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Model for Electron Excitation of the Nucleon. IP
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Institute of Theoretical Physics, Department of Physics, Stanford University, Stanford, California 94305
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The model of oscillations of the meson field in the nucleon introduced in a previous paper is developed
and extended. The model provides a dynamical framework for investigating the electromagnetic properties
of the nucleon and gives an excitation spectrum similar to that observed for the nucleon. In this paper we
discuss an improved variational solution for the ground-state meson field and the construction of a conserved
current. We investigate the problems presented by a fixed-source theory and the linearization of the @4

theory in constructing this current. Once we have a model for the current, we can calculate all the electro-
magnetic properties of the nucleon on a consistent basis. We calculate the allowed transverse and Coulomb
electron scattering form factors for all the levels of the nucleon up through 2850 MeV, and we compare
with existing data wherever possible. We also compare with what is known from phenomenological analysis
of photoproduction. Using the magnitude of the ground-state field obtained from a fit to the experimental
inelastic form factors, we can compute the anomalous magnetic moment of the nucleon and the pion-nucleon
coupling constant. We also use our parameters to investigate the elastic form factors. We show that our
model is the appropriate limit of the coupled equations of motion for the meson field and the spin and
isospin of the nucleon source. The model is only very crude, but it does indicate some of the interesting
things that can be learned from electron excitation of the nucleon.
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Fro. 1.Low-lying spectrum of the nucleon (see Ref. 8).
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I. INTRODUCTION

HE construction of very-high-energy electron ac-
celerators makes electron excitation a practical

method for investigating the details of the excited
states of the nucleon. Existing machines have already
been used to study the well known J' = as+, T= ss (1236-
MeV) resonance. ' ' However, the nucleon is now known
to have many levels, and an exhaustive study of the
higher resonances is being conducted at the Stanford
linear accelerator center (SLAC).' Important data on
these levels are now available from the Cambridge

electron accelerator (CEA)' and Deutsches electronen-
synchrotron (DESY)" groups. We indicate in Fig. 1
the numerous states that comprise the low-lying spec-
trum of the nucleon.

From both a theoretical and experimental standpoint
one would like to have some idea of what to expect in
these experiments. From a theoretical point of view one
would at least like to make some predictions before the
experiments are completed; from an experimental point
of view, estimates of the transition form factors are
useful in planning new experiments and in interpreting,
understanding, and correlating the data as they
accumulate.

The detailed theoretical understanding of these
higher excited states requires a theory of strong inter-
actions, and reliable, quantitative calculations are ex-
tremely difFicult at present. Pending the feasibility of
such calculations, one is led to consider models. In the
present work we develop further the model of electron
excitation introduced by Walecka. This model, which

by necessity is very crude, exhibits a level structure
quite similar to that shown in Fig. 1 and allows us to
calculate the transition form factors. In addition, the
model permits us to investigate interrelationships among
various electromagnetic properties of the nucleon and
its excited levels.

6A. A. Cone, K. W. Chen, J. R. Dunning, Jr., G. Hartwig,
Norman Ramsey, J. K. Walker, and Richard Wilson, Phys. Rev.
156, 1490 (1967); Phys. Rev. 165, 1854 (1967).' F. W. Brasse, T. Engler, E. Ganssauge, and M. Schweizer, in
Proceedings of the 1967 International Symposium on Electron
and Photon Interactions at High Energies, Stanford Linear Ac-
celerator Center, Stanford, California (to be published); also
Deutsches Elektronen-Synchrotron Report Xo. 67/34, 1967
(unpublished).

A. H. Rosenfeld, A. Barbaro-Galtieri, W. J. Podolsky, L. R.
Price, Matts Roos, Paul Soding, W. J. Willis, and C. Wohl,
Rev. Mod. Phys. 39, 1 (1967).' J. D. Walecka, Phys. Rev. 162, 1462 (1967). Hereafter this
article is referred to as I.
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As described in I, the starting point for the model is
the following pair of observations:

(i) From a dispersion-theory point of view the higher
nucleon isobars are very complicated combinations of
many-meson states. We might get a lrst approximation
here by going to the other limit and treating the pion
6eld as a classical field, an approximation which should
be good when there are many (free) quanta present.

(ii) There should be excitations that correspond to
normal-mode oscillations of the pion cloud —similar in
spirit to the collective-shape oscillations one has in
nuclear physics. "

In the rest of this section we discuss briefly how the
model has been extended and the new results that have
been obtained. In Sec. 2 we present the general formulas
for inelastic electron scattering and the inelastic form
factors. In Sec. 3 we review the model as developed in I
and present an improved variational solution for the
ground-state pion field. In Sec. 4 we discuss in detail
the construction of a conserved current and gauge in-
variance and the problems arising in this respect from
the use of a fixed source and from the linearization of
the theory. In Sec. 5 we give the details of the calcula-
tion of the matrix elements and form factors. In Sec. 6
we consider the predictions of the model and compare
them with experiment. In Sec. 7 we present a short
discussion and surmnary of the model.

The main extension of the model has been to con-
struct a current 2„(x) which is conserved: BJ„(x)/
Bx„=0. Now the general inelastic electromagnetic
vertex is characterized by four reduced matrix elements,
or equivalently by the four linear combinations"

with p= ~1, 0, and

f.= (EE'0'/SvrM')'"(~gJIIJe(0)llq*n J). (1.2)

In these expressions E and E' are the initial and final
target energies, 3f is the isobar mass, 0 is the normaliza-
tion volume, J„(0)=(J(0),ice(0)) is the electromag-
netic current operator taken at the origin, and J & is
the angular momentum and parity of the isobar. In the
rest frame of the isobar one has

In our model we calculate
I f+I', I f I', and

I f, l' or,
equivalently, the matrix elements of the transition
multipoles Tr~"(q*), TL~~'g(q*), and M&~o'~'(q*).
There is no longitudinal term corresponding to fe. In
general, the three multipole operators TI,~", '11,~ 'g,

and Ml, ~ '"' are independent. But for the normal
parity transitions there is a relation well known in
nuclear physics'0 between the matrix elements of Tl,~'
and 3f "' in the long-wavelength limit:

In our calculations we use current conservation to re-
place V J by —p in the expression for Tr,~" Cons.e-

quently, the relation (1.5) is automatically satis6ed in
our model. "

A second extension has been to find a better varia-
tional solution for the ground-state pion 6eld. The
variational form contains three parameters rather than
one, as was the case in I. At large distances the varia-
tional solution reduces to the Yukawa tail, and we can
identify the renormalized pion-nucleon coupling con-
stant f ~'. It should be noted that our model has a
finite coupling-constant renormalization since G ~ is
diGerent from G, where 6 is the coupling constant that
enters into the original Hamiltonian.

We give predictions for the transverse and Coulomb
form factors for all the allowed levels up to the J
=~~+ (P), T= 2 (2850-MeV) level. (Allowed levels are
those that can be connected to the ground state of the
nucleon by the operation of a single creation or destruc-
tion operator. ) In addition, we give predictions for all
the background states which are supposed to resonate
in the region of .each main level. Taking the limit
q„2~ 0, we can compare our predictions with the various
phenomenological analyses of photoproduction" ' which
have been carried out in the higher resonance regions.
The relation between the usual photoproduction ampli-
tudes and the multipole operators used in the present
work is derived in Appendix A.

The current in our model has a ground-state expecta-
tion value proportional to the square of the ground-state
pion field, and so we can compute the anomalous iso-
vector magnetic moment of the nucleon. We also calcu-
late the elastic form factors and give values for the
root-mean-square radius for the charge and magnetic
moment of the nucleon.

q„=—(q, iso) . (1.3) 2. ELECTRON SCATTERING

fo= (vo/v*)f' (1 4)

' Y. deForest, Jr., and J. D. Walecka, Advan. Phys. 15, 1
(&966)."J.D. Bjorken and J. D. Walecka, Ann. Phys. {¹Y.) 38, 35
(1966).

Current conservation provides one relation among these
four quantities, and it simply eliminates fe.

We give here a brief review of the theory of electron
scattering. Ke consider the case where only the final

"Note, therefore, that all the gener@I, properties of the theory
coming from current conservation, or equivalently gauge invari-
ance, are actually built into the calculation at the start.

'3 R. Walker (private communication); and (to be published).
~4 Y. C. Chau, Norman Dombey, and R. G. Moorhouse, Phys.

Rev. 163, 1632 (1967).
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tq- p-p =p-p
tp, 2

p

Fn. 2. Kinematics for in-
elastic electron scattering in
the one-photon-exchange ap-
proximation.

Detailed properties of the form factors f„f+ are
highly model-dependent. However, in the limit q* —+ 0
(which implies —qs~M —m) the form factors have
simple threshold behaviors:

(1) Normal parity transitions —',+~ ss, s+,

f~ (qa)
J'—1/2

f+- (q')' "'
(2) Abnormal parity transitions st+ ~ s, s+, s,

electron is detected as in most of the experiments per-
formed so far and in those being carried out at SLAC. '
Bjorken and Walecka" have given a relativistically
covariant analysis of the process of electron excitation
of the nucleon and have discussed all that can be said
about the transition form factors on general grounds.
They have also shown the relation to photoexcitation
of the nucleon resonances. We summarize their results.

