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single flow rate is about 10%%u~. Furthermore it should be
noted that 0, ,~ falls 2.6 standard deviations of O.„„d,
from O-„„d, and the probability of this happening if

o.„o——t .o„~q, is about 1%. This implies that the flow
rates are not randomly distributed about a single mean.
The former small sample test gives a more pessimistic
conclusion than the latter which assumes large sample
statistics.

From the foregoing we conclude that there is a regular
spacing in the observed Row rates, and from Fig. 3 we
see that the value of the spacing is (0.83&0.02) &&10-'

cm' sec—' Harris-Lowe et a) ' and Allen and. Armitage
have seen regularly spaced Row rates at a given temper-
ature, changing repeatedly (nearly always to lower
values) during single runs using the breaker flow
method. They found spacings of 0.64&(10—' cm' sec—' at
0.99'K and 0.5)& 10 ' cm' sec ' at 1.19'K, respectively.
(No errors were stated. ) This seems to be a different but
possibly related phenomenon. At present no theory
predicts discrete Qow rates. The weight of independent
evidence in favor of discrete Row rates should stimulate
theoretical activity.
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Mobility of a Charged Impurity in a Fermi Liquid*
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The low-temperature mobility of a charged impurity in a polarizable Fermi liquid is calculated. It is
shown that the polarization eRect is considerably larger than a typical hard-core eRect, leading to a smaller
low-temperature mobility.

INTRODUCTION

'N this paper we present a calculation of the Inobility
~ - of a charged impurity in a polarizable Fermi liquid.
Such a calculation is appropriate for discussing the
motion of ions or electrons in low-temperature liquid
He'. A general analysis of this problem would involve
two primary considerations: a description of the Fermi
liquid without the impurity, and a method of coupling
the impurity to the liquid. We will not concern our-
selves with the details of these two considerations, but
rather start with a simple model which embodies such
details in its parameters.

Under the simplest possible assumptions, we regard
the Fermi liquid as a gas of noninteracting quasi-
particles obeying Fermi statistics and possessing a
spectrum

e(P) =PP/2ris

The effect of the interactions between the particles is
considered to be included in the effective mass m, which
is not the He' mass m&. From the Landau-Fermi liquid
theory' and specific-heat measurements' on He',
m =3.08m3. Two other quantities will be of interest. For
the zero-temperature Fermi gas, one defines a Fermi
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wave number kp related to the particle density p
through

and a Fermi energy

p =k p'/3ir'

e~=l'rsvp s/2~.

(2)

(3)

3 K. R. Atkins, Phys. Rev. 116, 1339 (1959).' C, G, Kuper, Phys. Rev. 122, 1007 (1961).

With a mass density' of 0.081 g/cc, one finds a number
density p=1.7&&10" particles/cc, kz ——0.78X10' cm ',
and e~/a=Sos/m'K, where s is Boltzmann's constant.

For the impurities, we have the following picture in
mind. First of all, their number density p;=E,/O is to
be very small, so that impurities do not interact with
each other. The actual impurity may be either an
electron or an ion, and hence through its charge will be
coupled to the liquid by means of polarizability effects.
Several aspects of such mechanisms have been discussed
in the literature, ' ' and the resulting structures resemble
bubbles for electrons and "snowballs" for ions. To avoid
the difficulties associated with the specific structure of
the impurity and its polarization cloud, we approximate
the situation as follows. Each impurity will be con-
sidered a Boltzmann gas particle of mass M interacting
with the Fermi liquid through a repulsive hard-core
interaction and an attractive polarization interaction.
Hence, part of the interaction between the impurity
and the liquid is absorbed in the mass M, and the rest
is approximated by a hard-core delta-function pseudo-
potential and a polarization effect.
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The zero-order Hamiltonian for the Fermi liquid and becomes
impurity structures will be taken as j=ep,}((E=o E,

$2/2 N $2g 2

Hp=Z ap,.'ap, .—Z
I,~ 2m '=& 2M

(4)
a =ep;p, . (12)

from which we relate the conductivity 0 to the mobility

For the Fermi liquid we have used the second-quanti-
zation formalism, but the impurities are represented in
the ordinary quantum-mechanical description. The
interaction Hamiltonian becomes

