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Low-Energy Theorems for Massless Bosons: Photons and Gravitons
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The low-energy theorems for the scattering of massless bosons are discussed. Photon and graviton scat-
tering is examined in detail, using techniques which make no high-energy assumptions. It is shown that
the low-energy form for the amplitude is given by the dispersion-theoretic Born approximation, and that
the energy dependence of the neglected terms is determined by the spin of the scattered boson. It is demon-
strated that Schwinger terms and sea-gull terms do not cancel in gravity theory.

I. INTRODUCTION

ECENTLV, some attention has reverted to the
exact low-energy theorems for the scattering of

massless bosons oR massive particles. These theorems
were 6rst proved by Low' and by Gell-Mann and
Goldberger' for the case of massless spin-1 particles
scattering oR spin- —', systems, viz. , Compton scattering.
Pais and Singh' have extended Low's considerations to
higher energies, and Bell4 has shown that Low's ap-
proach does not contain any high-energy assumptions.
Abarbanel and Goldberger' have given a derivation of
the Compton-scattering low-energy theorem from an
S-matrix point of view, using the techniques of dis-
persion theory. Gross and the present author' used the
method of Abarbanel and Goldberger to give a low-

energy theorem for massless spin-2 particles scattering
oR spin-0 systems, viz. , graviton scattering.

The purpose of the present paper is to reestablish the
graviton-scattering low-energy theorem by a method
which minimizes the assumptions of the derivation.
Specihcally, we show that this theorem follows, in a
model-independent fashion, from gauge invariance and
from assumptions about the analyticity structure of the
scattering amplitude at low energies. The present
argument diRers from the methods previously used

to establish the low-energy theorems, in that the dis-

persion-theoretic results' ' are established without use
of dispersion theory. In order to illustrate our argu-

ment in 3, simple application, we first use it in Sec. II
to study the case of photon scattering. Then, in Sec. III,
we given the low-energy theorem for gravitons. In
Sec. IU, we discuss the divergence conditions in gravity
theory, and show that Schwinger terms do not cancel
sea-gull terms in this theory.
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II. SPIN-I SCATTERING, PHOTON CASE

We examine brieRy some aspects of the usual deriva-
tions of the low-energy theorems. The dispersive ap-
proach' ' has the attractive feature of using only
physically measurable quantities, since one works with
helicity amplitudes. However, a "no-subtraction"
hypothesis seems to be required, since one writes un-
subtracted dispersion relations for the helicity arnpli-
tudes with their kinematical zeros divided out. This
state of aRairs should be circumvented, because one
believes that low-energy behavior is independent of
subtractions. Moreover, the dispersive approach, as
applied to graviton scattering, suffers from further
shortcomings. First, the partial-wave expansion used
in determining the kinematic zeros fails to exist be-
cause of the long-range force between matter and
gravity, which arises from graviton exchange, and which
leads to a pole in the forward direction. Second, the
dispersive approach does not yield the optima1 estimate
for the energy dependence of the neglected terms.
Speci6cally, the result obtained is that the neglected
terms are quadratic in the graviton energy; yet an in-
dependent argument can be given to show that they
are in fact quartic. ' A 6nal technical shortcoming of
the dispersive method is that a separate argument is
given for di6erent spins of the target particle. As the
result can be stated in a fashion which makes no refer-
ence to the target spin, a more unified treatment is
preferable.

The method of Low, ' in its original form, concentrates
on the evaluation of the time-time component of the
scattering-amplitude tensor. Evidently a specific theo-
retical framework, such as the Lehmann-Symanzik-
Zimmermann (LSZ) formalism, is required to give a
de6nite expression for this object. In addition to the
general assumptions inherent in this formalism, speci6c
assumptions about sea-gull terms and Schwinger terms
are made to arrive at the desired fact that the time-time
component is given by the time-ordered product of
charge densities. Although such assumptions can be
justi6ed in de6nite models of electrodynamics, the
situation in gravitation theory seems to be more obscure.
Bell's modi6cation4 focuses attention on the energy de-
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FIG. 1. Pole terms in scattering of photons.

pendence of the single-particle contribution, a program
we are unable to carry out for gravitation theory.

The derivation by Gell-Mann and Goldberger, as
discussed by Kazes, ' exploits generalized Ward identi-
ties for the scattering amplitude continued off the mass
shell in all the variables. These Ward identities require
specific assumptions about the current commutators,
the Schwinger terms in these commutators, and the
sea-gull terms in the scattering amplitude. Alterna-
tively, one may assume invariance of the underlying
theory under gauge transformations of the second kind,
which then i.s sufficient to determine divergence condi-
tions (viz. , Ward identities) for the four-point function.
Such assumptions can be readily made and justified for
electrodynamics. For gravitation theory, however, we
are unable to give the complete equal-time commutator
of the "currents, "which are the sources of the gravity
field. Thus we prefer a different approach which does
not make use of Ward identities, so that no com-
muators are required.

Our approach, then, is the following. Consider
the scattering of photons, with initial (final) four-
momentum and polarization k, e& (k', c*"), respectively,
off a target of arbitrary spin and initial (6nal) four-
momentum p (p'). (The polarization vector e" is com-

plex, and e~*& is its complex conjugate. ) The scattering
amplitude A is given by

~ = &"&*"Tlv I i'-i"-0, (2.1)

where T„„ is the scattering-amplitude tensor, with
photon momenta continued off their mass shell, but
target momenta retaining their mass-shell value. The
polarization vectors satisfy k„e&=k„'c~"=0. Energy con-
servation is imposed, so that k+p=k'+p'. T„„satifies
a crossing relation

T„,(k,k') = T.„(—k', —k), (2.2)

which reQects the fact that, to every Feynman diagram
contributing to T„„,there corresponds a crossed diagram.
Gauge invariance requires that'

kI'T„,=k'"T„„=0. (2.3)

In the following, it will be important that (2.3) holds
o6 the k and k' mass shells.

~ K. Kazes, Nuovo Cimento 13, 1226 (1959).
8 S. Weinberg, Phys. Rev. 134, 8882 (1964).

