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The "little group" decomposition of a two-particle scattering amplitude is carried out using covariant
variables throughout. The general covariant expression for the amplitude reproduces, where appropriate,
the O(3) and O{2,1) expansions. In the limit of zero momentum transfer, for unequal masses, it goes over
correctly to an expansion in the functions of the two-dimensional Euclidean group.

1. INTRODUCTION

A NUMBER of authors' ' have discussed the little
group decomposition of a covariant two-particle

scattering amplitude. For positive total effective square
mass, the little group is O(3) and the expansion is the
standard one in terms of angular momentum. The fact
that the decomposition is of physically observable states
of two particles of positive energy, restricts the decom-
position to unitary (square integrable) representations
of the little group. This restriction leads physically to
finite total cross sections.

For negative total effective square mass the little
group is O(2, 1) and the corresponding expansion of the
amplitude over square integrable functions reproduces
the familiar background integral of Regge-pole analysis.

Previously these expansions have been made in the
appropriate frames —either center-of-mass (c.m.) or
brick-wall (B.W.)—which implies the use of non-
covariant variables such as c.m. energy and scattering
angle. In this paper we use covariant variables through-
out, thus arriving at a generalized covariant angular
momentum expansion for the scattering amplitude
which is valid in any frame, both in the energy (positive-
square-mass) and in the momentum transfer (negative-
square-mass) regions. This is analogous, in the linear-
momentum expression, to working with the Mandelstam
variables. The main point which we make is that the
correct variable to use is not the angular momentum,
but the square of the Pauli-Lubanski vector.

For unequal particle masses, the little group for
vanishing momentum transfer is the two-dimensional
Euclidean group. We show that our general covariant
expression correctly reproduces the appropriate ex-
pansion of the scattering amplitude. The limit is only
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well defined if it is approached from the negative-
square-mass region.

For equal particle masses, the forward-scattering
little group is the homogeneous Lorentz group. This
clearly cannot be obtained as a limit from the much
smaller little groups for nonzero total mass. A formalism
which does give this limit will be developed in a separate
paper. We note here that if the particle masses are set
equal after the total mass has been taken to zero, then
the formalism presented below is ambiguous; but it is
simple and well defined if the limit is taken in the other
order.

Of course, in the negative total square mass case one
is considering the Poincare decomposition of pseudo-
states of a particle of positive energy with one of
negative energy. Since these are not physically observ-
able, there is no reason why this expansion of the ampli-
tude should be restricted to unitary representations.
The phenomenon of Regge poles is precisely the appear-
ance of nonunitary (non-square-integrable) representa-
tions in the expansion. In this preliminary paper we
confine ourselves to setting up the covariant formalism,
using only unitary representations. The appearance of
Regge poles (nonunitary representations) and their be-
havior, with regard to crossing in the forward-scatter-
ing limit, will be considered in a separate paper.

2. THE TWO-PARTICLE S MATRIX

Our objective in the next two sections is to write in
a covariant form the standard little group expansion
of a two-particle scattering amplitude for positive total
mass squared. In the c.m. frame this must reduce to the
conventional angular-momentum expansion of helicity
amplitudes. '

We first specify two-particle states in a Poincare-
invariant theory. The generators of the Poincare group
in conventional notation satisfy the commutation
relations

p'„,z„j=0, (2.1)
LPg,J„,]=i(g „I'„g„r'„), — (2.2)

L~"~"3=i(g"~-+g-~" g.-~" g—,~.-) —(2 3)
' M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
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which satisfies
5 „=——'e„,)„J""P&,

P~S'„=0,

(2.4)

(2.5)

The generators of the little group of P„can be dined
in terms of the three independent components of the
Pauli-Lubanski vector4

components of q„are determined by the two 5 functions
in the 6+ factors. We signify this by writing P„~I1, q„& l.
In the c.m. frame (P=O), Ps is the total c.m. energy,
and the two independent components in q„'" 6x the
solid angle of the relative-momentum vector in the c.m.
system.

If we introduce
and the commutation relations P2=—t (2.17)

If we define

LW„,p,j=0,
fW»W„g = is„„ypW "P'

(2 6)

(2.7)

and

&(f,1,2)= [P+mr4+ms4 2tm—'—2tmss
—2mtsmss]'Is (2.18)

then

and

g~oi~l~' = J&

Wo=J P

W;= e;;sE,Ps+ J;Ps.

