2+B0(a—x) — NpoPpo? ] 0o
=—(G/2m)r*(e-V)S(x). (4.13)

By comparing with Eq. (3.4), we see that the potential
has been chosen so that go®=¢,“ is a solution. For ¢o*

18 R. H. Capps and W. G. Holladay, Phys. Rev. 99, 931 (1955).
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we thus use the variational form given in Eq. (3.9).
We then have the result

[X o)™ =0=[2X Vigo]*¥™. (4.14)

To find the excitations of the system, we again expand
about the ground state:

*(x,8)= eo*(x)+1*(x,0). (4.15)
n“ then satisfies the equation
[O—p*+B0(a—2x)—Npodo Jn*= (4.16)

The current must contain model-dependent source
terms. Therefore, we choose the source term so as to
produce a conserved current; as a consequence, the
lowest order S matrix will be gauge invariant since

SO=4i f Jud i (4.17)

is unchanged under the substitution 4 ,°xt — A4 ,°xt49A/
dx, if the current is conserved. This follows from a
partial integration. We thus define the current as
follows:

—[8XVigJsv=+(G/2m)S (x)o L =X ¢ 1™,

i=1,2,3. (4.18)
To first order in n we have
Ji=—[eoX VipoJs"™—[0oX VanJs— [0 X VigoJs
+(G/2m)S (x)o{xXn]s, i=1,2,3. (4.19)
Using the field equations, we compute
~v-J=p=[eix8n/0F];
+(G/2m)S (x)(e- V)[nX<Js. (4.20)

The continuity equation is thus satisfied. Let us define
the field 7, by the following :

[Cnlmmrlnlm(x)e—iw"”

Ta=i

nlm (2(0”13)112

_CnlmaTﬂnlmf(x)eiw”lt]. (4.21)
By comparing with Eq. (3.7), we see that
Ma/It=14. (4.22)

The charge density (to second order in %) can thus be
written as

p=S@)3 1475+ 00X dn/0t1s+[nX n/3t]s
+(G/2m)S (x)(o- V)[FX<]s. (4.23)

Using 8%7%/02=31*/dt and the field equations for ¢o*
and 7%, we compute

0= /ﬁdx= 3+iret /dxtnxaﬂ/al]3=%+'f
(4.24)

Q=1iA,0]= f pdx=— / v Jix=0.
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Thus, the total charge Q compuited from  is a constant
and is given by 14-7%. Our definition of the current is
therefore satisfactory from this standpoint.

The current § and charge density p that we have
constructed in this modified fixed-source model by
requiring current conservatlon are the same (to first
order in 1) as the Jandp p computed from the standard
field theory considered in Sec. 4 A. [Recall that ¢o*
=¢o* and the result (4.14).]

C. Linearization of ¢* Model

We now consider the additional difficulties en-
countered in constructing the current after linearizing
a Hamiltonian such as (3.1) that contains a ¢* meson-
meson interaction. One approach is to proceed as in
Sec. 4 B, namely, we determine the model-dependent
source terms by requiring current conservation. We
again define

Ji=—[ X Viglsm

+(G/2m)S (x)as[ =X ¢ ™, i=1,2,3. (4.25)

Now, using the field equations (3.4) and (3.6), we com-

pute (to'first order in )

— v J=5=[4:X3"1/38Ts+(G/2m)S (%) (0" V)
XX v ]s+2\ (o) (o £)[xX n]s.

The ¢* interaction thus leads to a ¢¢* term in p. The
resulting charge density (to second order in ) is

(4.26)

=S (@)} (1+75)+[doX 0n/9t 15+ X In/3t]s
+(G/2m)S (x) (o V)[7X = 1s

+2\ (o) (o- &) X7 ]s. (4.27)
Again, we have the desired properties that
0= / pax=3+Ts,
(4.28)

Q=i[A,0]=0.

The current J is the same as before, but now the charge
density p contains the extra term

2M(¢o)*(o- £)[eX " Is.

A second approach to linearizing the theory is to
take .7 as an approximation to the current operator in
the standard field theory, discussed in Sec. 4 A, to be
used in computing the independent matrix elements of
Trumee, Try®, and MpyCv, again with the long-
wavelength restriction [Eq. (1.5)] built in at the start.
In this approach one has

=S@®)3(1+75)+[d0Xn/0t]s

+(G/2m)S (x) (o V)[FX =]+ [0 X In/0t]s.  (4.29)
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In both approaches the current is given by

Ji=—[doX VigoJsym— [0X Vinls—[0X Vidols
+(G/2m)S (x)o:[zXn ], i=1,2,3. (4.30)

We have performed calculations using both approaches
and shall discuss the results in Sec. 6.

Throughout this section we have maintained the
assumption that ¢,=0=1,, and we have been able to
develop a consistent model in the sense that the model
does possess a conserved current. In Appendix B we
show that the present model can be considered as the
limiting case of a presumably more correct set of equa-
tions of motion which permits ¢, and 7, to have time
dependence.

5. COMPUTATION OF MATRIX ELEMENTS

We are now ready to compute the transition matrix
elements of the charge and current operators. First, we
must construct the states of the theory. It is convenient
to employ spherical tensor notation'® and to introduce
spherical creation and destruction operators satisfying
the commutation relations

Centm.asnrvme . 1= BnnBrt BB - (5.1)
The ground state is
IG>= [0>£m.§‘mu

where &, and ¢, are two-component spin and isospin
Pauli spinors for the nucleon core and | 0) is the vacuum
for the meson-field excitations

anm,q10)=0.

(5.2)

(5.3)

The ground state is just the nucleon with its surround-
ing static meson field. For an excited state of the nucleon
which can be reached through an allowed electromag-
netic transition, we write
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|n(I5)IM;TMr)=3 3 (1¢3¢'| 15T M)

g’ mm’
X (mm’ | BT M ) cntm, o | 0Yem e (5.4)

We have coupled the orbital angular momentum of the
meson field to the spin § of the nucleon core to give a
state of definite J, and the isospin 1 of the meson field
to the isospin } of the core to give a state of definite 7.
Thus, the excitations have isotopic spin

=1
T—‘z;

oo

The parity of these states can be easily determined.
Since the pion field is pseudoscalar, the parity operator
in the space of creation and destruction operators for
the normal-mode excitations is given by

ﬁcnlmafﬁ_1= ("' l)l-HCnlmaT . (5.5)
Thus the parity of the excited states is
16 nim® | 0) = (—1)Hc, | 0) (5.6)
or
II=(—1)" (parity of excitations). 6.7

We have used I1|0)=|0) which follows from the posi-
tive parity of the nucleon.

