
REMARKS ON PARTICLE —NUCLEUS SCATTERING

(d) The magnitude of this dip is sensitive to the
parameter p & (the ratio of the real to the imaginary
part of the sr' scattering amplitude), which has only
been roughly determined by high-energy x-E scattering
experiments. Accurate measurements of cross section
in this region would therefore provide an independent
check on this point.

(e) Present experiments seem to indicate that various
parameters of xN and EX interactions will approach a
constant limit as energy increases. As a consequence,

in this model the do/dt of particle-nucleus scattering
would also approach a limiting form at very high ener-
gies. Since the various parameters change only slightly
from 8 BeV/ con, we expect that the present calculation
would also fit future experiments performed at higher
energies reasonably well.

I would like to thank Professor C. N. Yang for sug-
gesting this investigation and for numerous enlightening
discussions on this and other related problems and
many valuable comments on the manuscript.
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Some Feynman-diagram models are presented which lead to a natural framework for discussions of the
kinematic properties of Regge poles. The models do not require an in6nite number of recurrences of a
trajectory. The basic property of the Feynman prescriptions that is useful here is the fact that the analyticity
properties of the amplitude are preserved at all stages of the calculation. The coupling of particles with
integer spin to Regge trajectories is discussed in detail. These models allow one to consider various aspects
of ghost-killing mechanisms and to clarify the kinematic properties, especially the kinematic singularities,
of Regge residues. The extension of the discussion to the coupling of two Regge trajectories to a physical
particle is carried out and applied to the multiple-Regge model of production amplitudes. Some experimental
consequences of these models are briefly explored for particle production.

I. INTRODUCTION

M NE of the major problems in Regge pole theory is
that one really does not know how to couple Regge

poles to particles of unequal mass, to particles with

spin, or to other Regge poles. It is well known that the
usual prescription, carried over from potential scatter-
ing, of making a partial wave decomposition of the
scattering amplitude and then replacing J everywhere

by n, leads to Regge pole contributions which violate
our basic notions about analyticity. This difhculty has
led to the introduction of daughter and conspirator
Regge trajectories. '

In this paper we shall study the coupling of Regge
poles to other particles by considering some simple, but
relativistically invariant, models. The model we will

discuss will be a sum of selected I'eynman diagrams, a
not uncommon laboratory for testing theoretical ideas
in dispersion theory. An example of the type of model
we have in mind is the one originally discussed by Van
Hove and Durand. ' They pointed out that the exchange
of a Regge pole of spin n can be simulated by taking the
sum of the diagrams arising from the exchange of
particles of spin 0, 1, 2, . . .. (Throughout this paper
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we shall consistently ignore signature. It can be added
at the end in a trivial fashion. ) The advantage of using
Feynman-diagram models as a guide to the correct
coupling of Regge poles to particles of unequal mass or
to particles with spin is that the Feynman prescriptions
always lead to scattering amplitudes with "good"
analyticity properties. As a result, these models will
automatically have daughter or conspirator trajectories.
One can use them to write down a simple expression
for the contribution of a Regge pole which will auto-
matically include daughter or conspirator poles and
which can be studied for all values of energy and
momentum transfer. One is not necessarily restricted to
the asymptotic region.

In Secs. II—V we review the one-particle exchange
model of Regge poles and extend it to the case in which
the external particles have spin. We also give a simple
model for the case of four-particle coupling. This model
is important in illustrating the point that an infinite
number of Regge recurrences are not required by the
perturbation approach. In Secs. VI-VIII we apply our
results to the multiperipheral Regge model. ' In sub-
sequent papers we shall extend the I'eynman-diagram
models to the case of spinor particles and use our results

3 N. F. Bali, G. F. Chew, and A. Pignotti, Phys. Rev. Letters 19,
614 (1967).See also F. Zachariasen and G. Zweig, Phys. Rev. 160,
1322 (1967); 160, 1326 (1967); Chan Hong-Mo, K. Jajantie, and
G. Ranft, Nnovo Cimento 49, 157 (1967).
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to study conspiracies' and to derive Feynman rules for
Regge poles. '

