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as k and k' go simultaneously to zero in all their com-
ponents. The third part, consisting of the remainder of
(D7), is the additional term which must be added to
maintain gauge invariance. In perturbation theory, it
corresponds to the "sea-gu11" term pictured in I'ig. 3.

The expression (D7) may be simplified. For this we
shall need the differential form of (D3): +ou, ap 'Ys(p p)+ 'lava, p, (D9)

not proportional to a momentum are those that involve,
e.g., g"pl'& . However, from (Dg) it is seen that I'" is
proportional either to a momentum, p"p, or to D ',
which vanishes on the mass she11. Thus in the zero-
energy limit we may take for 5„„, p

l9

r""(p p) =O' D '(p) g'"D '(p)
8

[This is not manifestly symmetric in e and lp. Symmetry
is established by recalling that D '(p), for spin-0
particles, is a function only of p', so that p'(8/Bpo)
XD '(p) is proportional to p'p&. j Next, we recall that
the scattering amplitude is given by contracting the
above with e~e" and e* e*&, with e&e„=~* e* =0. Also,

p may be taken to be in its rest frame, and the polariza-
tion tensors may be chosen without a time component.
Hence terms in (D7) proportional to P&, P", P, PP, g&",

and g & do not contribute. It is seen that the first two
terms in (D7) do not contribute. The third term does
contribute. In the remainder, the only terms that are

8D-'(p)
,pv, aP ~ (D10)So , rpN= p~

D ' has the form (p' —rent )(1+2(p')) where Z(p )
vanishes on the mass she11. Theref ore the Anal result
for the zero-energy scat tering amplitude for gravi tons
o8 spin-0 particles is

(D11)&ov, ap= 2p~ps&, vo, ap= 2m I",ov, ap ~

The cross section which follows from (D11) is then
given by (3.11).

i.e., only the graviton-exchange term contributes. We

(Dg) insert (DS); the portion of 1',s proportional to g&'D'-
does not contribute, since D ' vanishes on the mass
shell. Thus
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It is proposed that all symmetry-breaking interactions II' are of the current-current form, and a calcu-
lational method suitable for obtaining sum rules is developed. The method essentially is to express the
matrix elements of H' in terms of the matrix elements of the double commutator of Ef' with SU(3) generators.
When the method is combined with the technique of reducing a pion, it can be shown that the S-wave ampli-
tudes of both the triangle relation and the Lee-Sugawara relation of nonleptonic decays correspond to sum
rules of photonic decay amplitudes and semileptonic decay amplitudes of hyperons.

1. INTRODUCTIOH

V ARIOUS consequences of broken SU(3) symmetry
do not depend on the speci6c form of the sym-

metry-breaking interaction but only on its transf or-
mation properties or on the postulate that the sym-
metry-violating processes are dominated by tadpole
diagrams. ' Nevertheless, the description of nonleptonic
decays in terms of the weak Hamiltonian of the current-
current form'

II-de~J. J
has been useful in correlating the experimental data,

* Work supported in part by the U. S. Atomic Energy Commis-
sion.' S. Coleman and S. I Glashow, Phys. Rev. 1348, 671 {1964).' Y. Hara, T. Nambu, and J. Schechter, Phys. Rev. Lt;t ters
16, 380 (1966).

where J„~ is expressible in terms of quark 6elds q as

f„"= igy„(1+ye) Xs-', q= V„"+2

where

[Q',II']= [Q ' lI ]=if;; H"'
7f Z '$71

(3)

Q'(xp) = —i d'x V4'(x, xp)

Qp'(xp) = —i d'x A 4'(x, xp),

and p= j 4 ~ ~ 4 P~$ ~ ~ o

Then, the following equal-time commutation relation
holds for

H' d;;IJ„&J„I6,
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TABLE. I. Operators I"=(Q'&iQ')/v2, V+= (Q'+iQ')/v2, U+= (Q'~iQ")/v2, Q', and Q', on meson states.
To obtain those on baryons, substitute x ~ Z, E~ 37, E —+ ™,and g —+ A.