We consider the charge density operator as given in
Eq. (4.29):

p(x,)=S(@)3(1+75)+[ X In/dt 5

+(G/2m)S (x) (o~ V)7 X *]s. (5.8)
The term S(x)1(1473) cannot contribute to the transi-
tion matrix elements, and so we neglect it for the pres-

ent. Inserting ¢o*=7%(o-£)¢o and the expansions for
7% and 7%, and using spherical tensor notation'®

p(x)=V2 2 3 (191¢'[1110)71,[ Gow) (0 £)¢o(x)+ (1/200°) 2 (G/ 2m)S () (@~ V) ]

a9’ nim

The transition matrix elements of the charge density operator are thus

qq’ g’ mm’

where we have written

The following results are readily established:

[aXbls=—V2i > (1¢1¢’|1110)a1b1yr,  (5.9)
qq’
where @ and b are tensor operators, we find
X [eutm, g Mnim’ (K€t — (= 1) Cnim,— g Mnim (X)e~Hm10 ], (3.10)
(n(B)IMTM 1| 5(x) | Frmedmy= X 3 V2[So r108m ) (1g5q' | 13 TM r) Imim’| 15T M 1) (1414 1110)
X Gon) V20 (@) [emt (@ 8) Em, ]+ (1/ 20032 (G/ 2m)S () [T (@ W)bm, B Ru (1) Vi (@), (5.11)
nnlm(x)anl(x) Ylm(ﬂa:) . (5.12)
$otTigrkm=V3(Gmdlg” | 313¢),
(5.13)

b (@ 2) bm,= — (4m)'2 2 (1”3’ | 153m ) Vimes ()

fm’f("' V)ém,= —V3 Z (lm"%m’l 133ms) Viurs .
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We project out the LMth multipole as needed in Eq. (2.7) using

/ Ylm*(ﬂz)yl’"”(Qz)YLM(Qz)sz:'(_1)”[(2L+1)(3)(2l+1):|”2<L I 1)<L I

1
5.14
4r 0 00 ) 540

M —m m
and

L I 1\/L I 1
/YLM (Qx) Vm”[ylm* (Qz)Ran (x)]dﬂ:c: ("’ 1)m[ (2L+ 1) (Zl+ 1)]”2(0 0 0)( )

M —m m”

d 1
<~——)an*(x), L=1+1
dx «x

(5.15)
d I+1
(——+——>an* (), L=1-1.
dx x
From the above we find

(BT M s TM | M s (q*) | Fma3me)

L 1 1\/L 7 1
= VLI Q)2 T z( )( )(—nmam'%m'l1%%ms><%mt1q"l%1%q')

mm'm’’ ¢0’¢’\Q0 0 O0/\M —m m"

X (g3q' | 15T M 7) (Imgm' | 13T M ;) (1" 1¢| 1110)[ij (¢*%) Gwat) V@11 () Rt (x)x%x] , (5.16)

where

cbnm(x)zemf(x)=[¢o<x)+ lz—G—S(x)<—d——£)]an*(x), L=1t+1

Wnp® 2M dx %
(5.17)
1 G d I+1
ot Eso D o, zoiet.

wal? 2m dz
Using standard angular momentum recoupling techniques,'* we have
(n(B3)TM ;TM | M 1.3 o (g*) | 3+ma,ime)

L Pld
= —[ f 71.(q*%) (39n1)"*®p1r () Rma (x)xzdx][(2L+1)(3)(2z+ 1)]1/2<0 0 O)(2]+1)1/2[l § L} (—1)M

X (L—MJM ;| Lismg)3[22T+ 1)]‘“{

— ol

1
2
1

}(10TMTI 1TiM 7). (5.18)

ﬂh—‘

Reading off the reduced matrix element, we have finally,

30m) [ (n (3)T TM || 2 .0 () |5+ 5me) |2

1
2

=27(47r)(2T+1)E(2L+1><2’+”WH)JG (l) (1)){1 ; Lr{

i
— R

:

/ 7(q*%)Pnir () Ruit (w)a2da

1
T
2

X (10T M 2| 1T3M 1) , (5.19)
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where ®,:1(x)Rn:' (x) is defined in Eq. (5.17). Observe that all the selection rules are contained in the 3- and 6-5
coefficients
(1) L4141 even (parity)
L=Il+1, :
(i) L=J=+%, (5.20)
J=lx3,
(i) T=33.
If we had started with Eq. (4.27) for p, then the result would have been exactly the same as Eq. (5.19) except that
in the definition of ®,;.(x) we would have had to make the replacement

B0 (®) — ¢o(x) — (1/wn®) 2\ o (x) . (5.21)

The LMth electric multipole is given by Eq. (2.14). Keeping only terms linear in 5, we have from Eqgs. (4.19)
and (4.20)

2 G
v: J=— P= " €ap3ToO" I:ﬁ&ﬁo(x)_— —S (x)V]ﬂﬂ ,
a2 2m

(5.22)
x- J=— eapsra(o- X)[$o ()2 V— (G/2m)S () Jns.
Comparing with Eq. (5.10), we see that
(V- 3|iy=—iwnlf|p]3) (5.23)
and that (f| x- J|i) can be obtained from the matrix elements of the first term of by making the replacement
i 3 G
o) > —| aud——s—5(0) | (5.2)
Wnl ox 2m

We thus have

(n(B)TM sTM r| Trae(g%) | 3rme,3me)

QL+1)@)Q+DP2/L 1 1
Zro ) o o o)

X (L—MJM ;| LI3ms)3[2(2T+1)]*(10TM | 1T5M 7)

[

P
= (—1)M (L) 12
()(’)[ LHITI}

Xl:io—:—l / ®nin(2)Rui’ (x)xz(l—{-x%c)jz,(q*x)dx-}-q— ]'L(q*x)xs[¢0(x);;‘j;""§'n's (x)]an*(x)dx:l. (5.25)

q Wnl
Computing the reduced matrix element, we find
3(4m) [ n (BT TM 2| T2 (g") [ 5+ma) |2
(2L+1)(2H—1)<L l 1)2{% 1 3 }2
;]

= wn(2T+1
21 (4m)an AT+ (27+1) LL+1) o o o/

'Jf' 2
. } (10T M p| 1 T3 M p)?

* 2

Wn d 7 d G
X l"‘l [R5 )jn it f'L@*’“)x{""’(")“““"S(x)]R"'T(x) -
p dx dx 2m

Wnl

(5.26)

The selection rules are the same as those given in Eq. (5.20). Again, the choice of Eq. (4.27) for 4 would require
replacement of Eq. (5.21) in the definition of ®nz(x).