II. SPIN-ZERO PARTICLES

In order to introduce notation, define phases, and in
order to make this paper self-contained, let us erst
examine the case of elastic scattering of scalar particles
of equal mass. This is the original model discussed by
Van Hove and Durand. 2 For clarity we will express the
model in terms of an effective interaction Hamiltonian
between the two external particles 8 and C, and the
exchange particle 3 of spin J:
& =g(J)LP(J)7'"~. - ..'&(~.,)P.,) (~.,)C, (1)

where

rill 2 (~P ~$4)

Feynman propagator. It is given by

( )zP z(zld2) —Q e Jx'e, J

where e~ "is the polarization tensor of the spin-J particle
with z component of angular momentum X, and the sum
is carried out over all polarization states. The argument
3P in I'„,.„~ means that the momentum factors appear
as P„P„/3P rather than P„P„/P', as is described in
detail in Ref. 5.

The properties of F„,„~(M') allow us to write Eq. (4)
in closed form in terms of a Legendre polynomial. For
later use we define the quantity

(—)~(e„') r„.,„(~.)(e„)~=—a, (e',e), (6)
where

~,=(ee) P.(z)(2J+1)/p(J),

p(J) =F (2J+2)/2~I'(J+1) .

For brevity we will write III in the form

(2)
Q'= —Q.e"e.—=—

Q ~.Q
QQ"-=-e.'O.,e,-=-e' 0 e,

8„„=g„„—P„P„/MA'(J) .
EIz=g(J)Lp(J)7 A B(B&) c. (3)

We have pulled the factor (p(J)7"' out of the coupling
constant in order to simplify later equations.

Defining the kinematics as in Fig. 1, and writing
t=P', the Feynman amplitude for the elastic scattering
of 8 and C through the direct 3-particle pole is

F(J)=g (J)p(J)(Q. ) (-)"., (iaaf" (J))
&& (Q.)'L~"(J)—t7-'. (4)

The symbol p stands for p&, p&, pz, and similarly for v.
The factor (—)~I'„.„~(M') is the numerator of the spin-J

We note that if the A particle is on the mass shell

t
P'=M'g'(J)7 or if the 8 and C particles have equal

mass (P Q=P Q'=0), then

Q2 —Q~2 —g2

where z is the t-channel center-of-mass scattering angle
and q is the center-of-mass three-momentum. We also
note that for large z

If.=(-e' ~ Q)'+o((-Q' ~ e)'-') (9)

It is important for the study of daughter trajectories
that the function H~(e, e') is well behaved in the neigh-
borhood of t=o, even when the masses of the 8 and C
particles are unequal, ' but since we are not interested
in studying daughter trajectories at this point, we shall
take the masses of the 8 and C particles to be equal
in order to emphasize the physical content of this
approach.

The total scattering amplitude in this model is given
by summing F(J) over J from zero to infinity. Defining
n(t) to be the largest root of the equation

m, '( )—t=o, (1o)

which implies that one is secretly considering Mz'(J)
to be the bound-state eigenvalue of some type of equa-
tion, the total amplitude F becomes

F= P F(J)
J=O

FIG. i. Spin-J exchange.

4R. Blankenbecler, R. L. Sugar, and J. D. Sullivan (to be
published).' R. Blankenbeeler and R. L. Sugar (to"be published).