Our 6rst assumption is that the contribution to T„„
which is singular in k and k' (in the precise sense to be
given below) can be identified and explicitly separated
from T„„.Call this singular part T„„&"'.lt m jll not, in
general, satisfy the gauge condition (2.3).However, we

may add to T„„r'"'a second term, regular in k and k',
T'„„,such that T'„„summed with T„„i'"esatisfies (2.3).
We call the quantity T„„i'"'+T'„„the gauge-invariant
pole term, and we have

T„„=T„i"i'+T'„„+R„„,

k~(T„„""+T',) =0

k'"(T„+T' „)=0

kf"R„„=0,

k'"R„„=0.

(2.4a)

(2.4b)

(2.4c)

(2.4cl)

(2.4e)

Thus if

a
Rpv k Rav

ak„

a
llD1 R "
~ ' ak„

(2.5)

exists, viz. , if R&" is differentiable by k at the origin,
then Eq (2.5) in. dicates that R""is indeed linear in k or
identically zero. The crossing relation or the gauge
condition (2.4e) forces R&" to be linear in k' or identically
zero. Thus it is seen that the divergence conditions
(2.4d) and (2.4e) trivially enforce R&" to be of order k
and of order k'. We show in Appendix A that in fact
Rl'" is quadratic in the photon momenta. (Since k and
k' are not independent, this is not an obvious con-
sequence of the fact that R&" is of order k and of order
k'.) When k and k' are restricted to their mass-shell

values, this term is quadratic in the photon frequency.
Since no information is available about R&', we con-
clude that the terms whose form we can give explicitly,
viz. , T„„&"'+T'„„,yield a result accurate up to terms
quadratic in the photon frequency.

It is seen that the result that the unknown, neglected
term RI'" is quadratic in the photon frequency follows
essentially from that fact that there are two gauge
conditions (2.4d) and (2.4e) (or, alternatively, one

gauge condition and one crossing condition). When the

It is assumed that T„„~"e+T'„„and R„„separately
satisfy the crossing relation (2.2). Thus (2.4e) is
derivable from (2.4d), and similarly (2.4c) from (2.4b).
(We construct T„„""+T'„„explicitlybelow. ) The pre-
cise meaning of this regularity assumption may now be
given: We wish to conclude that the relations (2.4d) and
(2.4e) require that R„„bequadratic in the photon mo-

rnenta, or identically zero.
To see that is is true for regular R„„,we proceed as

follows. Considering R„„asa function of p, p', and k, the
last being arbitrary, we differentiate (2.4d) by kI' to get
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scattered massless boson carries spin s, there will be 2s
gauge cond. itions' (or s gauge conditions and. one cross-
ing condition). Thus we expect that for boson spins
higher than 1, the low-energy theorem will be valid up
to terms of order boson frequency to the power 2s.

Returning to our discussion of the photon low-

energy theorems, we discuss the calculation of the
gauge-invariant pole contribution T„p"'+T'„„.One
method of doing this is the following. We take for
T„„&"'the expression given by the single-particle inter-
mediate-state Feynman diagrams which arise in the
covariant Feynman-Dyson perturbation theory. The
vertices and propagators in these diagrams are the
complete, physical, renormalizcd quantities. The ap-
propriate expression is summarized by Fig. 1.Then we
explicitly construct T'„„so that the sum T„p"'+T'„„
is gauge-invariant. This procedure, which is carried out
in Appendix C, is rather complicated, and uses the
Ward identity for the vertex opeator, which is a con-
sequence of gauge invariance, but does not require
current commutators, only current field commutators.
However, we assert here that this explicit calculation
is irrelevant, because our second method, which we now
describe, immediately gives T„p"'+T'„„.In the above,
we have argued that once a gauge-invariant pole term
has been separated from the scattering amplitude, the
remainder is necessarily quadratic in the photon fre-
quency. But we can obtain this gauge-invariant pole
contribution by simply calculating the Born approxima-
tion for the scattering of light o6 a system whose single-
photon-emission amplitude is governed by the appro-
priate form factors, all evaluated at zero argument,
viz. , total charge for spin-zero targets, charge and
magnetic moment for spin-~ targets, etc. That this
expression is gauge-invariant is assured by the under-

lying Lagrangian formalism used in calculating the Born
approximation. That this is the entire pole contribution
is assured by the fact that the emission of physical
photons is governed by form factors at zero argument.

To make the above considerations explicit, we for-
malize the argument as follows. Start with T„„I'"' as
given by the single-particle Feynman diagrams of
Fig. 1.This is certainly the entire pole contribution, but
it is not gauge-invariant. Thus

T.,""=~ (P,P+k)D(P+k) I (P+k,P')+I' (P,P-k')
XD(p —k') I' (p —k', p'). (2.6a)

Here I'& is the complete vertex operator and D is the
complete propagator. No commitment about the degrees
of freedom of the target is made, and it is understood
that (2.6a) is restricted to the p and p' mass shells.
Many form factors contribute to (2.6a), since the vertex
operators appearing there always have one leg off the
mass shell, e.g., I'"(P,P+k), with (P+k) sWm'. We now
note that an expression which is simpler than (2.6a), but
which has the same poles and residues as (2.6a), and
hence can serve just as well for T„„&"',is obtained from

(2.6a) by replacing the propagator D by Do, the bare
propagator with a pole at the physical mass. Further,
the form factors with one leg off the mass shell may be
replaced by form factors with both legs on the mass shell.
Hence we use for T„„&', instead of (2.6a), the formula

T„„'"'=I'o"(p,p+k)Do(p+k) I'o"(P+k,P')+ I'o"(P,P k')—
&(Dp(p —k )rps(p —k p ) . (2.6b)

I'0& contains the subscript to remind of the fact that
any form factors appearing in a covariant expansion
of I'0& have both legs on the m mass shell. These form
factors are functions of the photon momenta k', k",
which we do not as yet take to be on their mass shell.
The expression (2.6b) is not, in general, gauge-invariant;
so we still must construct T'„.. When k'= k"=0, (2.6b)
is simply the gauge-non-invariant pole term of the
Feynman-Dyson Born approximation to the scattering
amplitude for light off matter, where the electro-
magnetic interaction is given (in momentum space) by
I'os(p, p+k) I

s'—p (e.g., total charge, magnetic moment,
etc.). But we know how to calculate the additional
terms which are required to make such pole terms
gauge-invariant: Simply calculate the lowest-order scat-
tering amplitude in a gauge-invariant theory where
the interaction is given by I'p"(p, p+k)I, ~ o. Thus
we can certainly given T'„,