N
H'= P d'r V(r—R,)p(r)"&"",

where V(r—R,) is the potential. The hard-core contri-
bution to the potential is taken as

Smk2

VHc =— ab (r—R;),
2M*

In a quantum-mechanical problem the current dens-
ity becomes an operator, so that (11) must be inter-
preted as an expectation value in both a quantum-
mechanical and statistical-mechanics sense. Kubo' has
derived a formalism for discussing linear response
problems in quantum-statistical mechanics, and, in
particular, Nakano' has derived an explicit expression
for the conductivity suitable for our purpose. Suppose
we have a system consisting of a medium containing
charge carriers. If the Hamiltonian is written in the
form H=H ~+H, ),„,+H'~, p, ),» Hp+H——', then in
a weak constant electric field, Nakano's formula for the
conductivity in an isotropic medium takes the form

where M* and a are parameters hav'ng the dimension a„„=))2'p'(j„j„)'
of a mass and length, respectively. The polarization
potential is taken as

dv. dX
0 0

X e' [& i ]e "'[)', p. '( }]'),, (13}
Vp, )—— 2np(—e/-42r(r R)']—'

~

r—R,
~

&~ b

=0 otherwise,
(7)

where tt= I/((T, j„ is the ) component of the charge-
current density operator, and H (t)' is in the Heisenberg
representation with respect to Hp. The brackets ( )
denote both the quantum-mechanical expectation
values and the statistical average with the density
operator exp( —}(iHp). Equations (12) and (13) are now
used to calculate the mobility for our model.

It is convenient to normalize all wave numbers to kp
and write in second-order perturbation theory

where 0.0 is the static polarizability of the Fermi liquid,
and b is a length related to the radius of the impurity
structure, which is about the same magnitude as u. The
interaction Hamiltonian then becomes

H'= PP as+,—,.'a}..e '& R'V
.(q-),

Q k, q;o'i 1

where V(q) is the Fourier transform of the potential 6~2(Ask 2/m)
0 = e2

Pj V(0)k 'i%k '5tIz a e ' singbx dx
V (q) = 82r- —22rnpbs

2M* 4~b2, qbg g2

dSq V (q)
2

q2 j'(k) L1—f(k+q)1
42r V(0)MOBILITY CALCULATION

where p; is the impurity density and F is a dimension-

This defines the model for which we now calculate the
impurity mobility. d'k

In the presence of a uniform constant electric field R
the charged impurity structure will be accelerated, but
because of collisions with the quasiparticles of the
liquid it will quickly reach a terminal velocity v. The
mobility p, is then defined as

2MAo)
d3p —e (ps)eP2Psl2)}er)b

))22k P2 /

daPe e(22)eP2/22r)P2 (13—)

(10) andv= pR.

The above implies an isotropic medium, since p, is taken
to be a scalar. Furthermore, it is restricted to weak
fields, otherwise v may not depend linearly on the field.
If one multiplies the velocity by the charge density of
the impurity structures p,e, assuming each is singly
charged, one obtains the current density, or (10)

A2 A2

A(p= [(k'+q)' —k"]+ $(P—q)' —P'], (16)
2m 2'

with dimensionless k, q, and P. To discuss the tempera-

' R. Kubo, J. Phys. Sac. Japan 12, 570 {1957).' H. Nakano, Progr. Thporet. Phys. (Kyoto) 17, 145 (1957).
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ture and Fermion density dependence of the mobility
or conductivity, one must analyze R This is somewhat
complicated and is performed in the Appendix.

RESULTS AND DISCUSSION

For low temperatures,

approximation becomes

&scot =
M* ' ( e )'M*b' '

V(0) =4.——;.,~

2~5' &4n b'I i''

so that (20) with (24) and (25) becomes

(25)

Pi ——(k'k p'/2M)P»1,

the anal result for the mobility of a charged impurity
in a polarizable Fermi liquid is

and i (e) is the Riemann zeta functions of order rc.