= —(2n+1)g'(n) (a./sins. n) (dn/dt)q' P (—s)

+a background integral. (11)
' R. L. Sugar and J. D. Sullivan, Phys. Rev. 166, 1515 (1968l.
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In terms of the variable s which describes the reaction
8+C —+ 8+C, we have, for large s,

2nI' —p(a)g2(n) (2r/sinirn) —[4 (s—I)]
+0((s—n) ') . (12)

It has been emphasized by Durand2 that in obtaining
Eq. (11), one has assumed that the functions g'(J) and
M'(J) are in some sense smooth in J. Also, if one
requires that the asymptotic behavior given in Eq. (12)
holds for all complex s, which means that P is poly-
nomially bounded, then the functions g'(J) and
[dM'(J)/d J]—' cannot decrease too fast for large J.The
importance of this restriction on the asymptotic be-
havior has been stressed by Feynman. '

At this time instead of presenting a general mathe-
matical discussion of the restrictions necessary to
achieve an F which is polynomially bounded, we prefer
to simply give some examples which the reader can
easily verify, and which we believe indicate the neces-
sary restrictions. The examples bear some resemblance
to phenomenological fits to experiment, and they wiH be
useful in our later discussions. For large values of («)
we find

does not. It seems clear from these examples that in
addition to requiring that g'(J) and M'(J) be analytic
in the right-half J plane, one must also require that the
product g'(J)[dM'/dJ] ' falls off more slowly than
1/J! for large J.

In many applications, for example the study of
daughter' and conspirator' trajectories, it is important
to have models in which the scattering amplitude
satisfies elastic unitarity in the t channel. Such models
can easily be obtained by summing the self-energy
bubbles of the A particle. Using the effective interaction
defined by Eq. (1), and the Born term F(J), given by
Eq. (4), the integral equation for the total amplitude
T~, which includes the effect of bubbles, is

Defining the amplitude fs by

2'= p(J) (—)'(Q.')'r', .'(Q.) 'f',
the integral equation is easily solved and one finds

(16)

f =g'(J)[Mg'(J) —t+g'(J)I (t)]—', (17)

2'(O', Q) =P'(O', Q)

d4k P'(O', h) T'(h, Q) . (15)
(22r) [M c'—(1P+h)'][Mc' —(1P—h)']

2 (—«)"(n—~) '
n=X

~«n ( )N+1«N —1

+ +0 («N-2)
Sin2rn (1+n—Ã)

where

Is(t) =i
d4k (k2) J

(2~)' [Mc'—('2p+h)'][Mc' —(12p—h)']

g (—«).(n —~)-'r'(n+1)/r(n+Xy 1)r (n—N+1)
n=lV

r2(n+ 1)/r (n+ x+1)r (~—x+1)
sln+o;

( )"+'E ln« ~ 1 ~—
+ol —/,

(u+1) «&«2)
00 2rh~P («)
Q h"P (—«)(n —n) '
n=O

1
+0 e)——',

(n+-'2) (2«h)"' («h)"')

P(2n+ 1)h"P„(—«) (n —n)
n=o

2r(2n+1) 1
h P.(«)+0

sinxo, («h) 2t2I

These sums yield functioos of the required behavior,
whereas, for example,

k2= —h2+ (h p)'/p'.

The integral for Is(t) is infinite for positive J', and we
should make it convergent by introducing cutoff func-
tions, which depend on the relative momentum of the
8 and C particles, at each vertex. We will not bother to
write in such cutoff functions explicitly. In most cases,
once the mass and coupling constant renormalization
has been performed and the sum over J has been done,
it will be possible to let the cutoff functions go to 1. (See,
for example, Ref. 6.)

If one now sums T~ over J, the leading power of s is
the largest value of J which causes the denominator of
Eq. (17) to vanish. We now see that this power will
certainly be complex for t greater than 43Eg'. Also, we
note that any fixed poles in g'(J) will be turned into
moving poles by the form of the denominator.

Finally let us consider f~ in the limit that Mg2(J)
gets very large while fs remains finite. To that end we
define

g'(J) =~(J)M~'(J)—
2(—)"/( —) =
n=o

—2r«e' e'q
+0

Sin2rur (12+1) ««' I

and find that

f'~ A'(J)[1+A'(J)I'(t)] ' (20)

7 R. P. I'eynman (private communication). We will return to this result in just a moment.
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It should be emphasized that the introduction of the
cutoff functions discussed above, or the introduction of
the usual vertex function, which arises from diagrams
of higher order in g(J), will not basically alter our
results. The vertex and cuto8 functions only affect the
form of the Regge residue. What is important for the
coupling of a Regge pole to scalar particles of unequal
mass, and to the study of daughter trajectories, is the
form of the function HJ (Q', Q) defined in Eqs. (6) and
(7). This depends only on the form of the spin-J
Feynman propagator, and on our assumption that the
Regge pole arose from the Feynman diagrams contain-
ing the A-particle pole in the first place. In the next
section we shall show how even this assumption can be
relaxed.