Figure 2 illustrates the kinematics of electron scatter-
ing in the one-photon-exchange (OPE) approximation.
The angular momentum analysis is best carried out in
the rest frame of the final isobar because one then has
an eigenstate of angular momentum and parity. The
electromagnetic vertex is characterized by the four
quantities fz, f//, f, given in Eqs. (1.1) and (1.2),
Current conservation eliminates fo in terms of f, [see
Eq. (1.4)j. The electron scattering cross section in the
laboratory is then shown to be (we set m, =0)

(da cr' cos'(-', 8)

~,da t.h 4e' sin'(-,'8)[1+(2e/m) sin'('8)] q"'

( q' Ms
+

I
+ «~'('*s)) t'

I / I

'+
I /-I '1 (t &)

(2q*' m'

q threshold= (M —m')/2M)

in photoexcitation

(2 2)

In this expression e is the initial electron energy, 8 is
the electron scattering angle, m is the nucleon mass,
and q'=q„' is the invariant four-momentum transfer.
We see that electron scattering measures two inde-
pendent combinations of form factors, the Coulomb and
transverse form factors. These may be separated experi-
mentally by keeping q2 and the energy loss —go= e—e'

Axed and varying 8 or by working at 8=180', where
only the transverse contribution remains. The trans-
verse form factor can also be measured at one mo-

mentgm trartsfer, namely q„'=0, or

f -(q*)'+"
(qs )

J'—t/s

If+I'+If I' (J+-s (qs '

I f.I' s*-'V ;'q*——
which is just Eq. (1.5).

(2.4)

With a well-localized source, as is the case in nuclear
physics, one can give expressions for the transition form
factors in terms of the Fourier transform of the transi-
tion charge and current densities":

4m

I f I'= g 1(~fllMr'"(q*)IIJ )I' (2-8
2J;+1 z,=o

4x
If+I'+lf-I'= 2 [IV/IIT "(q*)IIJ')I'

2J~+1 L=t

+ I(jtll2 ~-'(q*)IIJ') I'j; (2 6)

Ml, /tr '"'(q*)= jL,(q*x) F'I.M(II*)p(x)dx, (2.7)

T~~'(q*) = (1/q*) [»&(j~(q'~)$»t"(0*))3

J(x)dx, (2.8)

Tr/tr *(q*)= [jl,(q*x)Irzt~(Q )j.J(x)dx, (2.9)

where the nuclear electromagnetic current operator is

J„=(J(x),ip(x)), (2.10)

Experimentally, only spacelike momentum transfers
[qs&01 are available, and it is not clear whether the
threshold behavior still persists in this region since this
implies a minimum three-momentum transfer

q + q threshold= (M' —m')/2M.

This is an interesting question on which we would like
our model to shed some light.

For the normal parity transitions there is an addi-
tional relation between f, and f+ valid near threshold:

lab; over resonance M' —m' m

&&[I f+I'+ I f-I'j"-s (2.3)

and Ir, r, t~ are vector spherical harmonics, "which can
be written as

Thus with electron scattering, we can add a new dimen-
sion onto the photon problem. In addition, there is also
the possibility of direct Coulomb excitation.

Irr t~(0,)= —i[L(L+1)) '/'(x)& V) I'r, M(Qs) . (2.11)
'~ We use the angular momentum notation of A. R. Edmonds,

Angular Momentum sn Quantum Mechanics (Princeton University
Press, Princeton, ¹ J., 1957).
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Integrating by parts and using VXx=0, we can write
(2.9) as

z
~s,sr (q*)= jL,(q*x) I'r, or(Q.)[I.(L+1)]t"

X(x [VX J(x)])dx, (2.12)
and (2.8) as

1
Tz,sr" (q*)=

iq* [L(L+1)]'I'

X [V ' [xX(VX J(x))])dx. (2.13)

Expanding the divergence term we can 6nally write

S(x)

$(x) - Sp(l ) 8(0 x)

sp 3
sp =

'7T 4

a

Fro. 3. Assumed form of S(x), the nucleon source distribution.

1
Tzsr" (q') = [(V J(x))(1+x V)

q [L(L+1)]"'

Xi ~(q*~) I'~M (f1*) q*'j r. (q—**)YLM(Q, )x

J(x)]dx. (2.14)

When we evaluate Tr, or", we shall replace V J by —p.
Our model will thus automatically satisfy the threshold
relations depending on current conservation.

What we shall do when we make our model is use
the form of the cross section of Eq. (2.1), which was de-
rived in a Lorentz-invariant way and which has the
relativistically correct kinematic factor extracted. We
shall then use the above expressions, which are ap-
plicable to a fixed-source theory, to evaluate the
transition matrix elements. The transition multipoles
will be evaluated for a momentum transfer q*. For a
fixed-source theory there is no ambiguity; when the
source recoils, however, there is no unique prescription.
We use q* since the original analysis" was carried out
most directly in the rest frame of the Anal isobar. Ke
are thus evaluating the kinematic factors correctly and
neglecting recoil only in the transition matrix elements.
Such a treatment must break down at very large mo-
mentum transfers, and our results there are at best
qualitative. A better treatment, while greatly desirable,
is very diKcult [witness the situation in the much
simpler case of elastic scattering from the deuteron at
large momentum transfers).

3. REVIEW OF THE MODEL

As in I, we start from the following Hamiltonian for
a symmetric, pseudoscalar-meson 6eld":

1
dx(0-0-+ V4 V4 +is'4 A.)

2

+-'lt dx(4 rt )' 'p dx4 4--

rr is an isotopic spin index which runs from 1 to 3, S(x)
is the nucleon source distribution function, and &, p,
and G are coupling constants. e and g are the usual

Pauli matrices.
To make the Hamiltonian a little more realistic, we

have included a phenomenological attractive potential
scattering term with strength p inside the core region.

This is to represent particle exchanges such as vector
mesons, baryon pairs, etc. Ke have also assumed a
repulsive (X)0) p' meson-meson interaction for reasons

which will become apparent. To simplify the problem

still further, we assume that S(x) has a uniform gradient

out to radius a, as shown in Fig. 3. Thus we write

S(x)= (3/s.a') (1—x/a) tl (a—x) . (3.2)

Since we are interested in the oscillations of the pion

cloud, we neglect the dynamics of the spin and isospin

of the nucleon source. Thus we assume that

0. =0, ~ =0. (3.3)

4 (x,&)=4o (x)+~ (x&). (3.5)

Inserting this expansion in H and using the differential

equation satisfied by pp (x), we arrive at the following

equation for p ..

(We discuss this assumption further in Sec. 4 and

Appendix B.) e and ~ are included so that we have the

correct over-all transformation properties.
To 6nd the ground state of the Hamiltonian, we

minimize H with respect to a time-independent po:
5H/8/+=0. This leads to the following nonlinear

differential equation:

[& y' l rt p yp—s+P—H(a x)]yp (x)—
= —(G/2m)r (e V)S(x). (3.4)

We are interested in excitations of the system, and so
we expand the pion field about its ground state:

+ (G/2m) dx r (e Vp )S(x) . (3.1) [Vs res/rifs p +pg(a oo) g(rtospps)]rf

=l ri'Qo Pos+Pos4o ]. (3.6)
"W. Pauli, Meson Theory oj' Nuclear Forces (Interscience

I'ublishers, Inc., New York, i946). The ground-state pion 6eld thus creates an additional
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potential in which the field can oscillate. '~ We can ex- v{x)

pand the field q in the same manner as is done for the
free-meson field,

1
g (x,t)= P [c„( q„(„(x)e '" &'

aim [2(g„,f»a
+c.(„ tti. ( '(x)e'" &'5 (3 7)

p(x-o) -pa(a-o) - 2.e e
x~0 &'-'~ ' xro '

[Chelm y&~' l'm' g =vaa'~nn'~ll'~mm'a (3.8)

in order to quantize these excitations.
We can try to get a crude solution to the nonlinear

differential Eq. (3.4) by using the following three-
parameter variational form:

ya (x)=r (a x)ya(x)

yp(x) =c,
——p(~—a)e

@&a
(3.9)

=C (1—e)+ e, x)u.
x/u x/u

As shown in I, we can interpret c„l ~ and c„l as the
creation and destruction operators for the normal-mode
excitations of the pion field. We impose the commuta-
tion rules

-p+5kca

Fro. 4. The potential a(x) zn I V'+k' —a (x) Jg =0.

We thus have to solve a Schrodinger equation with the
potential illustrated in Fig. 4. The repulsive meson-
meson interaction gives us an additional barrier which,
when added to the centrifugal barrier /(3+1)/u', allows
us to have sharp resonances high in the continuum.
Assuming that we can extend the barrier to infinity, we
can immediately write down the solutions for q.

tI„( (x)=R i(x)F( (Q.),

c, p, and e are the parameters to be varied. At large
distance the solution for pa must reduce to the Yukawa
tail arising from the (OPE) pole;

Z„i(x)=
—1/2

j((E„gx),
uaj(„ta(X„()

(3.15)

0o (x)~""2m 4x

e
—JMX

O''X

where X„&=—K„&u and j&(X„&)=0. k~& and E„& are re-'
(3 1()) 1«ed by

k~P = (1/u') [XaP—Pu'+5Xcau'j. (3 16)

which depends on two of the variational parameters.
Thus our model has a finite renormalization with G ~
&G, where G is the coupling constant in the Hamil-
tonian (3.1). Note that we assume for simplicity that
ga is constant for x(u.