Last, we consider the transition matrix elements of the magnetic multipole operator in Eq. (2.12). Keeping only
terms linear in 5, we compute from Eq. (4.19)

x-(vXH=—v-(xx ) =ie.,p31~,,[2¢o(x)
x

G
+“27n-5(x):|(0'l)na, (5.27)
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where 1 is the angular momentum operator
I=(—7)xX V. (5.28)

Proceeding as in the case of the Coulomb matrix elements and using (5.9), (5.13), and
/ Yo @) w' (0 Dém, JV im* (©2)0Q= 812 L(LA+1) ]33 3 (A" bm | ULM) (3mdm” | $13m’) ,  (5.29)

we find
(n(B)TM ;TM p| Traree(q*) | 3 tma,3me) = i81.3V2 (2wn) 112

. $o(x) G
X [/]L(q*x) { 2 -l--Z—S (%) }R,.fr (x)xzdx] 2 X (Umam!|IM ;) (Aim" tm| UILM) (3mslm” | 313m’)
m

X aq’ ¢’ mm'm’’

X (1g3¢'|15TM 1) (1¢"1¢| 1110) Gmlg” | $13¢).  (5.30)
Again using recoupling techniques, we derive

nITM ;TM | T rar™s(g*) | yma3ms)
1
2

3 NI
V3[(2J+1)(2L+1)(2T+1) ]2 — 7| LTsm,
LTI ET Y] M A (TR YT

Wnl

[N

= 1:('— 1)L+M_131L

do(x)

X

X (10TM 7| IT%MT)[/jL(q*x) [2
Calculating the reduced matrix element, we have
3@m) [(n (BT TM || Tomex(g*)|[5+hme) |2

1 14y2.1 1 % 2
=(41r/wnz)1085u,(2L—|-1)(2]+1)(2T—I—1){Z ; LHi . 1} (10T M p| 1 TEM 1)?

¢ 2R '

2

$o(x) G
+;;S (x)]ﬂdx .

X

X l / Rat(x)jL (q*x)l: (5.32)

Note that we now have the selection rule L=/ instead of L=1/4-1 as for the electric and Coulomb terms. The re-
sults (ii) and (iii) of Eq. (5.20) still hold. The result (5.32) is the same regardless of the choice of Eq. (4.29) or
Eq. (4.27) for the charge density . We note that the isospin dependence is contained in a factor

3

ool

2
} (10TM | 1TsM )2 =2/27, T=3%
. (5.33)
2

=1/21, T=3.

Therefore, other things being equal, the T'=§ levels will be excited twice as strongly as the T'=3 levels in this model.
In Eq. (3.15) we have given the form for R,;(x) used in our model; the source function S() is given in Eq.
(3.2). Using these expressions and ¢o(«x) =c¢ in the overlap region, and evaluating the 3-j and 6-; coefficients, we find

T e A e

3(2741) b /L (Xu)
xl—i- f Xl}[,(Qui)ﬁl:jz(t)iaXui ! (1—J—)jz;1(t):|dt2 (if L=1IF1), (5.34)
X1u3Jo 7 (wua)? Xu
HE G )= 0 41) ) P o | —
32T+1) e (X1) J(w1ia) (ua)
| xujz,(qut)jz(t)ﬁ[ﬁ—l—gE(l———t>:|dt2, (5.35)
X3/, {27\ Xy
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where
Pn(L)=L/(L+1), T=I+}
= (L+D/L, T=i-}, (336
and
3Um) [T AT T
8 2]+1( Y )2(6011)[ 2 ] 1 wy; X”z[ 0 3 1 ¢
- ua) a2\ —— | —2 [ jiax (1——>- t]
3(2T+1) L(L+1) p /L (X)X 0® g Jo l r (wna)*\ Xy i)
1 ¥ Xu
XLELADj(qud) — quitfria(qud) Jdi+—— [ £5(qut)
Xiudtwulo
3 t 2
x[{l———a—(l———)]jl(t)—tjl+1(t)]dt (f L=1F1). (5.37)
Xuw Xu

Wherever a 4= or -F appears, the upper sign applies for
the case L=1—1 (J=1—%, normal parity) and the lower
sign applies for the case L=I+41 (J=I+1%, abnormal
parity). We have written the integrals in terms of
dimensionless variables and have defined

qu=q*a/Xu. (5.38)

Recall that X1; is the first zero of the /th Bessel function.
They are given in Table I. The parameter « is defined
in Eq. (3.26). We compute wy; from the experimental
masses of the various resonances as follows. We calcu-
late the total energy in the c.m. system

W= [k w22+ [kem2 e~ M, (5.39)

and identify this with the mass of the resonance. We

then obtain
wu= (M2+p2—m?)/2M . (5.40)

These values are given in Table II. If we had started
with Eq. (4.27) for p, then we would have obtained the
same results except for the replacement

jl(t) — /i (lf)[l —2)\62(12/ (wlzd)2] (5.41)

in the first term of the integral in Eq. (5.34) and in the
first term of the first integral in Eq. (5.37).

We can also use our model to compute elastic scatter-
ing and magnetic properties of the ground state of the

nucleon. Now
[ stramiaeo s#imoas
=t (3 (14 79) Tom, / e xS (x)dx, (5.42)

and we can therefore identify the isoscalar and isovector
elastic charge form factors as

Gr5(g")=Ga" (") = / ot xS ()dx

12 2[1—cos(g*a)] sin(g*a)
=_—|: :l — 1
oy (gap Jeus
— (1/15)(g*a)*.
We can thus identify the mean-square charge radius
(") E5=(r"=%a. (5.:44)

We now consider the current in the ground state.
The term [9X VnJs has zero expectation value in the

g*a

(5.43)

TaBLE II. The frequency wy; as calculated from the
experimental masses.

Tasie I. The quantity Xu. State wnu/u

] Xu 3,3 (1236) 1.9
+% (1400) 2.8

0 T 3% (1512) 34
1 4.49 $-,% (1670) 4.1
2 5.76 4% (1688) 4.2
3 6.99 35,3 (1920) 5.3
4 8.18 % (2190) 6.4
5 9.36 +(?),3 (2423) 7.4
6 10.51 21 (?),3 (2650) 8.3
7 11.66 15+(?),3 (2850) 9.1
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ground state. The only term in Eq. (4.30) with a non-
zero expectation value is

(Jo)i=—[gXVigos™™, i=1,2,3.
Using the result

(5.45)

c £
V(o-£)=———(0-%)
x x

(5.46)

and the properties of the Pauli matrices, we find

Jo=27LoX xT[go(x)/x T

We note that V- Jo=0, as must be true. The magnetic-
dipole form factor is thus given by

(5.47)

N ryo, (6mr)2
M= =— T gmae
2m iq*
(6m)'2 Bo(x) T
= " /Jl(q*x)‘D ul-[eX x]2 73[ :l dx. (5.48)
g
Therefore,

3m $o(x) P
N (g¥)y=—| j1(g*x)x[1—cos267]2 dx
= /1 g*2)e [ ]

£

P i

(5.49)

In the limit ¢* — 0, AV (¢*) becomes the anomalous
isovector magnetic dipole moment of the nucleon.