I
s' s~ o N=ow=, .proceeding

to the physical amplitude, we have

T""
I s =s =o= I'p" (P,P+k)Do(P+k) I'o"(P+k,P')

I s =s"=o
+I' "(p,P—k')D (P—k')I' "(P—k'P) I"= "=

+T""I&'=&' p+O(pp). (2.7)

(Here cp is the initial photon frequency. ) This is the
desired result. The scattering amplitude, up to terms
quadratic in the photon momenta, is given by what is
seen to be the Born approximation in the dispersion-
theoretic sense. The explicit calculation in Appendix B
serves to conhrm the above result. ' We point out that
the above holds for arbitrary target spins.

As a concrete example of the above, we work out the
standard result for spin-0 and spin-~ targets. For spin-0
targets, (2.6a) gives the Feynman-Dysan pole terms
with

I's(p,p+k) = t(2p+k)sf(ms, (p+k)', ks)

+keg(ms, (p+k)', ks)]. (2.8)

We have decomposed the vertex operator into the in-

9A subtle point arises in connection with this solution for
T„„&'"+T'„„.We have succeeded in giving T'„„~s~ s ~ p, which is
all that is required for physical applications. However, it is not
obvious that this solution is unique, viz. , that if we could obtain
the form of P„, when O'WOWk", that the limit of this 7'„„as
k ' and k"—+ 0 is the above-given T'~.

~

s' s" o. Explicit calcuia-
tion for spin-0 and spin-~ targets does in fact show that the solu-
tion is unique. Furthermore, the calculation in Appendix C also
shows that the solution we give here is the correct, unique solu-
tion. I am indebted to Dr. J. S. Bell for calling my attention to
this point.
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variant form factors f and g. Recall that total physical
charge e enters through

f(m', m' 0)=e, (2.9a)

and that charge conservation requires that

g(m', m', k') =0. (2.9b)

I'&P(p, p+k) = (2p+k)P f(m' m', k'),
Do(p)=(p2 —m') '

When k'= k"=0, (2.6b) has the form

(2p+k) „(2p'+k').
Pole~&v &, v,—p2

(p+k)' —m2

Instead of the pole term (2.6a), we may consider the
pole term (2.6b), which differs from (2.6a) by nonpole
terms. Therefore, we use (2.6b) with

It is seen that this is just the pole terms of the Born
approximation to the scattering amplitude of light
from a spin--,' particle of total charge e and anomalous
magnetic moment p,. No further terms are necessary to
make this gauge-invariant, since (2.15) already possesses
this property, as can be verified directly. Hence (2.15)
is the total scattering amplitude up to quadratic
photon-frequency terms. This is the theorem for spin-2
targets.

III. SPIN-2 SCATTERIN 6, GRAVITON CASE

We now discuss the low-energy theorem for spin-2
massless particles, i.e., graviton scattering, closely
following the previous analysis of photon scattering.
The kinematics are as before, except that the initial and
final polarizations are now described by two-component
tensors, which may be taken to be of the form

&pv = &p&v,

(3.1)e"e„=0,
(2p —k').(2p' —k)„

e2 . (2.11a) and similarly for the final polarization tensor e . The
~ ~ ~ ~ g~p

scattering amplitude A is given by
This is just the pole term of the Born approximation to
the scattering amplitude of light off scalar particles of
charge e. In a well-known fashion, to make this expres-
sion gauge-invariant, it is necessary to add a sea-gull
term —2e2g„„.Hence

Tpv, aP~l, =i, =ov (3.2)

where T„„, p is symmetric in pP and in le, and satisfies
the crossing relation

IT avail, =i, =0 2& gpvv (2.11b)
T„„p(k,k') = T.p, „,(—k', —k). (3 3)

(2p+k)P(2p'+k')"

2p k

(2p —k')"(2p' —k) &

~e2 —2e2g~v+0(ol2) . (2.12)
2p. k'

This is the theorem for spin-0 targets.
For spin--', targets, we use (2.6b) with

k Tpp, ~p= k Tpp, ~p= 0 (3.4)

We now assume T„„, p&"', i.e., that the contribution
to T„„, p, which is singular in k and k', can be isolated,
and that a regular expression T'„„,„p can be given so
that T„„,„p""+T'„„,p is gauge-invariant. Thus we have

The polarization tensors are transverse e&k„= e* k' =O.

The gauge condition requires that'

I'&P(P P+k) =qPF (m2 m' k')
—

ikao "aG(m2vm2, k2)
v

Do(p)=(p —m) '. (2.13)

The total charge e and anomalous magnetic moment

p are de6ned through

Tpv, ap= Tpv, ap +T ,pvap+R, pva&p

ko(T„„,.pP" +T'„„.p) =0,
k"(T:.-p"'+T'".-p) = o

k"Eq„, p= 0,
k' E„„,p= O.

(3.5a)

(3.5b)

(3.5c)

(3.5d)

(3.5e)

F(m' m2 0)= e2

G(m', m', 0)= ill. (2.14)

When k'= k"=0, (2.6b) has the form

T.;"'
~

i, '=.' o= u(p) L~„p—ik "o„.p7Lp+& —m7-'

X py„e+ik'"a„„p7u(p')+ 2J(p) py„e+ik'"a„„I 7
Xt p lr' m7 '—(7„e—ik o„ li7u—(p'). (2.15)

It is assumed that T„„, p&", T'„„, p, and E.„„psepa-
rately possess the same symmetries as T„„, p, and that

p is regular in k and k'. Further divergences of
T„„, pP"'+T'„„, p and R„„, p vanish by virtue of the
symmetry in pp and nP.