The equation for g then takes the form

where

[V'+0'—v(x))xi" (x) =0, (3.12)

v (x) = —p+5) c'

——p (x—a)e e
—p (x—a) —2

=5'' (1—e)+ e, x) u (3.13)
x/u x/u

and where k is defined by

(3.14)

17This approach was first used in another context by I.. I.
Schi6, Phys. Rev. 84, 1 (1951).See also D. Yennie, ibid. 88, 527
(1952) for a criticism of treating a X@4 theory as a classical field
theory ashen P or qb are large. He points out that quantum Quctua-
tions then become large. This point is discussed in detail in I.

We thus obtain the following expression for the re-
normalized pion-nucleon coupling constant:

f ~'= (1/4a. ) (p/2m—)'G ~'= 4a.e'(cu)'e'&~ (3.11)
pu' —SXc'u'= 16,

5)c'a'= 40.
(3.17)

The last relation gives a barrier which is high enough
so that the states we are interested in will show up as

SPECTRUM

p, a = I

Pa -5)tc o = I6
2 2 2

I KEEPING HIGHEST & STATES]

P )CAL ( pl )EXP

I I/2

9/2

9/2

7/2

7/2
EXCITATIONS HAVE +

T= I/2, 3/2
5/2

3/2

3/2

I/2

I/2

I/2

5 I26

4 IO.3

7.9

2 5.6

I 2.6

I2.7 P

957

6.2

4.7

Pro. 5. Spectrum for the choice of parameters in the text:
Pa' —5P c'a'= 16.

The resulting spectrum is shown in Fig. 5 for the follow-

ing choice of parameters:
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resonances as discussed in I, but the exact value here
is not very well determined. We note the following
features:

(i) Coupling the spin of the nucleon to the meson
excitations and keeping just the highest I states as we

go up in energy (these are the states which will have a
large enough barrier to show up as resonances), we get
a spectrum very similar to that observed for the nucleon.

(ii) The excitations have T= ~~and 2 since we couple
the isovector excitations to the isospin of the nucleon
core. We therefore appear to have a doubling of states
compared with experiment, but it is probably too strong
a statement to assume that our P is independent of
spin and isospin. Notice, however, that every level
which has been experimentally identified for the nu-
cleon has its counterpart on this figure,

(iii) There is a low-lying s-wave state, but its exact
position is, of course, very sensitive to what goes on in
the inner region of the nucleon. The low-Lying -',+ state
will get pushed up by its interaction with the ground
state.

We can now proceed with the variational calculation
for the ground-state pion field. Using the result

t'1 do 2
V'P(~ x)yo(x)g= (~ x)~ ——x ——y, (x), (3.1g)

kx dx' x'

we can write H for the ground state go as

with

A 4 I(——4pa) 4I—(3pa+I4a)+ 6I(2pa+ 214a)

4I—(pa+3I4a)+I(4I4a),

A o
—— 4I—(4pa)+ 12I(3pa+14a) 12I (—2pa+ 2I4a)

+4I(pa+ 314a),

A o
——6I (4pa) —12I(3pa+14a)+ 6I(2pa+ 2I4a),

A i= 4I (4pa—)+ 4I (3pa+ I4a),

Bo= (1/2pa) Lp a +p a +2pa j+2I (2pa)

L&/(p—+p)alL~'a'+ma'+ (p+ p) aj
4I (pa+—I4a)+ (1+14a)+2I (214a),

Br= —(1/pa) Lp'a'+ p'a'+2pa] 4I(2p—a)

+L2l(p+p)a jLp'a'+pea'+(p+p)aj
+ 4I(pa+ 14a),

Bo=( / pa)L~'a'+p'a'+ pal+ ( pa)

and where

(3.24)

I(ya)= e» ~ o—e»'A. (3.25)

The procedure we adopt is to minimize H&»& with re-
spect to p and e while keeping c fixed. This determines
values of p= po and e= eo. Using the values pa= 1,
3X 'c'a=24, and Pa'=56 from our approximate fit to
the spectrum, we obtain pou= 2.54 and 60=0.09. Using
these values of po and eo, we then minimize H with
respect to c: 8H/8c=0=bHcore/oc+6Htail/8c. At this
point it is convenient to introduce the dimensionless
parameter o. defined as

Ho= H,.„+Hr' i, (3.19) rr, —=G/2 (ma) (ca) . (3.26)

where

3 0

d"LV4'o' VA+ (2/x')4 o'+ p'4 o'
2 0

+2Xgo4—Phoo+ (3G/rrma4)rtro], (3.20)

3 00

Hr3ii = dx(Vgo ' Vpo+ (2/xo)po2
2 Q

+A o'+ '~4 o'j (3.21)-
For x(a, go=c. Thus,

Hcore= ( m2/)a'c'aL6+p'a'+-'p, c a
—Pa'+3G/rrmacaf. (3.22)

Note that IIQQTe does not depend on either p or ~. Using
the explicit form of go for x) a, we have

H4 oii= (6rr/a) c'a'$-'Xc'a~A 4o +o Xc a A oo

+ (Bo+Pc'a A2)o'+ (Bi+Pc Aa) r+oBo
+ ', Xc'a'I (4pa) j,-(3.23)

5H/bc= 0 then yields the following equation:

(3/~)a= [j9a'—6—I4'a' —3Xc' ja—
t 3X3' c' a4Aoo'

+3X ' cAa...'+ (B,+u, ' cAa,)&oo

+(Br+3~ '
cAax) oo+Bo+3)c'a'I(4poa) j. (3.27)

At this stage all the parameters in the model have been
determined with the exception of c, the magnitude of
the ground-state pion field. c will be determined by
fitting the observed strength of the inelastic form fac-
tors. But note that c appears in Eq. (3.27) only in the
combination 3P c'a', and we have already determined an
approximate value for this quantity from the Gt to the
spectrum. Thus Eq. (3.17) and the variational solution
for the ground state determine 0, uniquely. The numeri-
cal value obtained is 0.= 11.1. One can easily show by
looking at PH/5c' that the variational solution we have
obtained indeed corresponds to a minimum in B. We
must consider Eq. (3.27) as just a very crude order-of-
magnitude estimate of 0, however, since the right-hand
side depends on differences of large numbers which are
only poorly determined in this modeL. The main virtue
of our new variational solution is that it gives us a
fairly realistic determination of the tail of the pion Geld,
once the value in the source region c is determined.



P. L. PRITCHETT AND J. D. WALECKA

4. CURRENT OPERATOR

A. Standard Field Theory

In discussing the current operator, we 6rst consider
the standard 6eld theory for the pion-nucleon system
in which the pion is treated relativistically and the
nucleon nonrelativistically. In this standard theory we
start from the Hamiltonian

We have chosen to synunetrize 9 and j. Because of
Eq. (4.4), this makes no difference in the standard
theory. The current is clearly conserved: V J+Bp/Bt
=0. (We assume, as in the standard theory, that
[qhoPp, P ]=0. We will return to this point later. ) Know-
ing p, we can compute all the off-diagonal matrix ele-
ments of p. We shall show later that for the diagonal
matrix elements of p we have in addition

II= dx($—P +V/ VP +ts'@ P )+sX dx(P P )
2 (n~ Pdx)n)= Q,

dx P(x)@.y + dx ft[m+ (y'/2m)Q
2

+ (G/2w) fdx p'r vpVy . (4.1)..

To generate a conserved current, we make the replace-
ment V ~ V—seA in the Hamiltonian (4.1). In the
standard theory this is a well-de6ned procedure, and
in particular the result will satisfy gauge invariance. We
thus obtain the current

5= —[yX V;0]s+ (G/2m)4'e;[~x N]4,
i=1, 2, 3. (4.3)

The first term is the usual Klein-Gordon current. Note
that in the present theory the components of the pion
held commute:

i~.,es]=0 (44)

Using the field equation (4.2), we compute

—V J—=p= (PX8'P/BP]s
+(G/2 )0'(( V)[NX ] )0 (45)

We shall neglect the nucleon recoil term ys/2m. The
pion field equation is

[o-~' &Vs~s+e-(*)]~.

where Q is the total charge.
To linearize the theory, we write

P (x,t)=Pp (x)+st (x,t).

[Pox—&;go]s""+(G/2m)S(x)e;[~x Po]s'~
—[Pox &'st]s —[stx &;go]s

+(G/2m)S(x)e [~X~]„s=1,2, 3 (4.10)

t =[yoXa ~/at' ],+(G/2m)S(x)(e V)[yoX. .],
+(G/2m)S(. ) (e V)[~X.]s,

where we have kept terms to first order in g.

B. Fixed-Source Model

In the fixed-source theory S(x) is taken seriously
from the beginning. Capps and Holladay' have con-
sidered the problem of electromagnetic currents in a
6xed-source theory. They show that the substitution
v -+ v —ieA is no longer sufficient to guarantee gauge
invariance. To obtain gauge invariance, it is necessary
to introduce model-dependent line currents.