A7 (0)=3(16mm) f (o (x) Fdu

= (87/9) (ua) ( C“)z('z;)

X {_14—3[(1_60)2 Jal—w e°2]}. (5.50)

Ll T
2pc  (potma 2pa

po and ¢ are the values determined from the variational
solution in Sec. 3.
From the expression for AV (¢*) we have

N(g") _ S L35x(g")/ g JLbo(w) Pdx 1
AY(0) S [90(x) Pdx
7 S5 po(x) Fdx

10 STpol)Pax |

It follows that the mean-square magnetic dipole radius is

o) V=§ S o(x) Pdx

5 STgo(®)Pdx

g*->0

(5.51)

(5.52)
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6. PREDICTIONS OF MODEL AND COMPARISON
WITH EXPERIMENT

In this section we present the predictions of the model
for the electromagnetic properties of the nucleon and
compare the results with experiment where possible.
Recall that all the parameters of the model with the
exception of ¢ have been roughly determined earlier by
either the fit to the nucleon spectrum or the ground-state
variational solution. Actually, we carried out a limited
search for the best fit to the excitation of the $+,3 (1236)
level using the Stanford® and CEA® data, and to the
excitation of the $7,3 (1512) and $+1 (1688) levels
using the CEAS® data. We computed the inelastic form
factors for several sets of values of ue and . We found
the best agreement for the values ua=1 and a=10. This
value of pa is the same as that obtained from the fit to
the spectrum; this value of « is completely consistent
with the value a=11 determined from the variational
solution. (Theresults vary slowly with moderate changes
of a.) Although the absolute minimum of our particular
H will occur for negative @ and consequently somewhat
different potential parameters, we shall take these num-
bers as an approximate self-consistent best fit. There-
fore, in the following all results are computed using the
values ua=1 and a=10.

In Figs. 6 and 7 we show the results of calculations
for the §+,3 (1688) level using the two possible forms
for the charge density p of Eqgs. (4.27) and (4.29). The
magnetic form factor is the same for both cases. We
see that in the experimentally allowed region (g,2>0)
the shape and magnitude of the Coulomb and electric

2 2
q (BeV/c)
0 ] 2 3 a4 s
op T T T T T T
b N'lies8) 572
[
L COULOMB - I
1o
COULOMB - IT
=
a0l ! ! 1 ! ! !
o 04 o8 12 16 20 24 28
qa/xiy

Fic. 6. The reduced Coulomb form factor |f.|?/(ua)(ca)?
plotted against the reduced momentum transfer qu=g*a/Xy; for
the §*,3 (1688) level. Curve I is plotted using the charge density
;E givalzi;l) Eq. (4.29); curve II is plotted using the form given in

q. (4.27).
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2
q (BeV/c)2
0 | 2 3 4 5
1oF | | T T T,
» N (1688) 5/2
+ TRANSVERSE -~
- / \/-TRANSVERSE -1
1.0 /

0.1

0.0 | | 1
0o 04 0.8 1.2 1.6 20 24

q’a/x,,

FiG. 7. The reduced transverse form factor [|f.|2+|/-|2]/
(ua) (ca)? plotted against the reduced momentum transfer gu
=g*a/Xy for the $+,3 (1688) level. Curve I is obtained using
Eq. (4.29) for §; curve IT is obtained using Eq. (4.27). The reduced
magnetic form factor is also shown. The electric form factor may
be found by subtracting the magnetic from the transverse form
factor.

form factors do not differ significantly for the two cases.
With a few exceptions which we shall discuss later, this
conclusion also holds for all the other levels that we
have investigated. From the form of Eq. (5.34), which
is derived from Eq. (4.29), we see that a cancellation
occurs in the Coulomb form factors for the abnormal
parity transition. Thus, | f.|2 should be much larger in
the normal than in the abnormal parity transitions, a
result that is intuitively appealing. Equation (4.27)
leads to the opposite behavior. In addition, the form
factors computed from Eq. (4.27) depend explicitly on
the value chosen for the coupling constant A, and this
quantity is only very poorly known from our fit to the
spectrum. In the authors’s opinion, it is preferable to
view Eq. (4.29) as an approximation to the true current
rather than to introduce another parameter into the
current operator itself, and the results we present are
obtained using Eq. (4.29) for 5.!° In any event the two
approaches give very similar results in the higher
resonance region. In Fig. 8 we give | f,|2 for the normal

19 We have made no attempt to derive a best value of A from an
over-all fit to all the electron scattering data, which is presumably
what one should do if Eq. (4.27) is used.
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parity transitions. It is interesting to note that the
height of the curves changes by only a factor of three
between the lowest and highest resonances shown. Also,
the location of the maximum (as a function of ¢*a/X;)
increases slightly and the curves become narrower as
the energy of the resonance rises. These results are
very similar to those of I, although they differ in some
details due to the presence of the source term in the
charge-density operator in Eq. (4.29).

We expect that our model will be best for the normal
parity excitations, which are primarily Coulomb and
electric in character. In Fig. 9 we compare the model
with the CEA data® for the $-,} (1512) level. Since
these authors do not separate the Coulomb and trans-
verse contributions experimentally, we plot against the
directly measured experimental quantity

[t (oo w0 )i 11

6=31°

Note that at photoabsorption, ¢?=0, and only the last
term contributes. We have included the contribution of
all the other states which are also supposed to resonate
in the indicated region. These states are indicated in

100

T T T 1117

T IlllIlI

lllllll‘ T

T T llllrll

0.0 -
(o] 02 04 06 08 Lo 1.2 1.4 1.6 I8

q'u/x| 2
Fic. 8. The reduced Coulomb form factor |f.|%/(ue)(ca)? for
the normal parity transitions to the levels §~,3 (1512), 5+, (1688),

375 (2190), and 4+ (?),4 (2650). The threshold ¢2=0 is indicated
for each level by a vertical line.
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Fig. 9. We see that the over-all shape of the form factor
is given quite well and that the dominant contribution
comes from the §~ level. In Fig. 10 we show the in-
dividual form factors for the 3~ level. We see that at
large values of ¢* the E1 form factor is completely
dominant. This dominance of the electric form factor
at large momentum transfers is predicted by the model
for all levels, abnormal as well as normal parity transi-
tions. From the observed transition strength to the 3~
level we determine the value of ¢ to be (ua)(ce)?=0.010.
Using this same value of ¢, we then predict the form
factor for the next level as shown in Fig. 11. The shape
is even better here since the diffraction minima are
filled in by the background states. (These diffraction
minima most likely arise from our assumptions of a
source with uniform gradient and a square-well Klein-
Gordon potential, and they are probably spurious.) The

100 [
L 4 2 2 2 2 2
L q q M 2 g _z.°
h ;*—Afcl + (2_q—*2+ ;Efon E)(l'*l +]t_| )‘ 8 = 3.
L * - * -
% N{(I1512) 3727+ N(1570) 1/2

SUM OF 3/2 +1/2

10 -
1

Ol

0.0l L

0 5

2
q (Bev/c)?