E+
E'
E'
E

0
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0
E+/V2

0
E'/K2—

0

0
E'/v2

0
E /i/2—

0
0

0
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—E'/K2

0
0

m+/v2

—,
' (x'+kg)
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E'/V2
-'E
2

0
——,'(~'+%3g)

—ir /K2

0
0

-', V3E

—E+/v2
—,'Eo

0
0
0

-', (—n'+v3it)
~ /v2

——,'V3E

0
—-',Eo
E /V2
-ir+/v2

-', (mo —V3q)
0
0

2'V3EO

0
0
0

—;VIE+
-', V3E'

—-',AX'

0

& represents the meson field or the corresponding baryon
6eld, ' and the time dependence is suppressed. Equation
(3) is also valid when ir is replaced by Q.

Since it appears desirable to put all symmetry-break-
ing interactions on the same footing, we propose that
all symmetry-breaking Hamiltonians H' are of the cur-
rent-current form and transform as the ith member of
an octet and examine the resulting relations among
observables. In particular, the Hamiltonian H' respon-
sible for mass breaking is H', electromagnetic mass
splitting is H'+(Hs/v3), nonleptonic decay and pho-
tonic decay is given by H6, and semileptonic decays by

In Sec. 2, the method of calculation based on the
commutation relations between H' and charges Q' is
obtained. In Sec. 3, the mass breaking, electromagnetic
mass splittings, and magnetic moments are considered.
Sections 4—6 are devoted to nonleptonic decays, weak
electromagnetic decay (photonic decay) of baryons, and
semileptonic decays, respectively. Section 7 deals with
o6-mass-shell amplitudes in which various sum rules in
nonleptonic, photonic, and semileptonic decays are
shown to be related. A summary is given in Sec. 8.

2. METHOD OF CALCULATION

The method is based on the assumption of the exis-
tence of octets of mesons and baryons, the SU(3) alge-
bra given in Eq. (3), and the symmetry-breaking Hamil-
tonian H' of the current-current form. We express the
Hamiltonian H' in terms of its double commutators
with the SU(3) generators Q+ and make use of the
Jacobi identity

Ce', CQ-,H'Z-m-, [e',H Z=C[e,e-a,H a, (4)

where Q+ represent

I'=(Q'~ Q')/~, U =(e'~ Q')/~~,
U+= (eerie')/v2. (5)

Equation (4) is sandwiched between the initial state
n and the final state P; then the commutator is opened
up so that Q+ operate on the states. Then one obtains

relations among the matrix elements of the form
(PIH'In& with the aid of Table I. This method is a
convenient way of obtaining sum rules, when the Hamil-
tonian is of the current-current form. 4 One notes that
to get sum rules all one needs is the operations of Q+,
Q', and Q' on the states tabulated in Table I.

3. MASS RELATIONS

We assume that the baryon mass breaking is due to
the Hamiltonian H'=d8;;V'V; and obtain from Eqs.
(3) and (5)

CU+)[U,H' jj= [U—[U+ H'j] = -'H' —-'v3H'. (6)

The same expression is used for the Hamiltonian even
when the currents are not of the U„+A„ form (when it
does not lead to confusion). In order to get matrix
elements of the form (nlHsln), Eq. (6) is applied to
a=A and Z so that the H' on the right-hand side of
Eq. (6) gives no contribution;

&nIH'In&= s C(U'U nIH'In)+( IH'I U-U'n)
—(U+nlH'IU+n& —(U nlH'IU n&]. (&)

After the U+ and U operations are carried out and
H' is suppressed, one gets for A and Z', respectively,

3(A IA&
—3(='I -')—3(n

I
n) =v3[(Z'I/t&+(/t I&'&j, (8)

(~'I ~'&+(='I ='&+(n In) = —~3[(~'I/t&+ (~ I
~'&j.