To investigate the 6xed-source problem in the present
treatment without the added complications involved in
linearization, we replace the Xg' term in the Hamiltonian
(3.1) by the following expression:

Again, the 6rst term is the usual Klein-Gordon result.
In our model we make the identi6cation

dx(4o 4o)4 4 (4.11)

Pter Q~s(x)er, (4 6)

and we then assume the explicit form (3.2) for the
nucleon source distribution S(x). The current and time
derivative of the charge density arising from the
standard 6eld theory are then

~ = —[Nxv ~t]'"
+ (G/2m)s(x)a. ;[~XP]s™,s= 1, 2, 3

(4.7)
t = [ttX&'tt/&t']s'

+ (G/2m)s(x) (e V)[NX ~]s'"

the pion field equation (4.2) becomes

[& t" &A4s+Pg—(o —x)]4--
= —(G/2m)r (e.V)S(x). (4.8)

In Sec. 4 C we consider the additional problems arising
from linearizing the @s theory. The corresponding equa-
tion of motion is

[a I s+p&(e x) —~go'A')4— —
= —(G/2m)r (e V)S(x). (4.12)

For the ground-state (time-independent) field yp the
equation is

[& ts'+Ptt(& x—) &4 Ao']—V o-
= —(G/2m)r (e V)s(x). (4.13)

By comparing with Eq. (3.4), we see that the potential
has been chosen so that q p:po 1s a solutloll. Fol cpp

' R. H. Capps and %.G. Holladay, Phys. Rev. 99, 931 (1955).
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then satisfies the equation

[f-j tss+—Ptt(u x)—Xg—o~go~]rt =0 (4.16)

The current must contain model-dependent source
terms. Therefore, we choose the source term so as to
produce a conserved current; as a consequence, the
lowest order 5 matrix will be gauge invariant since

So = +s 2 A '"'d'x (4.17)

is unchanged under the substitution A „'*'-+A „'"'+Oh/
Bx„ if the current is conserved. This follows from a
partial integration. We thus dePsse the current as
follows:

4—=—[yX~;y]s" +(G/2sss)S(x);&X P]s
i=1, 2, 3. (4.18)

To first order in g we have

Ps= —[osoX &;po]s'~ [yoX—&;st]s [stX—~cpo]s
+ (G/2sss)S(x)o;[~Xsl]„ i = 1, 2, 3. (4.19)

Using the field equations, we compute

—V J=p= [q oX—&sot/N']s

+(G/2m)S(x)(e V)[qX~]s. (4.20)

The continuity equation is thus satisfied. Let us define
the field p by the following

we thus use the variational form given in Eq. (3.9).
%e then have the result

[~X iso]'~= 0= [sXV' soo]'& (4 14)

To find the excitations of the system, we again expand
about the ground state:

y.(x,t) = yo (x)+st.(x,t) . (4.15)

Thus, the total charge Q computed from P is a constant
and is given by s+ Ts. Our definition of the current is
therefore satisfactory from this standpoint.

The current J and charge density p that we have
constructed in this modified fixed-source model by
requiring current conservation are the same (to first
order in it) as the J and p computed from the standard
field theory considered in Sec. 4 A. [Recall that yo

and the result (4.14).]
C. Linearization of P' Model

%e now consider the additional difhculties en-
countered in constructing the current after linearizing
a Hamiltonian such as (3.1) that contains a p™~n-
meson interaction. One approach is to proceed as in
Sec. 4 8, namely, we determine the model-dependent
source terms by requiring current conservation. %e
again define

J;=——[PX&,ll]s'~
+ (G/2sss)S(x)o;[~X P]s', i——1, 2, 3. (4.25)

Now, using the 6eld equations (3.4) and (3.6), we com-
pute (to first order in g)

—& .~= p = [PoX&sst/at ]s+ (G/2m)S (x) (e V)
X[stX~]s+2),(go)s(e. N)[~X st]s. (4.26)

The P' interaction thus leads to a &os term in p. Tile
resulting charge density (to second order in rt) is

P =S(x)-', (1+rs)+ Lgo X &st/&t]s+ [rtX ~st/~t]s

y (G/2sss)S(x) (e v) [stX~]s
+2K(go)'(e N)[~X st]s. (4.27)

Again, we have the desired properties that

't.=—s Z [c.s st„i„(x)e-'"-"
»l~ (2~ ss)i/s

—c„)„tsar„s„t(x)e'" &']. (4.21)
Q= pdx= s+ Ts yl

(4.2S)

Q= pdx= g+grs+ dx[qXast/at]s ———,'+ Ts,

o=iiB,Q)= pdx= —Jv Jdx=. o.
(4.24)

By comparing with Eq. (3.7), we see that

O'L/Bt= t . (4.22)

The charge density (to second order in t) can thus be
written as

p =S(x)-',(1+rs)+ [isoX8rt/8t]s+ [stX&g/Bt]s

+ (G/2m)S(x) (e V)[stX o]s. (4.23)

Using 8s t»/BP=B&»/Bt and the field equations for rpo»

and g, we compute

Q=iPt, Q]=0.

The current 5 is the same as before, but now the charge
density p contains the extra term

A second approach to linearizing the theory is to
take j„as an approximation to the current operator in
the standard Geld theory, discussed in Sec. 4 A, to be
used in computing the independent matrix elements of

Tzsr' and Mr, sr '"' again, with the long-
wavelength restriction [Eq. (1.5)] built in at the start.
In this approach one has

P =S(x)-;(1+.,)+[y.X~st/at]

+ (G/2')S(x) (e V) [stXv]s+ [st XBst/Bt]s. (4.29)
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In both approaches the current is given by

LgoX & Po)s'~ —LgoX ~'qt)s —
Lqt X~'Po)s

+ (G/2m)5(x)0;I ~X qt)s, i = 1, 2, 3. (4.30)

We have performed calculations using both approaches
and shall discuss the results in Sec. 6.

Throughout this section we have maintained the
assumption that 0- =0= 7', and we have been able to
develop a consistent model in the sense that the model
does possess a conserved current. In Appendix 8 we
show that the present model can be considered as the
limiting case of a presumably more correct set of equa-
tions of motion which permits 0. and v to have time
dependence.

In(tl) JM.TM.)=Z Z (IF~'I 1-:TM.)
qq' sam'

X(lm ', m-'I@JM )c, ,,tIO)$ t', . (5.4)

We have coupled the orbital angular momentum of the
meson Geld to the spin —,

' of the nucleon core to give a
state of definite J, and the isospin 1 of the meson field
to the isospin ~ of the core to give a state of definite T.
Thus, the excitations have isotopic spin

1 3
2& 2'

The parity of these states can be easily determined.
Since the pion field is pseudoscalar, the parity operator
in the space of creation and destruction operators for
the normal-mode excitations is given by

S. COMPUTATION OF MATRIX ELEMENTS IIc„l tII '= (—1)'+'c„l„~t. (5.5)

)Cnlmq~c~'l'm, ', q' )=&en'bll'$mm'$qq' ~
g~=b

The ground state is

(5.1)

(5.2)

where $, and i, are two-component spin and isospin
Pauli spinors for the nucleon core and

I 0) is the vacuum
for the meson-field excitations

c„,„,,I0)=0. (5 3)

The ground state is just the nucleon with its surround-
ing static meson Geld. For an excited state of the nucleon
which can be reached through an allowed electromag-
netic transition, we write

%e are now ready to compute the transition matrix
elements of the charge and current operators. First, we
must construct the states of the theory. It is convenient
to employ spherical tensor notation" and. to introduce
spherical creation and destruction operators satisfying
the commutation relations

Thus the parity of the excited states is

llc„,„-tI0)= (—1)l+ c...-tIo)
or

(5.6)

where a and b are tensor operators, we find

II= (—1)'+' (parity of excitations). (5.7)

We have used II
I 0)= IO) which follows from the posi-

tive parity of the nucleon.
We consider the charge density operator as given in

Eq. (4.29):

0(x,t) =~(x)k(1+rs)+LdoX~n/~t)s
+ (G/2m)5(X) (ls V)Lqt X~)s. (5.'8)

The term 5(x)-,'(1+rs) cannot contribute to the transi-
tion matrix elements, and so we neglect it for the pres-
ent. Inserting Pom ——r (e x)po and the expansions for

and q, and using spherical tensor notation"

Lax b)s —— 42i p—(iqiq'I 1110)alqbs; ) (5.9)
qq

p(x t) = V2 Q g (1qiq'I 1110)r&qL(-,'&o„l)'t'(e x)go(x)+ (1/2lo„ls)'"(G/2m)S(x) (e Z))
qq' nlm

X[c l, ;tqt„l t(x)e'""" (—1)'c„l, , q—t„l (x)e '"""). (5.10)

The transition matrix elements of the charge density operator are thus

(n(ls)JM~TMrI p(x)I s+m„sm)= p p V2D;trio f~)(ipse'I isTMz)(lmsm'I t~sJMq)(ig"iltI 1110)
qq'q" num'

x((! .l)"'~.(x)L&-"( *)~-.)+(I/2 -l')'t'(G/2m)5'(x)L~-'(~ ~)&-.))&-l'(x) I'-'(II.), (5»)
where we have written

q„,„(x)=Z„,(x)I', (n.).
The following results are readily established:

i'q'~lq-l-, =&(kmliv" I kiss'),

g.,t(~ x)~..= —(4 Ps g(im--;m
I
1-;—,'m. )I, -(n.),

(5.12)