F16. 9. Reduced inelastic electron scattering transition proba-
bility

[ Ll e+ (e tant0) )L 119 ],/ waCear

for the $7,% (1512) resonance region as computed in the present
model and as measured at CEA (see Ref. 6). The background
states which are also thought to resonate in this region have been
included. Note the ordinate must still be multiplied by ua(ca)?
=0.010 to get the experimental form factors. [ Nole added in proof.
In determining the experimental values at ¢*>=0, we have used the
results of I which relate the integrated resonance photoabsorption
cross sections to the peak heights through the assumption of a
Breit-Wigner resonance form in the laboratory photon energy. In
this calculation the widths T' given by Cone et al. (Ref. 6) were
used. If instead we assume a Breit-Wigner shape in the total
energy in the isobar rest frame and use the values of I' given by
Rosenfeld et al. (Ref. 8), then the ¢?=0 points are raised: 309,
for the 1512 region and 609, for the 168§) region (see Fig. 11).]
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Fic. 10. The reduced Coulomb | f.|?/(ua)(ca)? and transverse
Clf+124+] =121/ (ua) (ca)? form factors for the $-,5 (1512) level.
The reduced magnetic form factor is also shown.

£+ state provides the dominant contribution to the
curve. It is interesting to note how the role played by
the various multipoles and states changes as the mo-
mentum transfer is increased. The only real method of
sorting out these contributions is to do coincidence ex-
periments on the peak at different momentum transfers.

100 [ "
Fol 2 2 2 2 2
r q M 8 o
r -;-4lfcl 0(—-;2+ -3 tan 3 )(|f+""[f-l ). 8 =31
L a 2q m
L + - - x -
Nliess) 572, Nli670)5/2, Nl1700) 172, NTi670)1/2
10
F SUM OF 5/2,5/2, 1/2,1/2
e
E
FT0 172
I (1700)
0.1 |
C
FTor2
I (1670)
0.01 Ul
0 I 2 3 4 5
2 2
q (Bev/c)

Fic. 11. Same as Fig. 9 for the §*,3 (1688) resonance region.
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For the s-wave background states we have just put our
1S state at the observed energies to get the form factors
shown and our estimates for these states are therefore
very crude. Use of the 25 state would give a much
smaller contribution to photoproduction without sig-
nificantly changing the rest of the predicted curve.
Figures 6 and 7 present the individual form factors for
the §t level, and Fig. 12 gives them for the §— level.
The curves calculated using the charge density of Egs.
(4.26) and (4.27) and the standard set of parameters
with, again, ue(ce)?=0.010, give form factors at 31°
essentially indistinguishable from those of Figs. 9 and 11.
[Note added in proof. The predictions of the model for
the cross section at §=47.4° are in agreement with our
analysis of the DESY data’ for the 1512 and 1688 reso-
nance regions. |

In the present model the electric transition multipole
Ty contains an explicit x- § term [see Egs. (2.14)
and (5.22)7]. Since this term is multiplied by ¢*2, it does
not contribute in the long-wavelength limit ¢* — 0, and
hence it does not contribute to the relation

| fel21 712 _ (J-I-f){_l]_O)z, ©.1)

1712 o0 —B)\g*

valid for normal parity transitions. The model thus pre-
dicts a greater contribution from the transverse form

qz( BeV/z:)2

o] ! 2 3 4
T T T
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TTTTT

N"(l670) 5/27

TRANSVERSE
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o
L e e

T T

00 1 1 o\
0 04 08 1.2 16 20 24 28

Fic. 12. Same as Fig. 10 for the §,3 (1670) level.
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F16. 13. Same as Fig. 9 for the +,3 (1920) resonance state.

factor at large momentum transfer than one would
estimate from Eq. (6.1) alone.® The breakdown of the
cross section given in I is not grossly in error, according
to this model, except at the largest ¢ points where we
estimate that the cross section is all transverse.

In Figs. 13-18 we present predictions for the higher

q2 (BeV/c )2
% | 2 3 4 5
o l | [ | T I
-
- * +
C N'(1920) 7/2
| TRANSVERSE
[XoR ol
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0 |-
- / \
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- ]
/ \
L \!
/ ¥
\
0.0l L ! H
o] 04 0.8 1.2 1.6 20 24

F16. 14. Same as Fig. 10 for the Z*,3 (1920) level.
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Fic. 15. Same as Fig. 10 for the 7,3 (2190) level.

resonances. All these curves are computed using the
same value of ¢: (ua)(ca)?=0.010.
We expect that the model will be poorest for the
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Fic. 16. Same as Fig. 10 for the 4+(?),5 (2420) level.
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F16. 17. Same as Fig. 10 for the 42(?),} (2650) level.

2+ 2 (1236) level, which is predominantly a magnetic
transition and lies lowest in energy. We have however,
also carried out a comparison, and the result is shown
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F1c. 18. Same as Fig. 10 for the 2*(?),5 (2850) level.
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F16. 19. Same as Fig. 10 for the §*,3 (1236) level. The experi-
mental data are from Refs. 3, 6, and 7. When only peak heights
of the cross section are reported, we assume that the relative
background contribution is the same as that of the s waveat
photoproduction (25%,) and subtract this amount from the peak-
height values before determining the integrated resonance cross
sections. To get these quantities we then assume a Breit-Wigner
resonance shape in the total energy in the isobar rest frame. Note
the ordinate must still be multiplied by wa(ce)?=0.059 to get
the experimental form factors.

in Fig. 19. We need a substantially larger value of ¢
here, (ua)(ca)?=0.059.2 Although the transition is pri-
marily magnetic for small ¢?, the model again predicts
that at large momentum transfer the electric transition
will dominate.