Combining (18) and (19), one obtains

p(T +0)=—3' eA.'P'(M~/mM)'

32(i (3)+f (2)) Pa ,'no(e/4m b—')—M*b'/h')'
(20)

Similarly, for high temperatures,

Pi((1,
one finds

(21)

12ir' ek A'k p' pi2
p(T~O)= (18)

i (3)+f(2) M 2M (V(0)k&')'

where, from (9),
k p'A' 2

V(0)k~'=8~ k~a 2~«— k,ab', (19)
2M* 4m b'

~(T o) =
0.41eh'P'

0'Sggi (M+ W)
(26)

We believe that part of the numerical discrepancy
between our result (26) and that of Ref. 8 is that (23)
should be a factor of 2 smaller, since the collision
integral LRef. 8, Eq. (2)j should contain a spin factor
of 2. The rest is presumably due to approximating the
Fermi functions in the derivation of Ref. 8. The main
difference between this calculation and that of Ref. 8
is that our scattering cross section includes the polariz-
ability effect, and as we now show for He', this
dominates over the hard-core effect.

For example, Atkins's' model for a positive ion in
He4 results in a "snowball" of about 7 A radius and a
Inass of about 100 amu. In our calculation for the
mobility we then take a =b = 7 A, M = 100 amu, and M~

the effective inass (24). The static polarizability uo of
He' is roughly the same as that of He4, and from the
index of refraction' eH, 4——1.027= (1+pH, 4«)'I', one
6nds pH, suo= 0.04, where p is the particle density. With
these numbers one finds

97r'" e re jM) '" P )'"
p(T +~)= M—*

~ ~

. (22)
2'v2 k, 'a' mM ) M*)

( e )'M*b' '
u——,'npi 4 f')

= L7—4.05)& 10'$'

Before discussing the application of these results to
liquid He', we would like to compare our low-tempera-
ture result with a similar calculation by Clark. ' The
approach used by Clark is to start from a Boltzmann
transport equation for the impurities. He evaluates the
collision integral for a constant differential-scattering
cross section 0-„,~ and Ands

1.21eA'p'
p(T~O)=

(M+~) 0'sco, t,

(23)

M*=mM/3II+ m. (24)

Then our differential-scattering cross section in Born

7 Handbook of Mathematical Functions, edited by Milton
Abramowitz and Irene Stegun (Dover Publications, Inc. , New
York, 1965).' R. C. Clark, Proc. Phys. Soc. (London} 82, 785 (1963).

Our approach through Nakano's formula for the con-
ductivity seems simpler and the pertinent expressions
can be evaluated exactly. To compare (20) with (23),
we take the parameter M* as the reduced mass of the
impurity and He' quasiparticle

i.e., the polarizability effect is considerably larger. The
low-temperature mobility of a positive ion in He' then
becomes

p+=1.7)&10 '/(100/T'K)' cm'/V sec, T((1'K (27)

since low temperature means Pep»1. A similar result
can be derived for p, depending of course on the model
used for the negative charged impurity.

At this point, a few remarks about the validity of our
results (20) and (22) should be mentioned. The high-
temperature limit Eq. (22) is included only for com-
pleteness; in reality it would correspond to a dilute
Boltzmann gas instead of a Fermi liquid. To estimate
the temperature range for which the Fermi-liquid result
Eq. (20) is valid, we make the following observations.
Our calculation is based on independent Fermi quasi-
particles scattering off the impurity structures. This
implies a mean free path for the fermions larger than the
radius of the impurity. For the mean free path, we take
the Fermi velocity vy multiplied by the collision time
r„which is inversely proportional to the square of the
temperature. With the appropriate values' for He', we
find 1/T') a, where a is the radius of the impurity in
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angstroms and T is the temperature in 'K. For a= 10 A
this requires T&0.3'K.

Another restriction on the temperature arises from
the requirement that the weak coupling limit be valid.
That is, the kinetic energy of the impurity must be
larger than some measure of the interaction energy
between an impurity and the excitations of the liquid.
For the kinetic energy of the impurity we take ~T and
for the interaction energy, the maximum matrix
element' multiplied by the effective quasiparticle
density prt. m(eT/eF) . With the numerical estimates in
the preceding paragraph, this criterion

fnT)2
I V(0) IpH. I

—
I

&tcT
Ee, j

requires a temperature T&10 m'K. .
The mobility of positive and negative ions in liquid

He' have been measured, ' but the temperature range of
0.3—3'K is not low enough to apply our low-temperature
result. The orders of magnitude observed are 3—8)&10 '
cm'/V sec. On the other hand, our high-temperature
limit (28) does not apply either. At higher temperatures,
the noninteracting quasiparticle picture for the liquid
must break down, and one should include viscosity
effects, or a transition to Stokes's-law —type Qow. The
experiment mentioned above seems to show a tem-
perature dependence of the mobility which is closer to
the Stokes-law explanation

tt = e/6srrta,

where p is the viscosity of the liquid of the liquid and u
the radius of the impurity.