(5.13)

m"
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We project out the IMth multipole as needed in Eq. (2.7) using

(2L+1)(3)(2l+1) '12(L l 1) L l 1
I'(„*(0,)Yg„-(0,)Vr,~(0,)dQ, = (—1)"

4n Eo 0 Ol M —m
(5.14)

f
/L l 11 (L l 1

&r~(&,}~ -[1'i *(il*)~ It(x)]do*= (—1)"[(2L+1)(2l+1)]"'I
ko o o)(M

")d lq
I

———l~-~'(x)
&dx x)

" L= l+1

From the above we ind

(~(l ', )JM~T-M~)Mr~c'"'(q*)
~

', +m„xm—()

X» (5.15)
t' d l+1

Z.,t(x), I.=l—1..&dx x

(L l 1~ (L l 1= —V'6[(2L+1)(3)(2l+1)P" Z Z I ~ (—1)"(im"-,'m'
~

1-', -', m, ) (-', m~1 q"
~
-,'1—'q')

~~'~" ea'e" (0 0 OJ kM —m

)& (iq~~q'
~

1~~TMz) (lm~~m'( l~~ JMq) (iq"1q
~
1110) ji (q*x) (~co„&)'1%„&z(x)R„&t(x)x'dx, (5.16)

1 G (d l~
@.ir, (x)E„P(x)= yo(x)+ S(x)i ——

i
R„i'(x),

co~P 2m kdx xl
L= l+1

(5.17)
1 G (d l+1)-

= yg(x)+ S(x)i —+ i R„P(x), L=l—1.
~22m &dx x J

Using standard angular momentum recoupling techniques, "we have

(n(l ', )JMgTMp-)MI3r '"'(q*)
(
',+m„,'mg)--

'I

l i~ -', 1jL(q+x) (~&&el) +~fL(x)&nest (x)x dx [(2L+1)(3)(2l+ 1)]I
I ~

(2J+1)'I' (—1)~
Eo o 0) E J I-

&& (L MJMq
~

LJ-',m,)3—[2(2T+1)]'" (10TMp~ 1T-,'M~). (5.18)
T 1

Reading oB the reduced matrix element, we have 6nally,

k(4 ) I (~(lk)JTM~IIM~'"'(q*) llk+lm~) I'

pL l 1~'-,' 1 -', '-', 1=27(4n) (2T+1)[(2L+1)(2l+1)(2J+1)]i
(0 0 0) l J L 1 T 1

2

X(1OT3Er~1T'.Mr)'u. g fj c(g"x)e u(x)R r'(x-)x'Ch., , (S.W.)
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where C „&z(x)R„& (x) is defined in Eq. (5.1/). Observe that all the selection rules are contained in the 3-j and 6-j
coeKcients

(i) I+l+1 even

L=/w1,
(ii) L=J+

J=/x-', ,

(iii) T= z~, -', .

(parity)

(s.2o)

If we had started with Eq. (4.27) for P, then the result would have been exactly the same as Eq. (5.19) except that
in the definition of C „iz,(x) we would have had to make the replacement

(5.21)

The LMth electric multipole is given by Eq. (2.14). Keeping only terms linear in &, we have from Eqs. (4.19)
and (4.20)

G
V J=-p=-z.pgr. e @p(x)—S(x)V gp,

BP 2m

x J= ep3r —(e x)QO(x)d ~—(G/2m)S(x)gyp.

Comparing with Eq. (5.10), we see that

(fl&' Jl&)= —&~ i(flPI&)

(5.22)

(s.23)

and that (fix Jli) can be obtained from the matrix elements of the first term of P by making the replacement

We thus have

(n(P) JMgTMr I Tzzz'(q*) P+m„2mi)

i 8 G
yo(x)x—x S(x)

M~) 8$25$
(5.24)

L(L+1)

X (L MJM Jl LJ—2zmg)3L2(2T+ 1}1'i2(10TMrI 1T'/Mr)

(2I-+1)(3)(2l+1) '"t'L l 1q -,'1
=(—1) (l .)"'

!(2J+1)'"
(0 0 01 l J I

C...(x)Z.,t(x)~I 1+*—!j.(q x)d,+
q*

" "
& dxi

Computing the reduced matrix element, we find

—:(4x)I(n(ll)JTM II7z'(q*)lll+lm)I'

d 6
i z(q*x)x' 00(x)—S(x) Z„,&(x)dx . (5.25)2'

(2L+1)(2l+1) ~L= 27 (4~)~„,(2T+1)(2J+1) (10TM&l 1T-,'Mr)2
L(L+1) &0 o o l J L

C'niz(x)~ni'(x)x'I 1+x—jz, (q*x)dx+
dx

d G
jz(q*x)h' A(x)—S(*) & i (x)Ch . (5.26)

d$2fg

The selection rules are the same as those given in Eq. (5.20). Again, the choice of Eq. (4.27) for p would require
replacement of Eq. (5.21) in the definition of C iz, (x).

Last, we consider the transition matrix elements of the magnetic multipole operator in Eq. (2.12). Keeping only
terms linear in iz, we compute from Eq. (4.19)

A(h)
x (VXJ)—=—V (xXJ)=it psT 2 + S(x) (g 1)gp

g 2m
(5.27)
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where I is the angular momentum operator
1=—(—i)xX V.

Proceeding as in the case of the Coulomb matrix elements and using (5.9), (5.13), and

we 6nd

(rt(l2) JMgTMr I Tr~ ' (q*) I 2+m„~me& =ib(13v2(2cu„g) '~'

(s.29)

yo(x) G
X j L, (q x) 2 + S(x) R p(x)x'Cx p p (lm ,'m'-I l2JM~)(1m"lml1/L~)(-', m, 1m" I-,'1-', m')

g 2m qq'q" mm'm, "
x (1q-,'q'

I
1-,'TAEr) (1q"1q I 1110)(zm&1q" I

—,'1-'q') (5 30)
Again using recoupling techniques, we derive

(n(q)m mr I
i g~ "(q*)

I
',+m.;', m,-)

3
=i( 1)1—+~ 'bgr,

—
V3I (2J+1)(2L+1)(2T+1)J" (I-—MJMglLJ ',ml)-

(~ )1/2 L J L 1 T 1

yo(x) G
X(10T3frI1TqMr) jl(q*x) 2 + S(x) x'E &t(x)Cx . (5.31)

g 2m

Calculating the reduced matrix element, we have

k(4~) I (~(ik)JT~rll T~ "(q*)Ilk+km~& I

'

= (&/(o~))1085)1,(2L+1)(2J+1)(2T+1) (10TH'r
I
1T-,'~z)'

L J L 1 T i
-y, (x) a

X Z.F(x)j~(q*x) + S(x) x2C* . (S.32)
x 4m

Note that we now have the selection rule L=/ instead of L=l+1. as for the electric and Coulomb terms. The re-
sults (ii) and (iii) of Eq. (5.20) still hold. The result (5.32) is the same regardless of the choice of Eq. (4.29) or
Eq. (4.27) for the charge density p. We note that the isospin dependence is contained in a factor

—' 2

(2T+1) (10TMr I
1T-,'Air)'= 2/27,

T
= 1/27, T—2.

(5.33)

Therefore, other things being equal, the T= ~~ levels will be excited twice as strongly as the T=-,' levels in this model.
In Eq. (3.15) we have given the form for E„&(x) used in our model; the source function S(x) is given in Eq.

(3.2). Using these expressions and &0(x) =c in the overlap region, and evaluating the 3-j and 6-j coeScients, we hand

Ss.(2J+1) t'(vu) 2
-'(4~) l(Jill~~'"'ll J &

I'= CG

3(2T+1) & p ) j&~P(X&))

Xxi' 0

X1) 3 1 t t qji(ad)t' j~(t)~~&~r I
1— Ig&y~(t) ct (if L= lw1), (5.34)

s (coUu)'k XU)

1 '& gg( n3f
j~(q~~t)j~(t)t' — +--I 1— ct, (5.35)x„

X—
X1l 0

32+8)g, 2
k(4 ) I (Jflli'~-'ll J*-&I'= (2J+1)(t ~) («)'J'~i(L)

3(2T+1) -i~+~'(xit)-(~i«) (t ~)
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where

I'~i(L) =L/(L+1), 1=t+-'
= (L+1)/L, J=t—-,', (5.36)

l(4 ) I &~fllT "ll~.&l'

8s 2J'+1 tt'&&&) 2 1 idii 3 1
(t a) («)'I —

I

— t2 ji(t)~~X,~
3(2T+1)L(L+1) k ti I j&+i'(Xi&)- Xii q 0 — ~ (&ita) Xiii

Xf(L+1)js(qiit) —qiijtr+i(qiit) jdt+ —- tj'r, (qiit)
X1/ 1l 0

t 3$ t)x &
— ~—

I
1— —

I ji(t) —tji+i(t) dt
Xii xi Xii)

(if L= la1). (5.37)

e'q* *(-+2-', ,mlp(x) I
2+-', m, )dx

Wherever a ~ or ~ appears, the upper sign applies for nucleon. Now
the case L= l 1(J=l——i2, normal parity) and the lower
sign applies for the case L=/+1 (J=t+-'„abnormal
parity). We have written the integrals in terms of
dimensionless variables and have defined

qi&= q*a/Xii. (5.38) =4& I 2(1+&3)j4, '"e'*5(x)dx, (5.42)

Recall that X1~ is the first zero of the /th Sessel function.
They are given in Table I. The parameter 0. is defined
in Eq. (3.26). We compute ~ii from the experimental
masses of the various resonances as follows. Ke calcu-
late the total energy in the c.m. system

W=
I k'+ti j'"+I k +m g't'= M (5.39)

and identify this with the mass of the resonance. %e
then obtain

~alii = (M'+ti' —m')/2M (5.4O)

These values are given in Table II. If we had started
with Eq. (4.27) for P, then we would have obtained the
same results except for the replacement

ji(t) —+ j&(t)L1—2Ãcma /(o7&ia)'j (5.41)

in the first term of the integral in Eq. (5.34) and in the
first term of the first integral in Eq. (5.37).