The divergence conditions on 8„„,p, the regularity
assumption, as well as the symmetries, set restrictions
on the k and k' dependence of R„„, ~. As in the photon
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case, part of the restriction is obtained trivially by
differentiation. We have from kl'R„„, p=0 the result
that

8
Rpv 4 exp k Rcov & tlap

Bkp
(3.6a)

Now differentiate k„k„RI"' p=0 with respect to k„and
kv~ to give

8
2R~"' ~+2k„R"~' s+2k„R~""~

Bk„ Bk„
k ZpX k

FIG. 2. Pole terms in scattering of gravitons.

+k„k, R&" s=0. (3.6b)
Bk„8k„

The symmetry of R"" ~ has been used in (3.6b). Then
(3.6a) substituted in (3.6b) gives

R"""P=-'k k2
Rpv 4 &P

Bk„8k„
(3.6c)

j.e., R&" ~s js quadratic in k. Crossing or (3.5e) gives the
result that R&" ~p is also quadratic in k'. Hence EI"" ~p

is quadratic in k and k'. In Appendix B we show how to
give a closer estimate for R&" p. The procedure,
analogous to that of the photon case, is very involved
because of proliferation of indices. Ke therefore show

only that R&" p is cubic in the graviton frequencies,
and indicate how the proof proceeds to the end that
R~" p is quartic in the graviton frequencies. For the

simpler problem, where Rl"' p arises from a spin-0
target, the result that RI"" p is quartic in the graviton
frequencies has been proven explicitly elsewhere. '

To complete the discussion of graviton scattering, we
need to give the gauge-invariant pole contribution
T„„p"+T'„„,p. The pole terms include, in addition
to the single-particle intermediate states, a term which
has a pole in the crossed channel, and which arises from
the exchange of a massless boson between matter and
gravity. All the pole terms are summarized in Fig. 2.
The graviton-exchange pole is of the form (for physical
gravitons) r4/k k'. For fixed energy in the forward direc-
tion this diverges. However, for fixed angle there is no
divergence with vanishing energy of the graviton. The
reason for this is that the residue n also vanishes as
energy decreases to zero, which rejects the fact that
gravitons interact with energy. It is seen, thus, that at
6xed angle not in the forward direction, a low-energy
theorem can be given.

As in the photon case, two methods are presented to
calculate the gauge-invariant pole contribution. One
method is to take for T„„, pI"" the expression sum-
marized by Fig. 2, and to calculate T'„„, p explicitly.
This is done in Appendix D, where the Ward identity
for the gravitational vertex is derived. The second
method is the assertion that the gauge-invariant pole
contribution is simply obtained by calculating the Born

approximation to the scattering amplitude of gravitons
off a system whose emission amplitude for physical
gravitons is governed by appropriate form factors at
zero argument. The reasoning which establishes this
result is the same as in the photon argument. Ke do not
repeat it now, but merely illustrate it in the case of a
spin-0 target.

The pole contribution of Fig. 2 has the form

&",- ""=r"(P,P+k)D(P+k) r- (P+k, p')

yr.,(p,p—k )D(p —k )r„„(p—k,p

d&' ~(k —k')
+~;.-s..4(k, k') r "(P,P') (3 &)

(k —k')'

Here I'„„is the matter-gravity vertex operator, U„,, p, »
in the three graviton vertex; and d&' '4'(k)/k' is the
graviton propagator. Since we must perform the cal-
culation to lowest order in the gravitonal coupling G
(otherwise our assumptions about the pole structure
are not correct), we can take explicit, lowest-order
perturbation-theory expressions for U„„, p, » and
d&~'~. Ke do not give these terribly complicated
formulas here, as they have been recorded elsewhere. '
The general form of the vertex operator is dictated by
Lorentz invariance and symmetry to be

r..(P,P+k) =-'G(F i(p' (1+k)',k')

X [(2p„+k„)(2p,+k,)+k'g„,—k„k„]
+F2(p' (p+k)'k')[k'g —k k j
+F3(p' (p+k)' k')g +F4(p' (p+k) k')

X [(2p,+k„)k,+(2P,+k,)k„j. (3.8)

Gauge invariance forces F& and F4 to vanish when p'
and (p+k)' are on the mass shell. F4(m', m', 0) is deter-
mined by the mass of the particle, and in the above
form is 1.

Instead of using (3.7), we may replace it by another
expression which differs from it by nonpole terms. In
the first place, we replace the vertex operators occurring
in the first two terms of (3.7) by vertex operators where
both legs are on the mass shell. We note that in the
third term the vertex is already on the mass shell. Also,
we replace the propagators D(p) by (p' —m') '=—Do(p).
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Fxo. 3. Sea-gull term in graviton
scat tering.

Thus we replace (3.7) by the expression

2'„...," = r„„o(P,P+k)D, (Pyk) r.,o(P+k, P')

+ r.,o(p, p —k')D, (p —k') r„„o(p—k', p')

d"""(k—k')
+U„„p,,0(k,k') I',„'(p,p'), (3.9a)

(k—k')'

r„„"(p,p+k) =4iO{Fi(m',m', k')[(2P„+k„)(2p„+k„)

+k'g p„k„k—,j+F0(m', m', k') Lk'g„, k„k—,j) . (3.9b)

In the second place, the last term in (3.9a) may be
simplified as follows. It is a property of the explicit
formula for U„„p„p(k,,k', )d"""(k k') t—hat contraction
of this with terms of the form (k—k')'g, „—(k,—k', )
X(k„—k'„) gives no contribution. Hence F0 does not
contribute to the last term of (3.9a).' Also, the contribu-
tion to the last term in (3.9a) from Fi(m', m', (p —p')')
may be modified by replacing Fi(m', m', (p —p')')
=Fi(m', m' (k —k')') by Fi(m', m', 0)=1v since the dif-
ference is not singular, viz. , the difference cancels the
exchange pole. Finally, we note that certain contribu-
tions to the first two terms of (3.9a) may be
dropped, since they are proportional to k'g„„—k„k„
or k"g p

—k' 4'p. Such terms do not contribute to the
final scattering amplitude. Thus the form for T„„p&'"
which we use is

00~e=—'O' F,(m' m' k')Fi(m' m' k")

X {D0(P+k)(2P„+k„)(2P.+k.)(2P' +k' )(2P'p+k'p)

+D.(P—k')(2P- —k'-)(2P p
—k'p)(2P'. —k.)(2P' —k.))

d"""(k—k')
+U„„, .,p( 0, k)k

(k —k')'

x 'o(p+P'). (P+p')' -(3 1O)
To calculate

we note that T„„, p""~ &v &. v 0 is exactly the pole con-
tribution to the Born approximation for the scattering
of gravitons o6 spinless matter of mass m. Such a pole
contribution is not gauge-invariant. The additional term
needed is a sea-gull, which is given in Fig. 3. The ex-
plicit form of this is calculable from the Feynman rules.
Therefore, T'„„, p~ ~v=~ v 0 can be evaluated. Thus the
scattering amplitude up to terms quartic in the graviton

frequency is given by the Born approximation. "Note
that only one form factor (at zero momentum transfer)
contributes, which is a surprising result; i.e., F2 plays
no role in graviton scattering to this order.