(2.8)

(2.9)

(2.10)

(2.11)

Single-particle states are specified in terms of the eigen-
values of the operators P', W', P, and W„where W,
is some component of 8'„ to be chosen later. The co-
variant normalization is'

(~,W,p„,W.
I
ms, ws, p„',W.')~+(p)
= (2s.)4b4(p„—p„')b(W.—W.'), (2.12)

where
6+(p) = 2s 8(ps)b(p' m') — (.2.13)

The masses m, s and spins W;s of the particles (i is a
particle label) are part of any representation and will
not be repeated below. The remaining labels specifying
a one-particle state, W and p„, subject to the condition

ps —m, s= 0,

the completeness relation (neglecting the spin factor)
for two-particle states is

d4P' d4q
1=

I p, q»'(pr) ~'(ps)
(2')4 (2s.)'

O'P 6(t,1,2)=
I
P q[sl) — df)(qlsl)(P q[sl

I

(2s)4 (4m)s2t

(2.19)

The labels W;, (i=1, 2) are replaced by

28''E~ &

~(&,1,2) I &I

(2.20)

Ke shall refer to this covariant specification of particle
spin component as covariant helicity. By (2.4), it is
easily checked that this reduces to the conventional
definition of helicity in the c.m. frame. (The factor
t/I fI is included in anticipation of the discussion of the
negative-t case.)

The S-matrix element for scattering of particles 1
and 2 into 3 and 4 is

provide four independent parameters. A two-particle
state can be expressed as the product of one-particle
states, and therefore needs eight labels in addition to
masses and spins. In place of the individual four-
momenta p„' and p„', we introduce the total-momentum
operator

where

and

(P„', „'q,x xs'ISIP„, „q, )yr),

Ps'= ps'+ p.'

q.'= l(p' —p').

(2.21)

(2.22)

(2.23)
p.=p'+ p'

and the relative-momentum operator

q.= l(p' —p')
The normalization of the corresponding states is

(2.14)

(2.15)

Since S is invariant with respect to displacements
(generated by P„), the S matrix must be diagonal in
P'„. Thus we write, as usual,

( 'P, )q)Xs4ISIP)q, V,X')=—i(2s-)'54(p —P')
X(P,q', ) s,)t4I T(t) I p,q) r X'). (2.24)

(P„')q„',W&.')Ws~'
I P»q»W1»W2a)&+(pt) &+(p,)

= (2w) st(P P')84(q q')— —
X 8(Wr, —Wt, ')8(Ws, —Ws, ') . (2.16)

It is convenient to think of all four components of P„
and two of q„as being independent; the other two

4 We use the convention X„=(Xs,X) and X&= (Xo, —X), with
X= (Xg XQ +3) and e01gg —+~.

'The eigenvalues of the operator W' take on discrete values
(integer or half-integer), since Wo will refer to a rotation about
some axis either 6xed in space or relative to the particle direction.
Thus the quantity b($'o —8",') is really a Kronecker b.

The whole discussion below will be applicable to some
fixed value of P&", which will be omitted from the states
and completeness relations from now on Li.e., drop
(2s.)454(p —P') in (2.16) and d'P/(2m)4 in (2.19)).

Following Jacob and Wick, ' it is convenient to express
the final state as the Lorentz transform (pure rotation
in the c.m. frame) of a state with relative momentum
in. the same direction as the initial state. We denote
such a state by

I
ql'l, Xs,'A4) .



COVARIANT ANGULAR MOM ENTUM ANALYSIS

TAmz I. Evaluation of various quantities in the particular frames convenient for the diBerent ranges of t.