The Roper resonance (J*=3+, T=1% 1400 MeV) can
be excited only through Coulomb monopole and mag-
netic-dipole transitions. In the long-wavelength limit
the CO operator is just the total charge,

MOCoul ( q*)

= [ ax jo(q*x)Yoo(ﬂz)ﬁ(X)qQOQ/ (4m)t2,  (6.2)

and this operator cannot cause any transitions. There-
fore, | fo|? for the Roper resonance must start as ¢*2.
Curve I in Fig. 20 [derived from Eq. (4.29)] clearly
violates this requirement; curve II [derived from Eq.

20 If Eq. (4.27) is used for the charge density, the magnitude of
the resulting Coulomb form factor is about ten times greater than
that shown in Fig. 19. The ratio of Coulomb to transverse excita-
tion is then inconsistent with the experimental results shown in the
figure. The Coulomb form factors for the §+,% (1236) and 4+3%
(1400) are the only places where the two different forms of the
charge density [Eqgs. (4.27) and (4.29)] make any real difference.

D. WALECKA 168
(4.27)] at least decreases as ¢*— 0, even though it
does not actually go to zero. This is the one case where
it is necessary to have

/ pdx=0

hold as an operator identity, not just in diagonal matrix
elements. [ See Eq. (4.9).] Because of the absence of an
electric transition, the predicted cross section for ex-
citation of the Roper resonance falls off rapidly for ¢
greater than 1 (BeV/c)2

Taking the limiting case ¢,2— 0 of our theoretical
results, we can compare with the various phenomeno-
logical analyses of photoproduction’®™ that have been
carried out in these higher-resonance regions. The rela-
tion between the photoproduction amplitudes and the
multipole expansion is discussed in Appendix A. The
particular result that we need here is Eq. (A11). For
all of the levels we have examined, sgn(Integral-mag)
=4 and sgn(Integral-elec)=— at photoproduction.
The sign of the magnetic integral is certainly a general
result, and it appears that the sign of the electric
integral is also. We thus have

(6.3)

Eu I Tad)

Eu _ [_] AL R S TR

My, 421 T Tmee||3) 6.4)
e [H]w Ty .
B Ld (7wl "

Table III shows the predictions and the results of the
phenomenological analyses. We see that the predicted
magnitudes agree quite well with the results of the
analyses, but the sign appears to disagree systematically.

TasLE III. Photoproduction amplitudes.

Moorhouse

State Ratio Walker et al. Model®

3+.3 (1236) Evt/M+  —0.0440.08 +0.34
§7% (1512) My /Ey 4053402  +40.34 —0.50
$7,5 (1670) Ex*/My+  —0.5 £0.5 +0.52
§*,3 (1688) Ms/Es~  +0.5 403 —0.69
3*,% (1920) Est/Ms+ +0.55
7,5 (2190) Ms-/E4 —0.64
(), (2423)  Est/Ms+ 40.60
3= (?),5 (2650) Me/Eq —0.72
#4(?),3 (2850)  Ert/My+ 4-0.60

Ratios of | fi|2+]f_]2

1~ (1570)/%~ (1512) 0.1540.2 0.07 1.38

5- (1670)/5+ (1688) 0.2440.3 1.56

 These ratios will be modified somewhat if Eq. (4.27) is used for 3 instead
of Eq. (4.29). The effect is to increase the magnitude of the electric ampli-
tude without changing its sign. The magnetic amplitude is unchanged. The
change ranges from about 40%, for the lower resonances to about 20% for
the higher resonances.
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When only the final electron is detected, the cross sec-
tion depends only on the sums of the squares of the
amplitudes, and the model’s predictions will then agree
with experiment. However, the model would give the
wrong detailed angular distribution of pions in pion
photoproduction. The fact that the s-wave contribution
to the integrated photoabsorption cross section is so
far off is not surprising since the s waves are treated
so very crudely in this model. As noted earlier, use of
the 25 instead of the 15 state would give a negligible
contribution to photoproduction. Our model does ap-
pear to have too much photoproduction of the £~ in the
third resonance region, although it does predict that
the $+ dominates the inelastic form facto:.

The model developed in I and the present paper was
intended to provide predictions for the excitation of the
higher nucleon resonances, and the approximations
made were appropriate for this goal. However, the model
does permit calculation of ground-state properties of
the nucleon, and for completeness we shall include these
results. One should not expect close agreement with
experiment since in addition to questionable approxima-
tions, zero-point quantum fluctuations are quite im-
portant in the ground state. This last point is discussed
in I. From Egs. (5.44) and (5.52) we find that the value
of the range (a) we use gives the root-mean-square
radius for the charge and magnetic moment of the
nucleon as measured in elastic scattering to within 10
and 30%, respectively. We find

() gS)Y2= ((r*) g")2=0.89 F
and
() u")2=1.04F,

whereas experimentally

(PSP~ ((PP)E")?=0.8 F
and
(P)u")2=08 F.

Having determined the value of ¢ by fitting the
height of the inelastic excitations, we obtain from Eq.
(5.50) the anomalous isovector magnetic moment of the
nucleon. The values are shown in Table IV. We have
also indicated the value of the pion-nucleon coupling
constant derived from Eq. (3.11) using the same
parameters. Finally, in Fig. 21 we compare the elastic
charge and magnetic-dipole form factors with the best
fit to the experimental results. The agreement is not

TaBLE IV. The anomalous magnetic moment of the nucleon
and the pion-nucleon coupling constant as determined from the
fit to the height of the inelastic spectrum.

Resonance region (ua) (ca)? AV I?
+3 (1236) 0.059 3.6 0.06
33 (1512) 0.010 0.62 0.01
5+3 (1688) 0.010 0.62 0.01

Aexp=1.85 f2zp=0.08
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F16. 20. The reduced Coulomb and magnetic form factors for
the Roper resonance. Curve I is obtained from Eq. (4.29); curve
I1 is obtained from Eq. (4.27).

very good, but note that the charge and magnetic-
dipole form factors are of about the same magnitude
even though they are computed from quite dissimilar
expressions.