We can also use our model to compute elastic scatter-
ing and magnetic properties of the ground state of the

TABLE I. The quantity X1l.

and we can therefore identify the isoscalar and- isovector
elastic charge form factors as

Gge(q*) =Gal(q*) = e'&* *S(x)dx

2L1—cos(q*a)j sin(q*a)-
—+ 1

(q*a)' (q*a)' —'" -'
—(1/15) (Pa)2. (5.43)

We can thus identify the mean-square charge radius

~2 8 ~2 V 2 g2 (5 44)

%e now consider the current in the ground state.
The term LqXV'gja has zero expectation value in the

TABLE II. The frequency ~1p as calculated from the
experimental masses.

State

4.49
5.76
6.99
8.18
9.36

10.5I
11.66

i)+,y (1236)
$+,$ (1400)
-*- ' (1512)
-', —,i, (1670)
$+,y (1688)
-'+,g (&920)
—,',$ (2190)
V"(&)8 (2423)
V (~),k (2650)
V+(t) Ps (2850)

1.9
2.8
3.4
4.1
4.2
53
6.4
7.4
8.3
9.i



ground state. The only term in Eq. (4.30) with a non- 6. PREDICTIONS OF MODEL AND COMPARISON
zero expectation value is WITH EXPERIMENT

e
v(e x)=——(e &)

g x
(5.46)

and the properties of the Pauli matrices, we 6nd

J,=2,[oXx]Q,(x)/x]'. (5.47)

We note that V. Jp—-0, as must be true. The magnetic-
dipole form factor is thus given by

)ivy po g (6s.)'"
p~= = Tlp

2m iq*

(6s)"' -~o(*)-'
jt(q*x)I»t' [eXx]2r p &x (5.48)

Therefore,

p, v(q*) =
3m A(x) '

j&(q*x)x[1—cos'8]2 dx
q

16rrm 3jt(q*x)-
[xyp(x)]'~x.

3 q x
(5 49)

In the limit q*-+ 0, )tv(q*) becomes the anomalous
isovector magnetic dipole moment of the nucleon.

(2,);=—[ff,X~;fio] ™,'=1, 2, 3. (5.45)

Using the result

In this section we present the predictions of the model
for the electromagnetic properties of the nucleon and
compare the results with experiment where possible.
Recall that all the parameters of the model with the
exception of c have been roughly determined earlier by
either the 6t to the nucleon spectrum or the ground-state
variational solution. Actually, we carried out a limited
search for the best fit to the excitation of the —,'+,—,

' (1236)
level using the Stanford' and CEA' data, and to the,
excitation of the —', ,—,

' (1512) and -,'+,—', (1688) levels
using the CEA6 data. We computed the inelastic form
factors for several sets of values of p,a and o.. We found
the best agreement for the values pa= I and u= 10.This
value of pa is the same as that obtained from the fit to
the spectrum; this value of n is completely consistent
with the value ca=11 determined from the variational
solution. (The results vary slowly with moderate changes
of n.) Although the absollfe minimum of our particular
Bwill occur for negative o. and consequently somewhat.
di6erent potential parameters, we shall tak.e these num-
bers as an approximate self-consistent best fit. There-
fore, in the following all results are computed using the
values p,a=1 and o|,=10.

In Figs. 6 and 7 we show the results of calculations
for the -', +,—,

' (1688) level using the two possible forms
for the charge density p of Eqs. (4.27) and (4.29). The
magnetic form factor is the same for both cases. We
see that in the experimentally allowed region (q„s)0)
the shape and magnitude of the Coulomb and electric

) '(0) =-;(16~m) [xy,(x)]d*

(2m= (8~/9) (f G) (cG)'l
E fr

(1—pp)' 2 pp(1 —pp) pps-
X 1+3 + +

(pp+f )G
(5.50)

lO

I.O—

2 2
q (BeY/c)
2

l

( I 688) 5/2

OMB- $

pp and ep are the values determined from the variational
solution in Sec. 3.

From the expression for V(q*) we have
O.I—

COULOMB - Q

&'(q*) J'[3j (q**)/q'*][4o(*)]'d

yv(0) J'[yp(x)] dx q4p ~P

q*' J'x'Q p(x)]'dx
(5.51)

10 J'Q p(x)]'dx
O.OI

0 0.4 O.e
I

I.2 I.6 2.0
q 0/Xlg

I

2.4 2.8

3 Jxs[4p(x)]sdx
M

5 J'[yp(x)] dx
(5.52)

It follows that the mean-square magnetic dipole radius is FIG. 6. The reduced Coulomb form factor
I f, I'/Qo) (po)'

plotted against the reduced momentum transfer qu=q*o/Xu for
the -', +,~& (1688) level. Curve I is plotted using the charge density
p given in Eq. (4.29); curve II is plotted using the form given in
Kq. (4.27).
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parity transitions. It is interesting to note that the
height of the curves changes by only a factor of three
between the lowest and highest resonances shown. Also,
the location of the maximum (as a function of q*a/Xt&)
increases slightly and the curves become narrower as
the energy of the resonance rises. These results are
very similar to those of I, although they differ in some
details due to the presence of the source term in the
charge-density operator in Eq. (4.29).

%e expect that our model will be best for the normal
parity excitations, which are primarily Coulomb and
electric in character. In Fig. 9 we compare the model
with the CEA data' for the —,', -', (1512) level. Since
these authors do not separate the Coulomb and trans-
verse contributions experimentally, we plot against the
directly measured experimental quantity

I

04
l I

0.8 1.2

0/X ig

1

I

1

1

1

I
I

l.6
,

I

2.4

Note that at photoabsorption, g2=0, and only the last
term contributes. We have included the contribution of
all the other states which are also supposed to resonate
in the indicated region. These states are indicated in

loo
Fro. 7. The reduced transverse form factor Df+I'+If I'j/-

(pu)(co)' plotted against the reduced momentum transfer q&&

=q*o/Xu for the s+,$ (1688) level. Curve I is obtained using
Eq. (4.29) for P; curve II is obtained using Eq. (4.27).The reduced
magnetic form factor is also shown. The electric form factor may
be found by subtracting the magnetic from the transverse form
factor.

form factors do not diGer significantly for the two cases.
With a few exceptions which we shall discuss later, this
conclusion also holds for all the other levels that we
have investigated. From the form of Eq. (5.34), which
is derived from Eq. (4.29), we see that a cancellation
occurs in the Coulomb form factors for the abnormal
parity transition. Thus,

I f, l' should be much larger in
the normal than in the abnormal parity transitions, a
result that is intuitively appealing. Equation (4.27)
leads to the opposite behavior. In addition, the form
factors computed from Eq. (4.27) depend explicitly on
the value chosen for the coupling constant X, and this
quantity is only very poorly known from our fit to the
spectrum. In the authors's opinion, it is preferable to
view Eq. (4.29) as an approximation to the true current
rather than to introduce another parameter into the
current operator itself, and the results we present are
obtained using Eq. (4.29) for p. 's In any event the two

approaches give very similar results in the higher
resonance region. In Fig. 8 we give I f, I

s for the normal

' We have made no attempt to derive a best value of 'A from an
over-all 6t to all the electron scattering data, which is presumably
what one should do if Eq. (4.27) is used.

lo—
s
s

l.o—

O.l—

O.ol
0 0.2 0,4 0.6 OS l.O l.2 l A l.6 l.8

q a/Xlg

FIG. 8. The reduced Coulomb form factor
I f, I'/(po) (co)s for

the normal parity transitions to the levels $,—,
' (1512), -',+,q (1688),

sv-, z (2190), and ~2 (7),~s (2650). The threshold q'= 0 is indicated
for each level by a vertical line.
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(4.27)j at least decreases as qa —+0, even though it
does not actually go to zero. This is the one case where
it is necessary to have

pdx= Q

TRANSVERSE
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Fro. 19. Same as Fig. 10 for the —',+, -', (1236) level. The experi-
mental data are from Refs. 3, 6, and 7. When only peak heights
of the cross section are reported, we assume that the relative
background contribution is the same as that of the s waveat
photoproduction (25%) and subtract this amount from the peak-
height values before determining the integrated resonance cross
sections. To get these quantities we then assume a Breit-signer
resonance shape in the total energy in the isobar rest frame. Note
the ordinate must still be multiplied by pa(co)'=0.059 to get
the experimental form factors.

hold as an operator identity, not just in diagonal matrix
elements. LSee Eq. (4.9).g Because of the absence of an
electric transition, the predicted cross section for ex-
citation of the Roper resonance falls off rapidly for q'
greater than 1 (BeV/c)'.