Equations (8) and (9) yield

3(X
I
X)y(Zo

I
so& = 2(=-oI =-o)y2(nln), (Io)

which is the Gell-Mann —Okubo mass formula.
For the electromagnetic splitting, we get from Eqs.

(3) and (5)

[U,CU ,H'j j= [U ,[U+,H'] j=—-'WSH + 'H-, (II)--
which together with Eq. (6) leads to

[U+,CU-,H'+ (Hs/K3) j]=0.
Taking the matrix elements of Eq. (12) with respect to

The expression sr+= {vrI —iver. )/V2, for example, is an annihila-
' M, Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1, 63 tion operator of ir+, and all the states are defined with a positive

(1964). phase. Table I is then constructed by using Etl. (3).
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the baryons, rearranging, and suppressing H'+ (Ho/K3),
we obtain

(p[p) =(~ I
&'),

2(~ I ~)+&~'I ~o) 3&A
I
A)

«I~')+(~'IA&=2~3(«l» —(~ IN)).

(13)

4. NONLEPTONIC DECAYS OF HYPERONS

The Lee-Sugawara (L-S) relation, A —%3Zo++2":
=0, has been derived on the basis of the invariance of
the weak Hamiltonian under E conjugation. ~ The L-S
relation for S waves is obtained here in the framework
of the Hamiltonian H' given in Eq. (1) without E
conjugation. ' Equation (4) reproduced with Ho is

Le', LQ-,H']]-LQ-, LQ',H']]=LLQ', e-],H'] (»)
Take the matrix elements of Eq. (15) with respect to
the initial baryon A, final baryon 8, and meson 7I., and
open up the commutator so that Q+ operates on the
states.

When the change in strangeness S satisfies S(A)
S(B)= —1, as in—nonleptonic decay of hyperons, com-

parison of the matrix elements of both sides of Eq. (15)
for specific particles A, 8, and x yield with the aid of
Table I

(Bm IH'[A&=(Bm liH'IA). (16)

This is an interesting result because H6 has CP=1,

'S. Coleman and S. L. Glashow, Phys. Rev. Letters 6, 423
(1961).' Y. T. Chiu and J. Schechter, Nuovo Cimento 47, 214 (1967).

73. W. Lee, Phys. Rev. Letters 12, 83 (1964); H. Sugawara,
Progr. Theoret. Phys. (Kyoto) 31, 213 (1964).

M. Gell-Mann, Phys. Rev. Letters 12, 155 (1964}; S. P.
Rosen, Phys. Rev. 137, 8431 (1965}.

Equation (13) yields for the electromganetic baryon
mass splitting M(n)=Mo +(ale), where Mo is the
common mass of the isomultiplet

M(=--) —M("-') =M(z-) —M(Z+)+M(p) —M(N), (14)

which is the Coleman-Glashow relation. '
The medium-strong and electromagnetic mass split-

tings have been considered by Chiu and Schechter' in
the current-current picture, into which they introduce
spurions. The spurions are the expectation values with
respect to one-particle states of the products of vector-
current octets, and also those of pseudovector-current
octets, and are decomposed into the SU(3) representa-
tions 27, 8s, 8u, and I. We have assumed that the
Hamiltonian transforms as a member of an octet so
that our result corresponds to neglecting spurions in
the 27 (and I) representation. The present method relies
only on the SU(3) transformation property of the
Hamiltonian and avoids the use of SU(3) coefficients
which give the amount of spurion in the representations.