In conclusion, we summarize the main results of this
calculation. The low-temperature mobility of a charged
impurity in a polarizable Fermi liquid (He ) is deter-
mined by the polarization effect, which gives a mobility
a few orders of magnitude less than typical hard-core
effects.
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APPENDIX

In this Appendix we perform the integrations in
Kq. (15)

d'q V(q) '
q'f(k) I:I—f(k+ti) j

4sr V(0)

4 (ft'ke'pq —'" d'I' 2MPuv
X I I

e et""r' '" —
&8 (A1)

Qnk 2M I 4n A'k '
P. de Magistris, I.Modena, and F. Scaramuzzi, in Proceedhngs

of the Ninth Internationai Conference on Love Ternperatnre Physics, -

for the limiting cases of low temperature

p, = (k'k,, '/2M) p»1,
and high temperature

Pg«1. (A3)

Perform the d8&, integration with q as the polar axis.
This eliminates the h(oo), and since

I
coset, I &~1, it gives

a lower limit' for the dI' integration

q'+ (M/nt) (2k tI+ q')
(A5)

Performing the dI' integration then gives

pp ~'t' d'k

&~)

where

d'q V(q) '
qf(k)

4~ v(0)

X [1—f(k+tI)]e»p ', (A6)

P2 ——(k'ke'/2M)P = (rrt/M)Pg (A/)

It is convenient to include the factor gpt with the
dimensionless variables ti and k, i.e.,

so that

k= f/Qpg,

q= /v'pt (A9)

d q v(q/v'p, ) '

4n V(0)

Xf(f)LI—f(f+q)3

rrt -q'+ (M/rrt) (2f.q+q')-'~
XexpI- (A10)

4M q )

(i) Low temperature: Since pt —+co, the matrix
element satisfies

V(q/V'P )

V(0)
(A11)

The Fermi distribution is of the form

f(f)=1/et e~+1, (A12)

so that for low T only f and
I f+q I

near p& contribute
in the integration in (A10).With the change of variables

Collmbls, Ohio, edited by J. A. Daunt et al. (Plenum Press, Inc. ,
New York, 1965), p. 349.

Consider the energy-conservation delta function (16)
which becomes

h(kto2M/i't2kp2)=bL(M/rrt)(2k q+q )—2P tI+q g. (A4)
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= I&+ql'= l~l',
one obtains, after integrating over |gay, V(~) ' Ssr(t't'a/2M*) '

V(0) i V(0)
(A19)

HIE

&(ps~~)=c—pr
m for our example (9). The Fermi distributions become

Soltzmann factors"g'g P1

X o (t w)+ 1—](— )( ) . (A15) 8
f(f) + prst2 exp( —f')

3+sr
(A20)

After shifting both I and t by pr, the double integral
becomes

(ii) High temperature: Since Pr —+ 0, the matrix
(A14) element (A11) becomes

dao (i—a)+1]( )I )
, --. l-(3)+t(2), (A16)

V( ))' 4 QP "d'f "d'q
e "q

V(0) t' 3sr pr2 p 4sr p 4sr

m -q'+ (M/m) (2f q+q')-'
&(exp—

4M
(A21)

where i (I) is the Riemann zeta functionr of order e.
The last step in (A16) follows easily after the change of
variables t—tt=x and e'=y, so that in the Pr —+~
limit (A16) becomes

With the change of variables
x= f+-', q

but

The integrations are easily performed, giving

(A22)

(A23)

The 6nal result for the low-temperature integral is

8 V(~) '
~(p -o)= m/M (1+m/M)"'.

3+sr V(0)

I K. Huang, Stats'stt'cat Nechantcs Qohn Wiley tk Sons, Inc. ,5' Pr~~)= t 3 +f 2 MPr 4m ~ A18 New York, 1963).