Taking the limiting case q„—+0 of our theoretical
results, we can compare with the various phenomeno-
logical analyses of photoproduction" '4 that have been
carried out in these higher-resonance regions. The rela-
tion between the photoproduction amplitudes and the
multipole expansion is discussed in Appendix A. The
particular result that we need here is Eq. (A11). For
all of the levels we have examined, sgn(Integral-mag)
=+ and sgn(Integral-elec) = —at photoproduction.
The sign of the magnetic integral is certainly a general
result, and it appears that the sign of the electric
integral is also. We thus have

(6.4)

in Fig. 19. We need a substantially larger value of c
here, (pa) (cu)'=0.059."Although the transition is pri-
marily magnetic for small q', the model again predicts
that at large momentum transfer the electric transition
will dominate.

The Roper resonance (J =-,'+, T= ,', 1400 MeV) c-an

be excited only through Coulomb monopole and mag-
netic-dipole transitions. ln the long-wavelength limit
the CO operator is just the total charge,

Table IH shows the predictions and the results of the
phenomenological analyses. We see that the predicted
magnitudes agree quite well with the results of the
analyses, but the sign appears to disagree systematically.

TABLE III. Photoproduction amplitudes.

3II,coat(q*)

and this operator cannot cause any transitions. There-
fore, l f, ls for the Roper resonance must start as q*s.
Curve I in Fig. 20

C
derived from Eq. (4.29)] clearly

violates this requirement; curve II l derived from Eq.

—,*+,—,
' (1236)

s x (1512)
s,x, (1670)
s+,xs (1688)
+ (1920)

—,'-,y (2190}
V+(~)8 (2423)
~-(P),-', {2650)—';,(~),& (2850)

Ei+/2E&+

312-/Es
E&+/3ls+

Ms /Es-
Es+/3f s+

ilf4 /E4-
Es'/Ms'
3Es/Es-
E7+//3E&+

State Ratio Walker

—0.04+0.08
+0.53~0.2
—0.5 &0.5
+0.5 +0.3

Moorhouse
et a/. Model'

+0.34
+0.34 —0.50

+0.52
—0.69
+O.SS
—0.64
+0.60
—0.72

+0.60

so If Eq. (4.27) is used for the charge density, the magnitude of
the resulting Coulomb form factor is about ten times greater than
that shown in Fig. 19.The ratio of Coulomb to transverse excita-
tion is then inconsistent with the experimental results shown in the
figure. The Coulomb form factors for the ~s+,+~ (1236) and ~~+,$
(1400) are the only places where the two diBerent forms of the
charge density fKqs. (4.27) and (4.29)g make any real difference.

Ratios of
I f+ I'+ I/ ls—

(1570)/sa (1512)
s (1670)/-', + (1688)

0.15a0.2
0.24~0.3

0.07 1.38
1.56

These ratios will be modified somewhat if Eq. (4.27) is used for p instead
of Eq. (4.29). The effect is to increase the magnitude of the electric ampli-
tude without changing its sign. The magnetic amplitude is unchanged. The
change ranges from about 40% for the lower resonances to about 20'f47 for
the higher resonances.
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TABLE IV. The anomalous magnetic moment of the nucleon
and the pion-nucleon coupling constant as determined from the
Gt to the height of the inelastic spectrum.

Resonance region

$+,22 (1236)
$,$ (1512)
ss+,$ (1688)

(/ a) («)'
0.059
0.010
0.010

3.6
0.62
0.62

X~, p=1.85

0.06
0.01
0.01

fsex2=008.

When only the final electron is detected, the cross sec-
tion depends only on the sums of the squares of the
amplitudes, and the model's predictions will then agree
with experiment. However, the model would give the
wrong detailed angular distribution of pions in pion
photoproduction. The fact that the s-wave contribution
to the integrated photoabsorption cross section is so
far off is not surprising since the s waves are treated
so very crudely in this model. As noted earlier, use of
the 25 instead of the j.S state would give a negligible
contribution to photoproduction. Our model does ap-
pear to have too much photoproduction of the —', in the
third resonance region, although it does predict that
the -', + dominates the inelastic form factor.

The model developed in I and the present paper was
intended to provide predictions for the excitation of the
higher nucleon resonances, and the approximations
made were appropriate for this goal. However, the model
does permit calculation of ground-state properties of
the nucleon, and for completeness we shall include these
results. One should not expect close agreement with
experiment since in addition to questionable approxima-
tions, zero-point quantum Quctuations are quite im-
portant in the ground. state. This last point is discussed
in I. From Eqs. (5.44) and (5.52) we find that the value
of the range (a) we use gives the root-mean-square
radius for the charge and magnetic moment of the
nudeon as measured in elastic scattering to within 10
and 30'Pz, respectively. We find

((ys) 8)1/2 ((y2) V)l/2 —() g9 F

((y') V)'"=1 04 F

whereas experimentally

((") ')"'=((")")"'=og F
and

((y2) V)1/2 () g F

Having determined the value of c by fitting the
height of the inelastic excitations, we obtain from Kq.
(5.50) the anomalous isovector magnetic moment of the
nucleon. The values are shown in Table IV. We have
also indicated the value of the pion-nucleon coupling
constant derived from Eq. (3.11) using the same
parameters. Finally, in Fig. 21 we compare the elastic
charge and magnetic-dipole form factors with the best
Gt to the experimental results. The agreement is not

l00 0
l

q tBeV/c)
2 ?

0-5 I.O
I I

2.0
I

N t !400) I/2

(.0

O.l

0,0!
0 o.a O.S l.2 l.6 2.0 24 2.S

q a/x, &

FIG. 20. The reduced Coulomb and magnetic form factors for
the Roper resonance. Curve I is obtained from Eq. (4.29); curve
II is obtained from Eq. (4.27).

very good, but note that the charge and magnetic-
dipole form factors are of about the same magnitude
even though they are computed from quite dissimilar
expressions.

7. CONCLUSIONS

In summary, we have constructed a crude static
model of the nucleon which provides a dynamical frame-
work from which one can predict the existence of nucleon
resonances. The resulting level spectrum is quite similar
to that observed for the nucleon. We have given an
improved variational solution for the ground-state pion
6eM and have identi6ed the pion-nucleon coupling
constant from the asymptotic form of the field. We have
constructed a conserved current and thus can compute
all the electromagnetic properties of the nucleon on a
consistent basis. In addition, we can investigate the
interrelations between these properties. The inelastic
form factors agree quite well with the CEA data for
the higher resonances and at least semiquantitatively
with the data for the 3-3 resonance. The model should
be poorest for the 3-3 resonance, and this is indeed the
case. One interesting prediction is that the contribution
of the various multipole terms changes dramatically as
q' is varied. The predictions for the ground-state prop-
erties should be the least reliable because of the zero-
point oscillations of the normal-mode excitations (this
is discussed in I), but from fitting the inelastic form
factors we do obtain the anomalous isovector magnetic
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the widths of the resonances and with the vacuum-
Quctuation corrections included. Also, one could deter-
mine the source density S(x) from elastic scattering.
Despite these shortcomings, the model does provide a
dynamical framework in which to investigate the
electromagnetic properties of the nucleon, and the inter-
relations between these quantities, on a consistent basis.
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APPENDIX A: RELATION TO PHOTO-
PRODUCTION AMPLITUDES

In this Appendix we establish the connection between
the normal photoproduction amplitudes"" and the
multipole expansion used in the present work. We use
the notation more commonly employed for photopro-
duction; that is, we label the incoming virtual photon
momentum by k and the final pion momentum by q.
Therefore, we have

k= p —p',
Is+I' =I"+g,

(Ai)

Following Chew, Goldberger, Low, and Nambu, " we
write the photoproduction amplitude S in the isobar
rest system for a given isotopic spin configuration as

(e q)o (k&(e)
7=is sFr+ -P2

FIG. 21. The magnitude of the elastic charge and anomalous
magnetic-dipole form factors as computed in the present model
and as given by the dipole fit to experimental data LG. Weber in
Proceedings of the 1967 International Symposium on Electron
and Photon Interactions at High Energies, Stanford Linear Ac-
celerator Center, Stanford, Calif. (to be published)g:

GMP GMe

p, p $1+q'/(0. 71 BeV') j"
Note that the anomalous magnetic-moment form factor Ltsv(q')/
Fsv(0)g differs from the total magnetic form factor )Gsrv(q')/
Gsrv(0) j by a factor (1+qs/4m') '. This term is relatively un-
important over this range of g'.

moment of the nucleon to within a factor of three and
the elastic root-mean-square radius to within 25/o. In
the limit of photoproduction we get the right ratios for
jM~~/E~~ts, which are the quantities that enter into
electron scattering. The sign we get for this ratio, how-
ever, appears to systematically disagree with that ob-
tained in the phenomenological analysis of pion photo-
production, and thus a more detailed model is needed
to obtain the exact angular distribution in this process.

The model presented is a naive one, and it is in no
sense a complete theory of the nucleon. Even within
the framework of the model, improvements could be
made. Thus one would like to find some mechanism for
the generation of the potential scattering term, which
is essential to the model, and repeat the calculation
with a more realistic potential which should also explain

gk

.(~ k)(e e) .(~ «)(» e)
+i &a+ i V4. (A2)

F& 54 are functions of energy and angle in the isobar
rest system, and q and k are the meson and photon
three-rnomenta.