Zo+= (Z++—Z:)/K2= —Z ',
&Z-~+ I„--o)—(Z+~-I =-o)+@2(so~-I=--)=0,

&pz-I"-o)y(~x-I =--)= (~Eo [=-o),

and then apply Eq. (19) to (m+I 2+& and get

+I ~+)+ (~ +I-„o) &N~ol-. o)

(21)

The combination of Eqs. (20)—(22) yields

A —v3zo++ 2:= (/o) L&sz I )—(N7r+
I
Z+&] . (23)

Returning to Eqs. (1) and (16), Ho is invariant under
U-spin transformation 1 ~ 4, 2+-+ 5, 6 ~ 6, 7 —+ —7,
and 3 and 8 going into each other which for baryons
correspond to'

Z+~ p, g c-+~~, ~~go,
Zo ~ -', (Zo+&3A), A -+ —,'(v3Zo —A) . (24)

This invariance can be seen from the coefIicients d6;;
of H6. On the other hand, iIJ.' is invariant under the
previous transformation with the following sign changes:
Z+ —+ —p, Z —+ —,and e —+ —"o.

Further, time-reversal invariance implies the follow-
ing crossing relation for P- and S-wave amplitudes:

(B Ia&=(a *IB).
If we assume invariance of H6 under the product of
parity operation I' and U-spin transformation Eq. (24)
and apply this product P)& U to the S-wave amplitude
(nKol ')8, we find with the aid. of Eq. (25)

(«ol=')8= —(NZol =')8=0,
so that from Eq. (22), we find for the S-waves,

&e~+IZ+&s= —&Z-m+I ')s ——(mE-I=)s. (26)

'S. Meshkov, C. A. Levinson, and H. J. Lipkin, Phys. Rev.
Litters 10, 361 (1963).

whereas ia' has CP= —1, and yet the matrix elements
are equal. This is possible because the states are not
eigenstates of CP having baryon number 1. We obtain
the following relations for Q+= U~, I+, and V+, using
Eqs. (3) and (16):

(B ILU+, LU-H]]lw)=-;& IH+ H Iw)
= (Bn-[Ho

I 3), (17)

( -II,L-, ')]I )=-:( -I
(Bvr

I LV+, I V,Ho]]
I
2 )= -', (Bir [H'+iH'

I
A )

=-', (BOIH'I A). (19)

Apply Eq. (17) to A and:, where the super-
scripts denote the charge of the parent and subscripts
that of the decay meson. Then, suppressing H6, one has

v3A —z '= —v2(5+x
I
')+v2&pE-I=-o&

Ws=-:+&2z:= (zo —
I
=--)+&2(~z-

I
=--).

Next use Eq. (18) for the amplitudes that appear be-
low and obtain
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Equations (23) and (26) lead to the L-S relation for S We find as in Sec. 4 for S(A)—S(B)= —1,
waves (parity-violating case),

(BIH IA)=(BlsH IA),
A —V3Zo++2:=0 (27) so that

We cannot obtain the L-S relation for the P-wave
amplitudes in the current-current form of Hamiltonian
because Eq. (26) does not follow from the previous
transformations. For the SU(3) amplitudes of the form
&Burl AHs&, Eq. (25) is equivalent to the requirement
As„——As„, and Eq. (26) to A» ——As, =As, ——0 and
A~0 ———A~0*. The L-S relation is valid with no restric-
tions on the SU(3) amplitudes except As„——As„, so
that Eq. (26) is a severe restriction. "

S. WEAK ELECTROMAGNETIC DECAY
OF HYPERONS

Let us consider the decay mode A ~B+y and as-
sume that the weak vertex A —8 transforms as H'.
We find as in Sec. 4 for S(A) S(B)=—1—, the Eqs.
(16)—(19) without the pion in the final state.