III. FOUR-POINT INTERACTION

In order to illustrate the fact that it is easy to con-
struct Feynman-diagram models of Reggc poles which
are more general than the one-particle-exchange model
considered in the last section, let us consider the four-
point interaction given by

JJ"= ~'(J)( )'p(J)L&—(~.)'C:3' (21)

The first-order scattering amplitude is given by

~(J)=~'(J)p(J) (—Q' Q)', (22)

which contributes to scattering in the state J, J—2,
J—4, etc. Defining the sum of the four-point bubbles in
the t channel to be T~ (see Fig. 2), we introduce the
amplitude f~ by the equation

~ =p(J)(-) (Q. ) f. , (Q,) J'
+(Q' Q)~ ' terms. (23)

f~ is easily computed to be

f'=il'(J)$1+iA. '(J)I~(t)j-i. (24)

This is identical to the result found previously, Eq. (2(}),
in the limit 3f~' —+~. Thus it is possible to replace a
three-field interaction by a four-point interaction and
not change the detailed character of the kinematic be-
havior of the amplitude. The kinematic structure of the
amplitude is all that we wish to study at the moment.
It should now be clear that in the model discussed in
the last section it is not necessary to require that the
mass spectrum M~'(J) go to infinity, even though this
seems to be implied by our e6ective Hamiltonian. In

other words, it is not necessary to consider only in-
6nitely rising trajectories.

It should also be clear by now that the essential
feature of our models is that a Regge pole is given by the
exchange of objects of spin 0, 1, 2, , each of which
gives rise to a pole in the scattering amplitude. It is
irrelevant whether these poles came from one-particle-
exchange diagrams or arise dynamically from the inter-
action of two or more particles. What does seem to be
important is that we ensure that the contribution of the
spin-J pole has the proper analyticity properties.

Ke shall return to the four-point interaction model
at a later time in a discussion of conspiracies. 4 This
model has the advantage of allowing a wider range of
coupling schemes than the one-particle-exchange model.
In particular it allows couplings which give rise to
parity-doubled conspiracies in a natural way, while the
one-particle-exchange model does not.

IV. SPIN-ONE PARTICLES

In this section we wish to discuss the elastic scattering
of a spin-one particle and a spin-zero particle. VVe start
by writing down the effective coupling as was done in
the previous case. Several types of coupling are possible,
however, depending upon how we couple the spin to the
orbital angular momentum to form a state of angular
momentum J. We shall restrict ourselves for the
moment to the couphng which involves the minimum
number of derivatives. This coupling will be quite
interesting from a theoretical point of view. In any case,
let us examine the interaction

H =g(J,1)L3p(J)j"'$J/(J+1)]A„Bg„) 'C„. (25)

The one in the coupling constant is to emphasize that
g(J, 1) describes the coupling of a spin-J particle to a
spin-one and a scalar particle. The factor L3p(J)1'}'has
been put in to simplify later equations, and the factor
J/(J+1) to ensure that the number of derivatives is a
positive number or, in other words, to control the
nonsense-state coupling. The reason for choosing a
factor of J rather tham, say, J'~' to kill the nonsense

coupling at / =0 is to make sure that there is no branch
point in the angular-momentum plane at J=O, for
inelastic reactions. The reaction scalar+spin 1-+2
scalar would exhibit such a singularity, which would

give rise to a lns asymptotic behavior which we do not
like.