Gene
c.m. Lightlike

O.t'

Pt2

ptz

M, p, ~
8"~

x
U=exp( —iMpy)

f
0 (—W')

~ ~ ~

c1, 23 tanx(j —[i1 ~)

t&0
(gt,0,0,0)
(qco,O,Oq co)
(qco', qc1',O, qcs')

b, (t, f,2)
gCI=

2+2
(0,1,00)
(0,0,1,0)
(0,0,0,1)

933 ~31 ~13)
t (As'+—Jss'+As')

8

exp( —iA1e)

t&0
(O,O,O, V'Itl)
(qsp, 0,0,qss)
(qsp', qs3,0,qzss')

4(t, f,2)
gao= ——

(0, —1, 00)
(0, 0, —1, 0)
(1,0,0,0)

(i&os, —i&31, As)
—t(—~os' —~oP+~)s')

ip
exp( —iJosP)

r
8 (—W')

~ ~ ~

c1, 23 tansr(j —[i1))
Ads)

t~0-
(33,0,0,3o)

(qz.o,O,Oqz3)

(qzo', qz1', O,qzs')

a (0,1,2) = (ssz' —Nss') = 2oo (qzp —qz, s)

(0, —1, 00)
(0, 0, —1, 0)

null

(rr 3/gt, ni/gt, J»)
—(1113+1133)

exp (—i111f')

d (—W')

J»(s)

Since this has the same total four-momentum I'„as
~q', ) 3,X4), the two states are in general related by a
transformation of the little group of I'„.%e de6ne an
orthogonal system of unit four-vectors'

~"=~"(v'i t i)/t, (2.25)

y"= —2(Psq" —(E q)P")/(6(t, 1,2)Q~ t~), (2.26)

so that if P„is timelike, y„ is spacelike (and vice versa).
However, since zr„and p„are orthogonal to both 24P

and y&, they are always spacelike. The generators of
the little group of E„are

(M,Mp,M,)—= (W /gt, Wp/gt, W,/g ~

t
~ ), (2.30)

where

PP~ eP"PPq„q P
rrP~ sP"&PP„y P

Note that

(2.27)

(2.28)

lV.=5'„n~, etc.

The vector po is normal to q and q', so that"

~
q', ) ',) ') =s'~»

~ q ',),),'),

(2.31)

(2.32)

2ZP23„= qoq„= t/~ —t~, (2.29) where X is the angle between q and q' which is given by

2zt+t' —(23212+23322+23432+23342) t+ (pzzzs 232 2) (332
2 22242)

cosX=
t), (t, 1,2)6 (t,3,4)

(2.33)

where
S= y

—3 = 2
—

4

eigenstate of M~. This follows in general since (note
(2.34) that 1, 2 are particle labels)

fn the c.m. system (P=O), X is the angle t) between the W„— zs„„y (y,+ps) & (pz+.ps)P
three-vectors q and 41'. (See Table I.) = W '+W„'—-'ss„x (Jz""psP+J2""pz') . (2.36)
Thus

(',). ,), ~r(t)~q, )',)')
=(qisi, )19.'~s ' sxr(t) ~q'", )1',)'). (2.35)

The little group decomposition of T is obtained by
introducing a representation in this equation for the
operator Mp, which diagonalizes 8'2.

Before proceeding, we remark that ~qis&, )19P) is an

6 We have not bothered to normalize the right-hand sides of
Eqs. (2.27) and (2.28) so that at'e„=P&P„=—1.It is not necessary
for the later discussions.

Hence, after some elementary algebra and using the
fact that I' and q satisfy (2.14) and (2.15),

W„q"~q
"& &' )12)= (—W '+W ')PP

~

q&'i )' )1') (2.37)

so that

M„i qi'i X' )12)= () 1—)12)
i
qi'i X' X') (2.38)

7 It must be emphasized that e'~g" is indeed a little group
transformation since pip, P )=0 a3nd ps is a c number depending
on q, q', and p, the eigenvalues associated with the incoming and
outgoing states.
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3. COVARIANT ANGULAR MOMENTUM
DECOMPOSITION

An alternative complete commuting' set of operators
for two-particle states which includes g ' is

given by

~~3 ~4 e„

d(—W')
IWsM)s)4)

2i tans(g —I) s4I)

X (W',M, ) ',X'I = 1, (3.7)

As corresponding labels for the states we take (again
dropping I'„)

where

) 34 ——X'—X4 (3.8)

IW, M,),)«). (3.2)