7. CONCLUSIONS

In summary, we have constructed a crude static
model of the nucleon which provides a dynamical frame-
work from which one can predict the existence of nucleon
resonances. The resulting level spectrum is quite similar
to that observed for the nucleon. We have given an
improved variational solution for the ground-state pion
field and have identified the pion-nucleon coupling
constant from the asymptotic form of the field. We have
constructed a conserved current and thus can compute
all the electromagnetic properties of the nucleon on a
consistent basis. In addition, we can investigate the
interrelations between these properties. The inelastic
form factors agree quite well with the CEA data® for
the higher resonances and at least semiquantitatively
with the data for the 3-3 resonance. The model should
be poorest for the 3-3 resonance, and this is indeed the
case. One interesting prediction is that the contribution
of the various multipole terms changes dramatically as
¢? is varied. The predictions for the ground-state prop-
erties should be the least reliable because of the zero-
point oscillations of the normal-mode excitations (this
is discussed in I), but from fitting the inelastic form
factors we do obtain the anomalous isovector magnetic
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1.0 the widths of the resonances and with the vacuum-
5 fluctuation corrections included. Also, one could deter-
C\ mine the source density S(x) from elastic scattering.
t \ g, Despite these shortcomings, the model does provide a
“\ (t+a’/7071) dynamical framework in which to investigate the
-\ electromagnetic properties of the nucleon, and the inter-
. \\\ relations between these quantities, on a consistent basis.
ol
F \
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| IS5~ _orore APPENDIX A: RELATION TO PHOTO-
001~ “ \ / “\ PRODUCTION AMPLITUDES
C ‘ \ [ W\ In this Appendix we establish the connection between
. | K = the normal photoproduction amplitudes®* and the
- | ‘ l \\\/__ _\_< multipole expansion used in the present work. We use
L | | \ / the notation more commonly employed for photopro-
| |' | duction; that is, we label the incoming virtual photon
0.001 |- | ‘ | momentum by % and the final pion momentum by g.
E l l | Therefore, we have
C k=p—p'
§ | | l ! , e (A1)
. | | k+P=P'+q,
L | Following Chew, Goldberger, Low, and Nambu,?' we
| write the photoproduction amplitude § in the isobar
0.000! ! L L ! rest system for a given isotopic spin configuration as
0 0.5 1.0 1.5 2.0 2.5
a2(evre)? . (0-q)o- (kXe)
F=1i0- eF1t—— s
Fr1c. 21. The magnitude of the elastic charge and anomalous qk
magnetic-dipole form factors as computed in the present model
and as given by the dipole fit to experimental data [G. Weber in (e-k)(q-¢) (e-q)(q-¢)
Proceedings of the 1967 International Symposium on Electron 4+ ) Fs. (A2)
and Photon Interactions at High Energies, Stanford Linear Ac- qk ¢

celerator Center, Stanford, Calif. (to be published)]:

G =GMP_§&= 1
P #n  [14+¢/(0.71 BeV®) P
Note that the anomalous magnetic-moment form factor [F»" (¢%)/
F,¥(0)] differs from the total magnetic form factor [Ga" (¢?)/
Gu¥(0)] by a factor (14¢%/4m?)~L, This term is relatively un-
important over this range of ¢%

GEa=0.

moment of the nucleon to within a factor of three and
the elastic root-mean-square radius to within 25%,. In
the limit of photoproduction we get the right ratios for
| M11/E14|% which are the quantities that enter into
electron scattering. The sign we get for this ratio, how-
ever, appears to systematically disagree with that ob-
tained in the phenomenological analysis of pion photo-
production, and thus a more detailed model is needed
to obtain the exact angular distribution in this process.

The model presented is a naive one, and it is in no
sense a complete theory of the nucleon. Even within
the framework of the model, improvements could be
made. Thus one would like to find some mechanism for
the generation of the potential scattering term, which
is essential to the model, and repeat the calculation
with a more realistic potential which should also explain

F1- - - §4 are functions of energy and angle in the isobar
rest system, and q and k are the meson and photon
three-momenta.

We consider the special case in which the photon is
incident with helicity 41 and the meson is produced
in the forward direction. In order for the amplitude to
be nonzero, the baryon spin must flip. In this case
q-e=0, and the amplitude reduces to

50=V§1[— gr’}‘gzj. (AS)

The angular dependence may be made explicit through
an expansion involving derivatives of Legendre poly-
nomials?:

31:% (UM ~4-Ei JP oy ()
+LH DM +E P4 (%)},
o= [+ 1M 1AM TP (3).

=1

(A4)

2 G, F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1320 (1957).
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x is the cosine of the angle of emission in the isobar rest
system. The energy-dependent amplitudes My and E;y
refer to transitions initiated by magnetic and electric
radiation, respectively, leading to final states of orbital
angular momentum / and total angular momentum
I3, Each of these amplitudes may be written in terms
of three isotopic spin amplitudes. The amplitude F, can
thus be written as

EFo=\/2_i{Zl: [C+V)M P/ (1)—IM 1 P (1)
—E1+Pl+1'(1)]+; (i, Py (1)

— (V)M P y()—E P y/(1)]}. (AS)

We now consider this special case of photoproduction
from the standpoint of the multipole analysis. The
transition operator for photoabsorption ist®

T=/[ek1-j(x)]e‘k"dx
=—(2m)12 f @) EQLA) L T+ Trmee]. (A6)

I=1

Introducing reduced matrix elements, we write
T3 T3 —8)= (2n)'2 L G) (7435 | T73L1)
I=1

XTI (T pe4-Tpmee)||3+). (A7)

We now consider the excitation of a particular isobar
with J=I+1. Employing Egs. (AS) and (A7) and the
result

PY(1)=3(+1), (A8)
we find
Eyy IR Var by
i —i[—] Al LI S
My, 421 (J||Tm==e|3)
A (49)

L0 e (U R
P Y — T E——— =l—5.
Er L+l )Ty ’

The relations (A9) between the two sets of amplitudes
are completely general. We next use the reduced matrix
elements as calculated in our model to determine the
relative phase. From Egs. (5.25) and (5.31) we find
after some algebra the following relative phases:

Magnetic: 7 sgn(Integral-mag);
Electric:  4-sgn(Integral-elec), J=I+3

—sgn(Integral-elec), J=I—1.

(A10)
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sgn(Integral-mag) is the sign of the integral appearing
in the matrix element of 7™ in Eq. (5.31);
sgn(Integral-elec) has a similar meaning for the inte-
gral appearing in Eq. (5.25). We thus have the desired
relationship between our model and the photoproduc-
tion amplitudes:

I T ra13)
(T Tmes]|3)
J=I1+%;
(T|| Tormes]|3)
TN T %)
J=1-1.

Ey r ] i|1/2 sgn (Integral-elec)
My L2

-

sgn(Integral-mag)
(A11)

-

ri— 1:|1/2 sgn(Integral-mag)
LI41

sgn (Integral-elec)

APPENDIX B: COUPLED EQUATIONS
OF MOTION

In this Appendix we derive a set of coupled equations
of motion for ¢, ¢, and = which do not require ¢,=0
= 74,'% and thus presumably are more correct than those
employed in the model presented in the body of the
paper. But we also show that the model presented so
far is a limiting case of the (more correct) model to be
developed here. For the choice of parameters made in
the text the results of the two models should not be
significantly different with the possible exception of the
3-3 resonance.