2 P+Q 2 P+Q

Fzo. 2. Bubble graphs.

l P Q2
—P —Q
I I

2
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Introducing the polarization vectors c„* and e„ to
describe helicity states M' and M of the C particle, and
proceeding as before, the Feynman amplitude is

E ' (J)=g'(J, 1)3p(J)[J/(J+1)g'(M'(J) —t)—'

Xe.*(e ')' '(—)' .:.'(M'(J))(Q.)' '" (26)

There are several methods which can be used to evaluate
this expression in closed form. Perhaps the simplest is to
use the fact that I'„.,„ is symmetric in the p, indices and
in the v indices which allows the replacement

e.*(e.')' '~ (1/J)(e* ~')(Q.')',
where 8„' means derivative with respect to Q„'. Thus
one finds

~"'"(J)=3p(J)g'(J, 1)(J+1) 'LM'(J) —t&'
X (e*.r)') (e c))&z(Q',Q), (2&)

This type of ghost killing is the noncompensating
mechanism. '

An interesting point here is the fact that the polariza-
tion vectors are wholly responsible for the kinematic
singularities in 5", which lead in turn to singularities
in F'0

V. HIGHER SPIN COUPLINGS

Let us now turn to the problem of coupling a spin-J
particle to a spin-5 and a spin-zero particle. We will

again choose the minimal derivative coupling. A method
must be devised for killing the nonsense couplings which

preserves the requisite analyticity in J required by the
model. The appropriate interaction turns out to be

Hz=g(J, S)d(J,S)AszB(r) )z—sC s

Again the factor d(J,S) has been chosen to vanish
linearly at the nonsense points to avoid branch points
in inelastic reactions. For the values 5=0 and 1, this
coupling reduces to the previously considered vector
and scalar cases.

The derivative trick can again be used to explicitly
evaluate the Feynman amplitude. We make the
replacement

E~™~—3P(n) g2((x, 1)(2r/sinsn) (dn/dt)

XI (e* ~') ('~)/(~+1)']&-(—Q', Q) (»)
The derivatives can readily be evaluated exactly, but
the asymptotic limit of this expression is particularly
easy to work out explicitly:

F~'"~—
3g2 (n, 1)(2r/Sin7rn) (dn/dt)np(n) (o.+1)-2

x(e'-e)='[*'+(--1) * e'Q'/e ej, (30)

where we have again assumed that the B and C particles
have the same mass and hence P.Q=E.Q'=0. The
sum over J can be performed as before, and we find for Xi"(7+1)/I'(J+S+1)&(J—S+1). (36)
the leading term

where it is now permissible to set Q and Q' equal to their
mass-shell values. We will return to the problem of
evaluating the exact F~'~ in a more general situation.
Equation (30) can be rewritten in terms of the asymp-
totic amplitude for scalar-scalar scattering:

Il = —P(u)gs(n) (2r/sinirn) (dn/dt) (Q Q') . (31)

Xr(J—S+1)/r(J+ 1), (37)

where e„(S,M) =e»». ..„,(S,M) is the polarization tensor
of the spin-5 particle corresponding to helicity M. The
5 derivatives are to be taken on the right-hand side of

Eq. (32). The spin-J scattering amplitude now becomes

After replacing g(a) by g(o.,1) we have

PMI 2z 3Q-2PSsr'M (32)

Psz'2z(J) =d2(J,S)I'2 (J—S+1)/P (J)1'2(J+1)
x(*.a")( a'y'(J)

where F(J) is the amplitude for zero-spin external

particles, but with g(J) replaced by g(J,S). One again
S2Pzz [~Q2/(rr+1)2j does the sum over J, and in the asymptotic limit, the

X[e* e+(rr —1)e* Qe. Q'/Q Q'j/Q Q'. (33) total amplitude simplifies to

Sll~( 2/2 (1+~)2
S" i AS"/M c, —
S"~tS"/2M '

(34)

Let us now evaluate this spin factor for states of
definite helicity. We need consider only the cases with
M and M' positive. Using the explicit polarization
vectors introduced in the Appendix, the leading terms
of 5 are found to be

Fu m~FSM~m (39)