The explicit calculation from the Feynman rules of
the sea-gull term and of the entire Born term has been
presented elsewhere. ' We record here the final result
for the total cross section for unpolarized gravitons, in
the matter rest frame and zero graviton energy:

do 1+6cos'8+ cos'8—= -', G4m'
dQ (1—cos8)'

(3.11)

where 0 is the scattering angle. The calculation in
Appendix D serves to confirm this result.

This completes our discussion of the low-energy
theorem of graviton scattering. We repeat that it has
been unnecessary to appeal to anything beyond gauge
invariance of the scattering amplitude and the identi-
fication of the gauge-invariant pole contribution.

k M&"= D '(P')D(P' k)r"(p' k,p) —r"(p' p+—k)—
XD(p+k)D-'(p). (4.1)

On the mass shell this vanishes, as it must by gauge
invariance. This divergence condition is obtained either
by exploiting gauge invariance of the second kind of
the underlying theory, or by explicit calculation, using
an expression for the scattering amplitude, given by
the I.SZ formalism. The second method requires the
knowledge of current commutators. Experience in
electrodynamics shows that for purposes of calculating
this divergence, one can pretersd that 3f"" is given by a
time-ordered product of currents and that the com-
mutator of the currents does not contain Schwinger
terms. (The true state of affairs, of course, is that 3E&v

contains, in addition to the time-ordered product of
currents, sea-gull terms whose divergence just cancels
the Schwinger term in the commutator. )

' Comments similar for those of Ref. 9 apply here.

IV. DIVERGENCE CONDITION IN
GRAVITY THEORY

It has been possible to give the low-energy theorem
for photons and gravitons, without reference to current
commutators or divergence conditions. For gravitons
these commutators are not known. In the present
section, we shall show that the derivation of divergence
conditions in gravitation theory cannot proceed in the
same heuristic fashion as in electrodynamics; that is,
Schwinger terms (terms proportional to divergences of
8 functions) do not cancel sea-gull terms.

Let us first recall the situation in electrodynamics.
Consider the scattering-amplitude tensor 3III"", off the
mass shell in all the variables. Then the divergence
condition is'
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One might hope that a similar state of affairs obtains
in gravity theory. However, we shall show that this is
not the case.

In order to being the derivation of the analog of
Eq. (4.2) for gravity theory, we consider a four-point
function consisting of the time-ordered product of two
spin-0 matter 6elds and two currents —sources of the
gravity field. The complete source is the energy-
momentum tensor of matter and of the gravity field.
However, since we have no information here about the
gravity-field energy-momentum tensor, we shall assume
that we may take the source to be given just by the
energy-momentum tensor of matter. The effective
content of this assumption in the present context is that
the commutation relations of the complete currents
with themselves are the same as those of the matter
energy-momentum tensor. Having made this assump-
tion, it is straightforward to calculate the divergence
condition. The result is

k.~"-s=(p -k) D- (p')D(p'- k) I -&(p-k', p)
—(p+k) r-s(p', p+k)D(p+k)D- (p)

y(p —p') r-'(p', p), (4.2 )
k'.~"'&=-(p'+k')'D-'(p')D(p'+k') I'""(p+k,p)

+(p—k')'I'""(p', p —k')D(p —k')D '(p)
+(p' —p)'~""(p',p)

Equation (4.2b) follows from Eq. (4.2a) by crossing
symmetry:

Ms"'s(p p'& k,k') =M s s"(p p' —k' —k) (4 3)

Schwinger terms have been ignored in the derivation of
Eq. (4.2). The first two terms in Eqs. (4.2a) and (4.2b)
represent the commutator of the source with the 6eld,
while the last term arises from the source-source
commutator.

There are two things wrong with (4.2) as a candidate
for the divergence condition for the o6-mass-shell
scattering amplitude. First, the gauge-invariance conch-
tion is not regained on the mass shell, since the term

(P—P')"I' ~(P', P) does not vanish. Second, (4.2) is not
crossing-symmetric. By this we mean that if we sub-
tract k' times the 6rst equation, (4.2a), from k„ times
the second equation, (4.2b), the result is not zero. Thus
the point of view familiar from electrodynamics, where
one ignores Schwinger terms and sea-gull terms, is not
effective in gravity theory.

We now enquire if we might modify the divergence
condition (4.2) in a simple fashion to overcome its de-
fects. In deriving (4.2), we have ignored the Schwinger
terms in the equal-time commutator of II'" with
H ~. (H&" is the matter energy-momentum tensor. )
However, it is well known" that this commutator does
in fact contain terms proportional to derivatives of
the 5 function. If we concentrate on the first derivative

."D. Boulware and S. Deser, J. Math. Phys. 8, j.468 (1967).

of the 8 function, then it can be verified by model cal-
culations that the proportionality factors are linear
combinations of energy-momentum tensor compon-
ents. ""Thus, if single derivative Schwinger terms
are included, Eq. (4.2a) is replaced by

k Ms"'s=(p' —k)"D-'(p')D(p' —k)l' s(p —k', p)
—(p+k)"I"'(p' p+k)D(p+k)D '(p)
+(p P)"I'—(p' p)+k'~- '"~'I'"'(p', p) (4 4)

The last, noncovariant term in (4.4) is the effect of
Schwinger terms. 5„„'"~ t' is a numerical tensor, generat-
ing the linear combinations of the vertex function I'"&.
It is seen, therefore, that even if the relation (4.4) is
extended into some invariant form Dor example, by
replacing the last term by k„S„~&" &I'"&(p',p) j, so that
the entire equation also is crossing-symmetric, such
an expression cannot be the divergence condition, since
the erst of the above defects persists, viz. , it does not
vanish on the mass shell. Therefore the divergence con-
dition on the amplitude cannot be obtained by this
cavalier elimination of sea-gull and Schwinger terms,
which is valid in electrodynamics. To obtain the
divergence condition, one must carefully account for
these singular objects. Alternatively, one might study
the gauge invariance of the underlying Lagrangian. We
do not pursue these considerations any further.