Equation (17) (without the pion) yields"

2&~'v
I
="')= &~v I

~'&+~3(~v
I ~),

2&Ay I
=o& ~3(ri~

I
~o& (ti~ I ~&

(28)

When Eq. (19) (without the pion) is applied to
(BIH'IA), or rather to &B&IH'I A& which is obtained
by coupling the weak vertex to the electromagnetic
field operator, "we find for Z+-+ p+y and h. ~ ti+y,
suppressing H',

~2&P~ I&+)+&~o~I=-o)+a3(~~ I=-o) =o, (29)

%2(z y I
. )+( y I

z')+v3( y Ix&=0. (3o)

The result of carrying out the U-spin transformation
from Eq. (24) to Eqs. (29) and (30) is

(BILt/+, L~,H'HjlA&= l(BIH'+sH'IA&
= —',(B I

H'I A), (35)

(Bll I+,I
I-,H4))IA) =-;(BIH'+sHslA&

=-:&BIH'IA). (36)

When Eq. (35) is applied to A ~ pe i and Z -+ me i

one obtains, suppressing H4 and the particles e p,

v3(p IA)+~2&g+
I
-o)—(p I

go&=0 (37)

(38)v3(/t
I
=--)+we&I

I
=--) (z—o

I
=--)=o

Similarly, when Eq. (36) is used, one gets

(~l~ )=~2&pl~o),

&~+I="o)=v2&~ol= &.

The combination of Eqs. (37)-(40) leads to

(39)

(4o)

V. OFF-MASS-SHELL AMPLITUDE

In the previous sections, all the relations were ob-
tained on the mass shell. The present formalism is now
combined with the technique of taking a pion oQ the
mass shell which leads to some new insight among sum
rules.

Consider the amplitude &Bs.
I
H'IA) and reduce the

m= of mass p in conjunction with the equal-time com-
mutators Eq. (3) and the hypothesis of partial conser-
vation of axial-vector current (PCAC)

V2(P
I
A&+%3(N

I
g—)+2~2&&

I
-)=0, (41)

which is consistent with the Cabibbo theory" when the
electron and antineutrino are added to the 6nal state.

&pal~ )=-~2& vl~'),

(~ el= )=—v2(~'el=').

(31)

(32)

clsAs =cp IP q
s= 1) 2) 3

C =MNgA/gr ~

(42)

The relations (28)—(32) are obtained from the assump-
tion that the weak vertex A-8 transforms like II and
are valid for parity-conserving and parity-violating
amplitudes.

0. SEMILEPTONIC DECAYS OF HYPERONS

It is assumed that the baryon part of the semilep-
tonic decays transforms as H4. Equation (4) reproduced
for H' is

I Q",I Q,H'jl —I:Q,LQ',H'll= LI Q Q 3»'3 (33)

"The amplitudes (nZ'["')s=(n +[X+)os=(nE [- )s=0 in
Ref. 2, so that Eq. (26) gives no restriction in the model of Ref. 2."R. H. Graham and S. Pakvasa, Phys. Rev. 140, $1144 (1965)."K. Tanaka, Phys. Rev. 140, 8463 (1965). A misprint of the
coeiiicient of Xn~ of Eq. (4), 1/VS, should be corrected to 1/g6.
Equations (28)—(32) are consistent with Eq (4) of this refe. rence.

We obtain, with the aid of Eqs. (3), (34), and (42),

&Bw IH'IA&=(1/v2c)(BILQ '+sQ ', H'jlA)
c(~ ) o

=(1/~ )(BILQ'+ O', H'jlA)
= (1/c)(B I

LI+ H'j
I A)

= (1/2v2c) (B I
Hi+sIIo

I A)

= (1/Vfc) &B IH4I A). (43)

The normalization factors and momenta of the particles
are suppressed. Note that because of our assumption
that H' is of the current-current form, Eq. (3) holds
and the steps on the right-side hand of Eq. (43) can be
taken. Equation (43) gives only the S-wave or parity-
violating amplitude for nonleptonic decays which cor-

"N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).
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responds to the parity-conserving amplitude in photonic
decays. ' The P-wave amplitude can also be obtained as
in Ref. 2.

We start from the following relations of Eq. (21):

When the pion is reduced in (49) using (43),

(islaslA) v3(rslasl&o&+2(Alasl-„o& 0,

~2(pla'IA&+~3(NIH'l~ &+2~2«la'I= &=o.