We consider the special case in which the photon is
incident with helicity +1 and the meson is produced
in the forward direction. In order for the amplitude to
be nonzero, the baryon spin must Qip. In this case
q a=0, and the amplitude reduces to

r,=V2iL —e,+e,j. (A3)

fr= g I fBIg++E)pjI'g+r'(x)
l~

+L(I+1)m, +Z, ]r, ;(~)}, (A4)

Z,=g ((~+1)m,++m, jI, (*).
l 1

"G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1320 (1957).

The angular dependence may be made explicit through
an expansion involving derivatives of Legendre poly-
nomials":



MODEL FOR ELECTRON EXCITATION OF NUCLEON

x is the cosine of the angle of emission in the isobar rest
system. The energy-dependent amplitudes M&+ and E&'E~

refer to transitions initiated by magnetic and electric
radiation, respectively, leading to final states of orbital

angular momentum / and total angular momentum

l~—,'. Each of these amplitudes may be written in terms
of three isotopic spin amplitudes. The amplitude $0 can
thus be written as

Fp=V2i(g [(i+1)3EiyPi'(1) 13'iy—Pi+i (1)

—Xi+Pi+i'(1)]+Q [/Mi Pi'(1)

—(l+1)Mi Pi, '(1)—E, P, ,'(1)]). (AS)

We now consider this special case of photoproduction
from the standpoint of the multipole analysis. The
transition operator for photoabsorption is"

T= [egi J(x)]e'"'*dx

Introducing reduced matrix elements, we write

x(J-II(T."+T.-")II-', ). (A~)

sgn(Integral-mag) is the sign of the integral appearing
in the matrix element of Ti, '& in Eq. (5.31);
sgn(Integral-elec) has a similar meaning for the inte-
gral appearing in Eq. (5.25). We thus have the desired
relationship between our model and the photoproduc-
tion amplitudes:

Ei~ l 't' sgn(Integral-elec) (JIITi+i"Ili)

Mi+ l+2 sgn(IIltegral-mag) (Jll Ti '*ll-', )

J= l+-', ; (A11)

l 1't' —sgn(Integral-rnag) (JIITi '&Ili)

l+1 sgn(Integral-elec) (Jll Ti i"II—,)

J l Q ~

APPENDIX B' COUPLED EQUATIONS
OF MOTION

In this Appendix we derive a set of coupled equations
of motion for P, e, and ~ which do not require a =0"and thus presumably are more correct than those
employed in the model presented in the body of the
paper. But we also show that the model presented so
far is a limiting case of the (more correct) model to be
developed here. For the choice of parameters made in
the text the results of the two models should not be
significantly different with the possible exception of the
3-3 resonance.

The field equation for p (x,t) is still

We now consider the excitation of a particular isobar
with J=l&-,'. Employing Eqs. (AS) and (A7) and the
result

Pi'(1) = —,'l (l+1),
we find

The nucleon source distribution S(x) was introduced by
making the identifKation (4.6):

P crap~ S(x)er~

in the standard field theory. Using the anticommutation
relations for the nucleon fields in this standard theory,

(A9) we find

The relations (A9) between the two sets of amplitudes
are completely general. We next use the reduced matrix
elements as calculated in our model to determine the
relative phase. From Eqs. (5.25) and (5.31) we find
after some algebra the following relative phases:

[4'(x') r-0(x') |t t(x)r A (x)7
=O'Pi(x x')Pt(x—)2ip,p~r~f(x),

[4'(x')~-f(x'),4'(x)~t 4 (x)]
(82)

=&"'(x x )4' (x)2i& nvaA'(x).

Now,

Magnetic: i sgn(Integral-mag);

Electric: +sgn(Integral-elec), J=/+ pi (A10)
—sgn(Integral-elec), J= l ip. —

(83)
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Using the commutation relations (82) and the Hamil- $(x) vanishes for x)a. Thus it is consistent to take
tonian given in Eq. (4.1), we have =0= o'p for x&u. For x(u, the variational form

for gp is, from (3.9),
t9 G—

I p (x)r p(x)]= ——p (»)L~X (o v)y].p(x),
Bt m It then follows that

(810)

8 G—I&'() .O()]=—O'()L ( Xv).~]~()
Bt m

I ~oXV.po]a'r =0=I eoXvpp'J '", (811)

where we have used the result

Making the identification of the time-independent
source function S(x), we obtain

r'.S(x)= —(G/rN)S(x)o. l
~ XV'.p].'r,

'
S(x) = —(G/m)$(x) .LeXVQ.] '"

We have again symmetrized the equations since this
changes nothing in the correct theory. The Eqs. (81)
and (35) constitute the coupled equations. "If we take
the current J as given in Eq. (4.7) and use the coupled
equations to compute V J—=—p, we find

e
V(e l)=——(e 9)

g g

in deriving the second equality. The conclusion follows
that it is consistent with the coupled equations to take

=0—0.

We next consider the first-order (in g, or and So )
coupled equations. They are

I o u' l-~.%-os+re(. *)]q.—=l ~s[~o.coo+go%.-]
—(G/2rN)Le, V(br.S(x))+r,.V (6 S(x))] (813)

(We have again assumed that Lgsgs, g ]=0.) It then
follows immediately that

ln deriving the last two equations we have used the
results of Eq. (811).Suppose that we can neglect the
Grst term in each of Eqs. (814). Then 8r must have
the form

(87)p= [yxa y/ai];r-+$(x) ', (1+r,)-

Thus, the system of coupled equations formally yields
the same expressions for J and p as does the standard
theory I

see Eqs. (4.7)].
Although the derivation may leave something to be

desired, the reader can consider Eqs. (81) and (BS)
together with (86) and (4.18) as the set of coupled
equations of motion, together with a conserved current,
which define the model.

Now let us consider excitations about the ground
state. As before, we write

Sr"(x,~) =Sr-(x)o-'-i

and Eq. (314) becomes

p~p5r (x)=(G/m)oo"I soXV„q(x)] sr . (316)

Yo see if this approximation is valid, we must estimate
the magnitudes of the two terms in Eq. (814). Define
the quantity p by

IS&XV'Al Ibrl IV'AI
7—

I ~oX V;rg I I
~oX V;q I

(817)
4 (x ~) =A (x)+n (» t).

We also expand v and 0. about ground-state values: Using Eq. (816) for Ibrl, we have

8 Bp-" G br S(x)= —(G/m)S(x)op"
XL(„XV/)., +(, XV ) .. ] 814

8o $(x) = —(G/m)S(x)rp"

XI (5eX Vp «) sym+ (e XV~«) sym]

a rpa+, )ra o a ooa+ boa

The zeroth-order equations are then

1G p p (cu)v=- —
I col I V'+pl =-G—

op m pr rip (pa)'

LV' I" ~do'4o'+P—e(~ x)]A (x)—
=—(G/2m)rp (ep' V)S(x),

rp $(x)= —(G/m)S(x)op"L~pXV„yo] '& (89)

op $(x)=—(G/m)$(x)rp"LepXVyp"] '& .

In terms of the parameter a defined in Eq. (3.26),

~ (~~)(o~)'
p= 2G
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State

-',+,$ (1236)
-',—,-,'(1512)
$+,—', (1688)

0.61
0.059
0.047

Thus, for the higher resonances y«1, and our approxi-
mation proves to be excellent. [Because of the factor
1/a& in Eq. (818) the approximation becomes even
better as the mass of the resonance increases. $ For the
3-3 resonance the approximation is only fair. The reason
for the large value of y here is that we need a larger
value of c to fit the experimental data than for the other
resonances. Thus, with the possible exception of the
low-lying 3-3 resonance, we can write

Using the values of (pa) (ca)' determined from the fits
to the inelastic form factors in Sec. 6, we have the
following representative results:

) (G/2m) V [~gr-S(x)+r, -S~S(*)$ ~

~ [p—5''j~
(

(821)

we 6nd

(p 'p 1 1

Em co (pa)' (pa' —5hc'a')
(822)

and (4.20) «» p already contain the leading term from
~. We conclude, therefore, that if one were to solve the
coupled equations (81) and (85), the resulting current
and charge density would not differ greatly from those
we have computed by setting ~=r'=0. YVe can also
show that the terms involving 87 and br in the Geld
equation (813) for q are small compared to the
(pa' —5Xc'a') term. Hence, Eq. (3.12) would not be
modi6ed significantly if one solved the set of coupled
equations. Dehning

bi S(g) =—(G/m)S(x)0'0"[~OX&. gg '~,
50 S(x)=—(G/m)S(x)ro"[epX&g"j 'i

The coupled equations thus give

(819) Representative values are as follows:

State

[AX~'n/~~ jm
—(G/2m)S(x)no"[soXV„qj ' . (820)

-',+,—,
* (1236)

k,k (1512)
2+Ps (16gg)

0.76
0.074
0.059

Interpreting eo and ~() as our original time-independent Again with the exception of the 3-3 resonance, y &&1,

vectors, we note that this result is the same as that of and we conclude that the modi6cations arising from the
Eqs. (4.10) and (4.20). Thus, we see that Eqs. (4.10) coupled equations would be small.