V. CONCLUSION

We have given a general derivation of low-energy
theorems for the scattering of massless bosons of spin 1
and 2, using a technique which does not use any high-
energy assumptions; nor does it commit one to any
model for the exact scattering amplitude. We have
shown that the dispersion-theoretic Born approxima-
tion gives the scattering amplitude up to terms in the
boson frequency whose order is determined by the spin
of the boson. We do not discuss spins greater than 2,
since it can be shown that such massless bosons do not
couple at low energy. ' We do not have a theorem for
spin-0 bosons. The reason for this is that the main
ingredient of low-energy theorems is the limitation that
masslessness, viz. , gauge invariance, places on the
amplitude. These limitations are consequences of the
fact that a massless particle can exist in, at most, two
spin states. But a spin-0 object has only one spin state
available, so that masslessness does not place any
further restrictions. The physically uninteresting but
conceptually intriguing case of graviton scattering—
with its attendant pecularities —is thus seen to be com-
pletely tractable within conventional techniques. How-
ever, it is seen that divergence condition in gravity
theory cannot be given in the same simple fashion as in
electrodynamics, since the Schwinger terms and sea-
gull terms do not cancel.

rs The erst-derivative Schwinger term in the LH" +~~1
(l, m, I, =1, 2, 3) equal-time commutator is not of this form. .
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APPENDIX A

We show that R»"(p,p', k,k'), which satisfies

R»"(p,p, 'k, k') =R"»(p,p', k', —k), — (A1)

k„R~"=0, (A2)

must be quadratic in the photon momenta (under the
usual regularity assumptions). According to (2.5), we
have the fact that R&" is linear in k:

R»"=k R»" (p p' k) (A3)
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the contrary and prove it to be zero. Assuming that
Ro»" depends on P=p+—p', but not on Q=p' p—, we
have from (A9), (A10), and (A11) the fact that, Ro"" is
antisymmetric in all its indices and transverse to Q.
Since Ro»" is independent of Q, the only way that
Q„RO»" can vanish is if Ro»" is proportional to P», since
P Q=O. 8ut Ro»" is transverse to Q when contracted
with aery index; thus Ro"" is proportional to I'&I'"I',
which violates the antisymmetric nature of Ro&", and
proves the desired result.

APPENDIX B

We give a calculation for gravitons analogous to that
given above in Appendix A for photons. The problem
is almost intractable because of the proliferation of
indices. We therefore simplify it by showing only that

t' is cubic rather than quartic in the graviton
momenta. We consider R»" & to be a function of p, p'
and k. We then have

where we have eliminated k' by the energy-conservation
relation. Crossing, viz. , Eq. (A1), now gives

R»"= —O'.R""(p,p', —k') .
k R~" ~=0,

R"" '(p p'») =R' ""(p p' —k').

(81)

(82)
We expand E."I" in powers of k:

R"» (p p' —k )=Ro"» kpR, »" ~ ~(—p p', k) . (AS)
R»" & is symmetric in p» and in nP. We have from
Eq. (3.6) that

Equation (AS) is exact by definition, when

R v»a —Rv»a(p pv pv p)

R»"'~=k k R»"'s "~(p,p', k)
kl kv Rap, »v, aa(p pv k/) (83)

Therefore, from (A4) R ~»" "& may be chosen symmetric in cop. Expanding
R»"= k' R ""+k'—O'ER»"i i'(p p' k)

and from (A1)

(A6)

R»"=k R&»" +k k'pRi"»~ ~(p,p', —k'). (A7)

R s»"'~(p p' —k')

0=R ap»v aF OR ap»v a» 'Y(p—p k)1

R ap, »v, ay —Rap, »v, a»(p pv pv p) (84)

(p—p') Ro"» ——0, (A9)

R,»" +Ro"» =(p p')&R, »" ii' (p,p', 0)—
(p p')Pi"" '(p p—' p' —p) (A1o)—

Next we impose Eq. (A2) on (A7) and equate to zero
terms quadratic in k:

O,O-LRo"" +(p p')PR """'(p p' p' —p)3=o (A11)—
To show that Ro"""is proportional to p' —p, we assume

It is to be remembered that k' in the above is not an
independen, t variable, but only short for p+k —p'.

We almost have the desired result. It remains to
show that the first term on the right-hand side of (A6)
and (A7) is in fact quadratic in the photon momenta,
viz. , that Ro»"a is linear in (p' —p)=(k —k'). To do
this, we combine (A6) and (A7):

k R,»va+. k k sRiv»)aP(p p k )
= —O' R" +k' k R"" (p p', k). (AS)

We equate terms independent of k and linear in k to
get

we have

R»" ~= O' O' RD" »" ~ kk' O' R ii »—" "» ~(p p' k)co y 0 co q 1

P v P v

+k'„k„k+i»"'ii "~ ~(p,p', k') . (85)—
Equating terms independent of k and linear in k in the
above yields

(p p') (p p') Ro'—""'"=0—
2(p p')-R """=(p—p')-(p p'). — —

X i """""(pp'0) ~ (86)

Finally, imposing (81) on the second equation in
(85) and equating terms cubic in k gives

k k k LR "" "'+(p—p')
XRi»'-~ -"'(p,p,p —p))=0 (87)

To prove that R&" t' is cubic in the photon momenta, it
is sufhcient to show that ROI"" "& "& is proportional to
(p —p') =(k' —k). We assume the contrary, and obtain
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from (86) and (87)

Q„Q„RO-s" "~=0,
R aP»v, coy 0co 0

k„k.k R ~"'~ "~=0
co y 0

Q= p' —P—
According to the first two equations above and the
symmetry in cop, we have that

R nt, pv, +q p+pqR n'p, f"u
0 0

I'= P'+P.
The next-to-last equation in (88) shows that k„RO s ""
=0, which forces R0 t'»" to vanish, and establishes the
theorem.