(50)

(51)

(p~'I H'I ~&=
I («+

I
H'I &+&—(«-I H'I ~&j/~~,

(44)
-(p -Iasl~'&=L(. +Iasl~+&

—(s —
I
H'I Z-)J/W2; (45)

and reduce the pions from the amplitudes using Eq. (43)
and Table I:

lim (Porol HslZ+) (I/o)(PI LQs as]I g+)
c(~0) o

=-(I/2 )(pla'l~'&,

hm («+Ia IZ+)=(I/V2~)(pla IZ+&
a(~+) o

+ (I/.)(~laslzo&,

(46)

lim («-Ia'IZ-&= —(1/c)(nla'IZ ).
q(x ) ~o

Combining (44) and (46), one finds for parity-con-
serving amplitudes

01
(p I

a'I ~+&= —~2(N I
a'I ~')

(p~ I
z+&= —v2(~~

I
zo&,

which is Eq. (31) for parity-conserving decays, obtained
under the assumption that the weak vertex transforms
as as. One also notes that Eqs. (46) and (47), that
for S waves, '4

lim (nz.+I H'I Z+&=0.
q(x+) -+P

(48)

We next express Eq. (45) in terms of the matrix
elements of Hs, as in Eq. (43), and obtain

&2(p I
asl zo&= (~ I

asl z-),

A g(g-;)x=+2=-:=0. (49)

'4H. Sugawara, Phys. Rev. Letters 15, 879, 997 (1965); M.
Suzuki, sbid 15, 986 (1965.).

which is Eq. (39) of semileptonic decays.
In order to relate the L-S relation for 5 waves to sum

rules in photonic decays and semileptonic decays, com-
bine Eqs. (21), (27), and (48);

Equation (50) is the second sum rule (28) of photonic
decays for the parity-conserving case when the photon
in the final state is suppressed, and Eq. (51) is the sum
rule (41) of semileptonic decays for the parity-conserv-
ing case.

It has been shown that in the framework of the sym-
metry-breaking Hamiltonians of the current-current
form and pions of zero four-mornenta, the triangle re-
lations (44) and. (45) of nonleptonic decays for S waves
have a common origin with the photonic decay relation
(31) and the semileptonic decay relation (39), respec-
tively. Also, the L-S relation for 5 waves is intimately
related to the sum rules (28) of photonic decays and
(41) of semileptonic decays.

8. SUMMARY

It is proposed that all symmetry-breaking interac-
tions are of the current-current form. A method of
calculation suitable for obtaining sum rules for such
Hamiltonians is developed. It relies on the operators
Q+ that transform one state into another and thus
relate various amplitudes.

The procedure is roughly to assume that some obser-
able transforms as a component of the symmetry-break-
ing Hamiltonian H' and take its matrix element with
respect to initial and final states. The matrix element is
expressed in terms of the matrix element of the double
commutator of the operators Q+ with H'. All the ampli-
tudes that are related to the original amplitude are
obtained with the aid of Table I. The unphysical ampli-
tudes that necessarily appear are re-expressed in terms
of physical amplitudes by repeating the procedure above
and symmetry property of H' are fed into the relations.
In other words, sum rules among amplitudes which are
due to H' Qow from the operations in Table I in a
straightforward manner.

The sum rules do not go beyond SU(3) with H' of
the current-current form. There is a possibility that the
commutation relations (3) on which the present method
is based may be valid even if the SU(3) symmetry of
the strong interaction is badly broken.

The method is expounded by showing how various
sum rules can be obtained in a simple way. Then, it is
combined with the technique of reducing a pion, and it
was shown that the triangle relation and the L-S rela-
tion of nonleptonic decays correspond to sum rules of
photonic decay amplitudes and semileptonic decay
amplitudes of hyperons.