C. B, Chiu, S. Y. Chu, and L. L. Wang, Phys. Rev. 161, j.563
(1967). It is possible to use other nonsense killing factors. For
example, the nonsense-choosing or Gell-Mann mechanism can be
obtained by introducing a factor of PJ/(J+1)g'" instead of
j/(J+1) in the effective interaction, but then one must consider
only elastic scattering to avoid branch points at J=0. This does
not seem as esthetic as our choice, especially when one tries to
treat higher spins, as in the next section. Also, there is some
slight experimental preference for the noncompensating mecha-
nism, as discussed by the above authors.
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where F is given by Eq. (31), with g(n) replaced by g(n, S) and

d'(n 5)I'(n —5+1)
gM'M (~* ~")('~')(Q Q')

p(-)~ (-+1)(Q Q)-

d'(n, S)I"(n —5+1)

p(~) I'(~+1)

S I'(5+1) k, ~, &k

(4o)
&=0 I'(0+1)I'(5—0+1)1'(n—5—k+1) (Q Q')s+'

This sum can be worked out easily for any given
polarization vectors. The connection between this ap-
proach and the helicity formulation of Jacob and Wick
is through the fact that the S~'~ are closely related to
the limiting behavior of the functions d~ ~ . This re-
lation will be examined in detail in a later paper because
it leads to a simple characterization of the kinematic
singularities of the helicity amplitudes for any value
of the spin. An example of this relation is the vector
case treated above, especially Eq. (34).

VI. BI-REGGE COUPLINGS

Let us now turn to a direct extension of the previous
coupling to the case where both the spins involved in the
eRective interaction Reggeize. The diagram which we

wish to consider is shown in Fig. 3. The reaction that
we wish to finally consider has the particles with mo-
mentum ~p+Q and 2P'+Q' incident and the other
three outgoing. Hence the square of the total incident
energy is .,= (lp+Q+lp'+Q')'. (41)

All the particles have mass 3f except for 8, which has
mass p. The asymptotic behavior that we wish to
examine occurs when the square of the relative energies
between the final pairs are large. That is, we are in-
terested in large values of

= (P'+-', P+Q),
~l (P+ iP/yQ/)2

for 6xed values of t= P' and t'= P".To complete all the
kinematic preliminaries that will be needed, note that
the variables

and
x—=Q.p'=-', (s—M') —-', (p—t+t')

y= Q' P=—', (s' —M-') ', (p t—'+-t)—
(43)

get large in the expected Regge region. Finally, it is
convenient to introduce the quantity

W—=p' Q Q'/xy, (44)

which, as s and s' get large, approaches the value

W (1—Q Q') (45)

in the rest system of the 8 particle defined by P+P'
= (p, ,0). Thus W is a measure of the angle between the
Q and Q' planes, which is essentially the angular vari-
able costs introduced in Ref. 7.

The model is now completely defined by giving the
couplings between the particles. We shall adopt for the
moment minimum derivative couplings and explore
their consequences. The eRective interaction given by
Eq. (35) will be used at all the vertices. However, to
restore the symmetry of the coupling between 2, 8,
and C, we will also add an interaction of the same form
and coupling constant but with C and A interchanged
so that values of J' greater than J are now allowed.
This model could be considerably generalized, but to
illustrate the physics involved, we have chosen to
remain as simple as possible.

P +P'

yP-Q yP-Q
Fio. 3. Multiple Regge diagram.
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For a fixed value of J and J', J)J', the contribution
of the graph given in Fig. 3 to the Feynman amplitude is

Fl(J,J') = —g(J,O)g(J,J')g(J'0)d(J, O)d(J,J')d(J', 0)
X fl[M~'(J) —t]-'[M c'(J') —t']-' (46)

where

fl= (Q.)'r.;.'(M~') (F.'+V.)' '
xr...'(M ') (—Q.')'. (47)

Using the derivative trick again, this product can be
written as

I'(J—J'+1)
fl —[(~.')'H~( —Q, F')]

r (J+1)r (J'+ 1)
X[(~,)'H& (O',F)]. (48)

The advantage of this form is that it is a simple matter
to expand the HJ functions and to discuss the problem
of daughter trajectories. The presence of the projection
operators 0 in II leads to daughters, just as in the case
of a single Regge coupling. The interested reader can
work out for himself the terms corresponding to the
leading trajectory on one side of the diagram coupling to
the leading daughter on the other. Because of the Inasses
chosen in the model, the first daughter is down two
units from the leading trajectory.