The proof to terms quartic in the graviton momenta
makes use of further constraints analogous to (86)
and (87), which may be derived from (85). It is also
necessary to remember that R&" & may be chosen to be
traceless in pv and nP We d.o not pursue this proof any
further here, but note that the simpler problem where
R&" s arises from a spin-0 target (or is spin-averaged
for higher-spin ta, rgets) has been solved explicitly
elsewhere, ' where it is shown that R&" & is quartic in
the graviton momenta.

APPENDIX C

We give an explicit calculation of the gauge-invariant
pole term T„„p"'+T'„„in photon scattering. We start
from an expression for T„„"",given by Fig. 1, and then
explicitly construct T „„.This approach is tedious, and
has the additional disadvantage that it requires the
Ward identity for the vertex function. The analytic
form of T„„~"'is, according to Fig. i.,

T„.i'Oi'= r, (p', p+k)D(p+k)r„(p+k, p)+r„(p', p —k')

XD(P' k)r„(P k', P)—. (c1)—
No specific commitment about the spin or the other
degrees of freedom of the target particle is made. It is
understood that appropriate wave functions sandwich
(C1) if necessary, and that p'=p"=m'. The tilde in
(C1) serves to remind us of this fact.

Next, we exploit the Ward identity for the vertex
operator, which, it is remembered, is also a consequence
of gauge invariance and requires no current commuta-
tors for its derivation:

k.r"(P P+k) = D '(P+k) D'(P) (c2)—

Therefore

r„(p',p+ k) —r„(p—k,p) —r-„(p,p+ k)

XD(p+k)D-'(p)+D-'(p')D(p' —k)
Xr,(p —k', p)

= r„(p',p+k) —r„(p—k',p). (C3)

The second equation in(C3) differs from the first by

terms which vanish on the mass shell. According to
Eqs. (C3) and (2.4b), we must have

k&T'„,= —I',(p',p+k)+ f', (p' —k,p). (C4a)

Since the only condition that T'„, needs to fulfill is
given by Eq. (C4a), we may impose a further require-
ment consistent with (C4a), and that is that Eq. (C4a)
is valid also off the mass shell, viz. ,

k T"„„= I'„(p—',p+k)+I".(p' k, p)—,

PP ~ /lP ~ (C4b)

7"„„is taken to satisfy the same symmetry as 1"„,.
Once we have arrived at (C4b), we have made con-

tact with the method of Gell-Mann and Goldberger'
and Kazes. ' Accordingly, we may take over their result,
which is that (C4b) and (2.2) are sufficient to determine
P'„, up to terms quadratic in the photon momenta.
The form for T"„„is

r„(p,p) —k- r„.(p,p
dp» dp"

d
+k' r„( (p,p), (CSa)

t9

r l-(p, p) = r.(p' p)le =n.
~a

(CSb)

d——r"(P,P) -k r "i-(p,p)
~p. ~p

+k'- r~. (p,p), (C6)

T "=S""+0(w') (C7)

The term in S&", independent of the photon variables,
can be simplified, using the differential form of the
Ward identity:

S."=r (p p)D(p)r (p,p)yr (p,p)D(p)r (p,p)

r"(p,p)

=D '(P)l D(P) lD '(P)
hap„dp„ i

(C8)

Finally, we note that any contribution to S&", propor-
tional to p& or p", may be ignored, since in the end, p is
taken in its rest frame, and the polarization vectors
e& and e*" may be taken to have zero time component.

The expression for the scattering-amplitude tensor may
be taken to be

s"= r"(p', p+k)D(p+k) I' (p+k,p)+ I"(p', p —k')

XD(p —k') r"(P—k' P)
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APPENDIX 9
We give an explicit calculation of the gauge-invariant

pole term T„,, sr"'+T'„., p in graviton scattering,
analogous to the above derivation in photon scattering.
For simplicity, we restrict ourselves to spin-0 targets.
The pole terms are given, in addition to terms analogous
to those of Fig. 1, by a term which arises from graviton
exchange. Thus we take T„„,pI'"' to be given by terms
whose diagrammatic representation is as in Fig. 2, and
whose analytic form is

T",-s""=r-s(p', p+k)D(p+k) ~"(p+k,p)

+r„,(P',P—k')D(P —k') r p(p —k', P)

d" '&(k —k')
+I', (p', p) U, „,„„, p(k, k'). (D1)

(k —k')'

Here I'
p is the gravity-vertex operator, D is the matter

propagator, d&' '&(k)/k' is the graviton propagator, and
U', „,„„, p is the three-graviton vertex. The tilde reminds
us that the target is on the mass shell. Since we are
performing the calculation to lowest order in G', we

may take the lowest-order perturbation expression for
d~"&(k —k') U, „,„„, ~(k,k'). The explicit, complicated
expression for this has been given elsewhere. ' We do not
offer the details here, as the only property we shall
need is that, on the p and p' mass shell,

d"""(k—k')
k r„(p,p)— U, „,„„,(k,k )

(k —k')'

= (k' k).r-~(p', p) —k"r.-(p' p)g—.~

the field operators themselvse commute at equal times,
we have for the Ward identity of gravitation theory for
scalar particles the following expression:

k„F "(p,p+k)=p"D '(p+k) —(p+k)"D '(p). (D3)

This Ward identity plays a role analogous to that of the
Ward identity of electrodynamics. Thus one derives in
the usual fashion the (weak) equivalence principle from
(D3). Using (P1), (D2), and (D3), we can give the
divergence condition which determines T „„, p

..

k"T'„—„, s=k"T„,, p~"'= p.I' p(p', p+k)
—p„'r.,(p —k', p) —(k'-k) „r.,(p', p)

+k I,-(P',P)g.~+k r.~(p', p)g- (D4)