The field equation for ¢(x,F) is still

(O —w—NpP+60(a—x) Jo=

=—(G/2m)V-[1%0S(x)]. (B1)

The nucleon source distribution S (x) was introduced by
making the identification (4.6):

Yiery — S(x)or,

in the standard field theory. Using the anticommutation
relations for the nucleon fields in this standard theory,
we find

W ()7 ()T (D)7 (x)]
=8 (x— X)W (x)2ieaps i (%) ,

W (X)) (R (9] (52
=6 (x— X')‘//r (x) Zieaﬁvaﬂb(x) .
Now,
9
:9;[¢T (X) T (X)] = i[:H,IPT (X)Ta‘/’ (X)] ’
(B3)

d
a[lf’(x)aatﬁ(x)]=i[f1 F (o (x)].
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Using the commutation relations (B2) and the Hamil-
tonian given in Eq. (4.1), we have

d G
—[YT (X7t () ]=——¢ (D[ X (¢ V)¢ ]y (),
at m
(B4)

a G
EEKI/T(X)%K[/(X)]: —— 1 (N[r (X V) W(x).

m

Making the identification of the time-independent
source function S(x), we obtain

taS (%) =— (G/m)S (x)o L+ X V. ]"™,
) (B3)
6eS(x)=— (G/m)S ()1 L X Vi ™.
We have again symmetrized the equations since this
changes nothing in the correct theory. The Egs. (B1)
and (BS5) constitute the coupled equations.’® If we take
the current J as given in Eq. (4.7) and use the coupled
equations to compute V- J=—4, we find

p_—[¢ a¢:|sym———5 ®)o [sX Vg™, (B6)

(We have again assumed that [psps,ée]=0.) It then
follows immediately that

p=[¢X¢/3t]y™+S (x)3 (1+73). (B7)
Thus, the system of coupled equations formally yields
the same expressions for ¥ and 4 as does the standard
theory [see Egs. (4.7)].

Although the derivation may leave something to be
desired, the reader can consider Egs. (B1) and (BS5)
together with (B6) and (4.18) as the set of coupled
equations of motion, together with a conserved current,
which define the model.

Now let us consider excitations about the ground
state. As before, we write

¢*(x,0) = o (x)+n*(x,0).

We also expand 7* and ¢* about ground-state values:

Te=702407%, =0y} 0. (B8)
The zeroth-order equations are then
[V2— i — MpoPboP+-B0 (a— ) Jpo* (x)
=—(G/2m)7¢*(a0- V)S (1), (B9)

fo“S(x) =— (G/m)S(x)a'o"[ToX VK¢0:|asym s
3025 () = — (G/m)S (%) 7o @0 X Vo Joa™™.

PRITCHETT AND ]J.

D. WALECKA 168
S(x) vanishes for x>a. Thus it is consistent to take
#0*=0=g* for x>a. For x<a, the variational form
for ¢o* is, from (3.9),

$0*(X) = o (x) 70* (00" £) . (B10)
It then follows that
[xoXVigoJa™™=0=[a0X Vo' ], (B11)
where we have used the result
Vio-8)=1— (1) (B12)

x X

in deriving the second equality. The conclusion follows
that it is consistent with the coupled equations to take
= 0= d’o“.
We next consider the first-order (in %, §7¢ and 809)
coupled equations. They are

[0 — 1 —Npo$o-+B0 (a— %) Tn "= Nn[ bo o+ 00 ]

—(G/2m) oo V(6725 (x))+ 72V - (530S (x))], (B13)
8725 (x) = — (G/m)S (x)ao*
XE(BTXVN’O)asym'*" (‘Oxvﬂl)asym] ) (314)

3625 (x) = — (G/m)S (x) 0"
X[ (@0 X Vo) o™+ (00X V19) o™].

In deriving the last two equations we have used the
results of Eq. (B11). Suppose that we can neglect the
first term in each of Eqgs. (B14). Then 87* must have
the form

dra(x,t)=087%(x)e"t (B15)
and Eq. (B14) becomes
1wdT(x) = (G/m)ao 2o X Vi (x) Jo¥™. (B16)

To see if this approximation is valid, we must estimate
the magnitudes of the two terms in Eq. (B14). Define
the quantity v by

[8eX Vigo| [87] | Vigho
= ~ . (B17)
[2oXVin|  |zoX Vin|
Using Eq. (B16) for |é7|, we have
b (ca)
‘Y~"—|00| | Vigpo| N‘G—' (B18)
m (ua)?

In terms of the parameter « defined in Eq. (3.26),

- 1 (ua) (ca)?
0 (ua)
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Using the values of (ua)(ca)? determined from the fits
to the inelastic form factors in Sec. 6, we have the
following representative results:

State %
3+3 (1236) 0.61
3-1 (1512) 0.059
5+1 (1688) 0.047

Thus, for the higher resonances y<1, and our approxi-
mation proves to be excellent. [Because of the factor
1/w in Eq. (B18) the approximation becomes even
better as the mass of the resonance increases. | For the
3-3 resonance the approximation is only fair. The reason
for the large value of v here is that we need a larger
value of ¢ to fit the experimental data than for the other
resonances. Thus, with the possible exception of the
low-lying 3-3 resonance, we can write

8748 (x) ~ — (G/m)S (@)oo TroX Ve la™™,

: B19
3625wy~ — (G/m)S@relorx Vadeom. B
The coupled equations thus give
p=[ 60X 3% /0f ]s
—(G/2m)S (x)oo [ xeX Vina>™. (B20)

Interpreting oo and =, as our original time-independent
vectors, we note that this result is the same as that of
Egs. (4.10) and (4.20). Thus, we see that Egs. (4.10)
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and (4.20) for p already contain the leading term from
#. We conclude, therefore, that if one were to solve the
coupled equations (B1) and (BS), the resulting current
and charge density would not differ greatly from those
we have computed by setting #=¢=0. We can also
show that the terms involving 87 and é¢ in the field
equation (B13) for #* are small compared to the
(Ba?—5\c?a?) term. Hence, Eq. (3.12) would not be
modified significantly if one solved the set of coupled
equations. Defining

| (G/2m)V - [op7=S (x)+70°80S (x) ]|
|[8—5Ne*Tn]

’

it

I

, (B21)

we find

uG\?p 1 1
v = (-—— - . (B22)
m/ w (ua)® (Ba?— Shc2a?)

Representative values are as follows:

State v
3% (1236) 0.76
-1 (1512) 0.074
5+ 1 (1688) 0.059

Again with the exception of the 3-3 resonance, v'<1,
and we conclude that the modifications arising from the
coupled equations would be small.