For large x and y the leading terms in Eq. (47) can
easily be evaluated. Since the external incoming par-
ticles have equal mass, Q.F=Q'. P=O, and one finds

fl=(Q F')' '(—Q Q')'=*'(—y~)' (49)

The contribution of the coupling for J')J will be
called F2, and it is the same as Eq. (46), except J and J'
are interchanged in the g and d factors, and fm is given by

fr= (—Q.)'r.;.'(MA')(F. +2F.')' '
xr„.,'(M, ')(Q,')', (so)

f2 ( xW) ~y~'—

The sum over J and J' can now be carried out, and
the leading terms are of the multi-Regge form. Defining
the trajectories by

MA~(~) =t M.'(2) =t'

the asymptotic amplitude is expressible in the form

coupling is the dominant coupling chosen by nature.
One should note that by choosing a particular model we
have definite predictions to be looked for in the experi-
mental data. Perhaps the two most striking properties
of Eq. (53) are the power dependence on W and the
zeroes introduced by the d(n', n) functions if n=n'+1.

If n and 0.' are positive, then the reaction should be
depressed for small W, which occurs when Q and Q' are
parallel. Therefore planar events are depressed. How-
ever, if n and n' are negative, which should happen for
large enough values of t and t', planar events should
dominate. A word of caution is appropriate here since
in deriving H it was assumed that the quantity (xyW)
was large, so that S' cannot be allowed to get too small.
Since x and y are large, this shouM be no real restriction

If n= n'+1, which could be achieved by an appropri-
ate choice of t, t' and the trajectories (the Pomeranchuk
and pion differ by almost one unit), then the second
term in H vanishes by nature of the d(n', n) function. In
the first term one finds that the factors become

d(n, 0)d(n —1, 0)d(n, n —1)=2m'p(n). (54)

Thus the nonzero term vanishes very rapidly when o.

approaches zero. The particular power of o. depends
crucially on our choice of minimal derivative coupling,
but the vanishing is a general phenomena since the
coupling presumably cuts o6 the nonsense states in
some way if o. and o.' have the same signature. This
would be an interesting effect to study experimentally.
In any event, the predicted rather striking dependence
of the bi-Regge residue function on 0. and n' due to the
F functions is particular to our model approach and
would probably not follow from general kinematic
arguments.

VII. MAXIMUM DERIVATIVE COUPLINGS

In this case, which is the opposite extreme from the
previously discussed coupling, Eq. (35), the object is to
couple all of the indices on the field tensors to deriva-
tives of the other fields. Thus it is not necessary to
introduce the d(J,S) function to handle the nonsense
states. The coupling is chosen to be

Hr = G(JP')(p(J) p(5'))"~.'( ~.)'&(~.)'C.' —(55)

where

F= 2 LFl(J,J')+F2(J',J)]
J,J'
~'g(n, O)g(n', 0) da du'

F~ — H (x,y, W),
sinmn sinxo, ' dt dt'

(52)

The amplitude for the multi-Regge graph of Fig. 3 is

F(J,J') = —g(J,O)G(J,J')g(J', 0)p(J)p(J')
X[MA'(J) —t] '[Mg'(J') —t']—'

X (Q„)~r„,„'(MA') (—F„'——',F„)&

x (Q,')'r, . '(M, ) (—F.—-',F.')'. (s6)
H(x,y, W) =d(n, 0)d(n', 0)x y"'

X[g(n,n')d(nn')W 'e-' "
+g(n', n)d(n', n)W e—' "']. (53)