Finally, we set the ansatz that T'„„, p
——T"„„,p where

kP"P, -P = pr-P(p—' p+k)+ O' F-P(p k' p)—
+(k' —k),I' (p'p) —k"I'„(p',p)g,

—k~r„z(p'p) g... (D5)

and T"„„,„p satisfies the same symmetries as T„„, p.
T"„„,p may be determined from this equation. The
complete calculation through terms cubic in the graviton
mornenta is very involved. We do not give it here, but
merely verify that the present considerations give the
correct zero-energy form. T"„„,p, to zero order in
graviton frequency, follows from (D5), and is given by

T""..s= 2p F«—s(p, p) —kp. F-t (p,p)
p" p"

2g&PFF+'(pip) 2g"+ PP(p)p)

2gpprva(p p) 2gparvp(p p) . (D6)
—k "r„p(p',p)g, . (D2) The total zeroth-order scattering amplitude is

This follows from the explicit form of the lowest-order
graviton propagator and the three-graviton vertex.
(It may also be true more generally. )

Next, we shall need a Ward identity for I' p(p', p). To
derive such an identity in the usual fashion, it is neces-
sary to know the commutator of the matter field, with
the time component of the current, viz. , with the time
component of the source of the gravity field. The source
of the gravity 6eld is the total, symmetric energy-
momentum tensor density, which is the sum of the
matter energy-momentum tensor density and the
gravitational-field energy-momentum tensor density.
However, the gravity tensor, because it does not in-
volve any matter variables, commutes at equal times
with the matter-field operator. The zero component of
the matter tensor is just the four-momentum density.
When the usual assumption, that the density of the
generator of an invariance group does not contain
Schwinger terms in its equal-time commutation relation
with the 6elds, is made, then the relevant commutator
for the present problem is determined to be proportional
to the derivative of the field operator. Finally, since

Tyv, ap= &pv, ap+O(~) ~ (D7)

LIn o8ering expressions (D6) and (D7), we have sup-
pressed terms which do not contribute to the final

result; viz. , expressions proportional to g&" or g t', and
terms antisymmetric in p and v, or a and P, or pv

and nP. j
Examining (D7), we see that 5„„,p is given by three

parts. The 6rst part, comprising the 6rst two terms in

(D7), is the contribution from the single-particle inter-
mediate states. The second part, consisting of the third
term in (D7), is the graviton-exchange contribution.
The expression Ii &',„„, p is the limit of

(d&"+(k —k')/(k —k')'}U., „„p(k,k'),

s„„.,= r„,(p,p)D(p) r„„(p,p) y r„„(p,p)D(p) r.,(p,p)

d d
+F, (P,P)F ',„„, ,'P. F (—P,—P)——,'P„F (P,P)

dp" dp"

2g"PFP&(p p) 2g"&FPP(p p) 2gPP "&(p p)

kg.-r.e(p—,p),
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as k and k' go simultaneously to zero in all their com-
ponents. The third part, consisting of the remainder of
(D7), is the additional term which must be added to
maintain gauge invariance. In perturbation theory, it
corresponds to the "sea-gu11" term pictured in I'ig. 3.

The expression (D7) may be simplified. For this we
shall need the differential form of (D3): +ou, ap 'Ys(p p)+ 'lava, p, (D9)

not proportional to a momentum are those that involve,
e.g., g"pl'& . However, from (Dg) it is seen that I'" is
proportional either to a momentum, p"p, or to D ',
which vanishes on the mass she11. Thus in the zero-
energy limit we may take for 5„„, p

l9

r""(p p) =O' D '(p) g'"D '(p)
8

[This is not manifestly symmetric in e and lp. Symmetry
is established by recalling that D '(p), for spin-0
particles, is a function only of p', so that p'(8/Bpo)
XD '(p) is proportional to p'p&. j Next, we recall that
the scattering amplitude is given by contracting the
above with e~e" and e* e*&, with e&e„=~* e* =0. Also,

p may be taken to be in its rest frame, and the polariza-
tion tensors may be chosen without a time component.
Hence terms in (D7) proportional to P&, P", P, PP, g&",

and g & do not contribute. It is seen that the first two
terms in (D7) do not contribute. The third term does
contribute. In the remainder, the only terms that are

8D-'(p)
,pv, aP ~ (D10)So , rpN= p~

D ' has the form (p' —rent )(1+2(p')) where Z(p )
vanishes on the mass she11. Theref ore the Anal result
for the zero-energy scat tering amplitude for gravi tons
o8 spin-0 particles is

(D11)&ov, ap= 2p~ps&, vo, ap= 2m I",ov, ap ~

The cross section which follows from (D11) is then
given by (3.11).

i.e., only the graviton-exchange term contributes. We

(Dg) insert (DS); the portion of 1',s proportional to g&'D'-
does not contribute, since D ' vanishes on the mass
shell. Thus
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It is proposed that all symmetry-breaking interactions II' are of the current-current form, and a calcu-
lational method suitable for obtaining sum rules is developed. The method essentially is to express the
matrix elements of H' in terms of the matrix elements of the double commutator of Ef' with SU(3) generators.
When the method is combined with the technique of reducing a pion, it can be shown that the S-wave ampli-
tudes of both the triangle relation and the Lee-Sugawara relation of nonleptonic decays correspond to sum
rules of photonic decay amplitudes and semileptonic decay amplitudes of hyperons.

1. INTRODUCTIOH

V ARIOUS consequences of broken SU(3) symmetry
do not depend on the speci6c form of the sym-

metry-breaking interaction but only on its transf or-
mation properties or on the postulate that the sym-
metry-violating processes are dominated by tadpole
diagrams. ' Nevertheless, the description of nonleptonic
decays in terms of the weak Hamiltonian of the current-
current form'

II-de~J. J
has been useful in correlating the experimental data,
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where J„~ is expressible in terms of quark 6elds q as

f„"= igy„(1+ye) Xs-', q= V„"+2

where

[Q',II']= [Q ' lI ]=if;; H"'
7f Z '$71

(3)

Q'(xp) = —i d'x V4'(x, xp)

Qp'(xp) = —i d'x A 4'(x, xp),

and p= j 4 ~ ~ 4 P~$ ~ ~ o

Then, the following equal-time commutation relation
holds for

H' d;;IJ„&J„I6,