This form has several amusing consequences which
could be used as a test to see if minimal derivative

The sum over J and J' can be carried out as before to
yield the asymptotic behavior of the total amplitude Ii:

s'g(n, O)G(n, n')g(n', 0) dn dn'
F ——p(n) p(n')x y". (57)

sinzo, sinxo. ' dt dt'
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VIII. VECTOR-PARTICLE PRODUCTION

I.et us now turn to the case in which the 8 particle
has spin one. In the minimal-derivative case, the
effective interaction will be written as

~ J—S
Hr=g(J, S)d(J,S)~ — A„~B '(8 )~ s 'C s (59)

kJ+S 1

with a similar term involving the interchange of A
and C. The amplitude in the multi-Regge case is similar
to Eqs. (46) and (42), except that a factor of
—i(P„'+-,'P„) is replaced by the polarization vector
e,~*of the 8 particle. In the asymptotic limit the partial
amplitude coming from the interaction of Eq. (59) is

~i"(J,J') = —R'(J,0)a(J,J')R(J', 0)

Xd(J,O) d(J,J')d(J', 0)
~

I
J—J'~

J+J'+1

where
XFi~gfp'(J) —tj—'I 3IIc'(J')—P1-i (60)

j0~ Q(Q P')~—~'—'(—Q Q')~'

(ie Q)

ES" QJ
(61)

Thus the maximal derivative coupling is characterized
by the fact that there is no dependence on 8' and by
the fact that there is no necessity for the strong de-
pendence on (n&u') introduced by the F functions in
the minimal-coupling case. However, factors of p(n)
and p(n') are present, and it is amusing to note that for
the case n= n'+1,

P(~)P(~—1)=~P'(~)/(2~+1), (5g)

which vanishes linearly with n.

APPENDIX

Our conventions for determining the polarization
vectors of the C particle when it has spin one are as
follows. In the t-channel center-of-mass system the
momentum of an incoming C particle is i2E —Q
= (2'; —Q) and that of an outgoing C particle is
iP—Q' = (~igt; —Q'). Taking the polar axis to be along
Q and writing q=

~
Q ~, we have

Q= (o; 0)=(o;0,0,q),
Q'= (0; (}')= (0; —

q sin8, 0, q cos8),

(A1)

where we have again assumed that the masses of the 8
and C particles are equal.

The polarization vectors of the incoming C's are now

Thus, for small t and t', the model predicts that the 8's
will be longitudinally polarized.

The maximal derivative coupling also yields an
amplitude of the same form as the scalar case, but with
an additional factor of 0* ', (J' —J")—. This produces only
longitudinally polarized 8's.

It should be possible to test this behavior by looking
at, for example, p production, using the decay
(charged) pions to measure the polarization.

Finally, we note that minimal derivative coupling
will suppress the production of particles with spin due
to the factor of (n —n') which occurs in the residue.
Thus the production of vector and tensor particles by
the exchange of particles with similar trajectories will
be down from the expected rate. An example of this
eBect could be the experimental lack of double Pomeran-
chuk exchange production of the f0. There are many
more possible reactions where this mechanism could
play a role.

The total amplitude can be expressed in terms of the
scalar 8-particle amplitude Fi, given by Eq. (52) and
the first term of Eq. (53): ( q gt)

00=I —;0, 0,
3lc 2Mc~

(A2)

In this case we see that the minimal derivative
coupling forces the amplitude to vanish if e=o.'. This
will also be true for the other coupling F2~. In addition,
the polarization of the 8 particle is predicted. For t and
t' small compared to s,, the ratio of the amplitudes for
transversely and longitudinally polarized 8's is easily
shown to be

with 0= (00, e). For the outgoing particles we have

0'= —(g2) (0; cos8, s, sin8),

0 '=(g-,')(0; cos8, —i, sin8),

( q gt gt
sin8, 0, cos8

~

.
3Ec 2cVc 23lc

and (63) %ith these deinitions, it is a simple matter to work
out the results reported in the text.