To define the orthonormality and completeness in a
manner which will continue analytically to negative
values of t, we must treat Ws (but not M) as a con-
tinuous complex variable. To this end we use the
Sornmerfeld-Watson technique. Introduce a continuous
variable j corresponding to the conventional c.m.
angular momentum,

or, equivalently,

-W'-=+V(j+ 1)

—W'= ', i+f(j—+-,')s-
(3.3)

(3.4)

Consider the function

1/tan~(j —I) I), (3.5)

8 Yet. another possibility is to take the complete commuting set

Eigenstates of this set of operators do not specify I'„,but instead,
through J' and J3, pick eigenvalues of the angular momentum of
the entire scattering system about some arbitrary origin. The
internal angular momentum W' (which is the variable of interest)
contributes to this in just the same way as the spin s of a single
particle contributes to its total angular momentum J.The relation
between the two is not simple and this appears to be a very
awkward way of performing the 8"' decomposition.

An exceptional case is when P„=0 in Eq. (3.1) (elastic forward
scattering). Then the total angular momentum coincides with the
internal angular momentum. Algebraically, I'„=0 is only three
conditions, %=X'. The extra parameters allowed can be taken as
ko, C and M'= J', M~= Jg, so the two representations merge.

It is worth noting (by examining Table I) what these states
LEq. (3.2)j and those de6ned in the previous section reduce to in
the c.m. system. The incoming states ~P„,q„, ', X)aXre the linear-
momentum states in which the direction of q is chosen as the s
axis and, of course, P=O, and X' and )' are the helicities of the
incoming particles. The outgoing states ~P„,q„',XI,)4) also have
P=O and for convenience q' is chosen to have an x and s com-
ponent only; X' and X are the helicities of the outgoing particles.
The states de6ned by (3.2) reduce to angular momentum states
in the c.m. system where W' —+ J' and M~ ~ J3 (where the 3-
axis is the direction of the incoming relative momentum q). This
is of course consistent with the fact that the angular momentum
commutes with the total momentum in the c.m. frame. That is,
LJ;,P&)=0 when acting on states with P=O.

where X is an integer or half-integer. This function has
a branch point in the —8' plane at —~t. The physical
sheet of this function is defined as the cut plane with

the cut running from —~~t to ( t/I tI)~. I—n the j
plane the physical region is to the right of the line

Re(j+-',))0.
The function (3.5) has poles on the real axis at points

0& j=~yI) I, (3 6)

where e is an integer. The completeness of states is

and the contour C), is a loop about the real axis coming
in from + oo above the axis and crossing the real axis
between the points corresponding to j=

I Xs4I and

j=
I
) s4 I

—1. For positive f this contour encloses the
poles at allowed (discrete) values of j, and the integral
over —8" is equivalent to a discrete sum over the
values of j allowed by the covariant helicities. The sum
over M is taken over the values allowed by j. The
normalization consistent with (3.7) is

(W",M', Xs',) 4'
I
Ws, M,Xs,) 4)

= 2i tantr(g —I).34I ) 5(W' —W")
X&srsr 4,)„bx,x," (3.9)

(It is tacitly assumed here, and below, that 8 functions
in 9' are to be evaluated on the Sommerfeld-Watson
contour Cq.)

Using this representation, (2.32) can be rewritten as

(W', M, x', x4
I
q', x', x')

(Ws M ),s ),4
I
s rsrs x

I
W's —M' ),s ),4)

d(—W")
X (W" M')')X4Iql'l X')4). (3.10)

2i tan~(j —I)„4I)

Define the functions dsr~ s"(X) by the relation

(W") s4 ~',)'Iq'" &'&4)=Cs4(t). (3.12)

This is a normalization factor which can be chosen to
make the conventional normalization of the d~sr, w'(X)
consistent with that already specified for the states.
Then

(3.13)
and

(Ws, M,X',X'I q', X',X') =d~ )„,~'(X)Cs4(t) . (3.14)

We now define generalized partial-wave amplitudes by

(W M)', )«I2'(i)IW" M') X)
=2' tan~(& —I),„I)~(Ws—W s)~,.~,

X(x',)' IT(W', f) I)',x') (3.15)

(W'M)', )'Ie '~sxIW' M') )4)
—=2i tans-(j —

I ~s4I) &(W'—W ')dsr~ tv (X). (3.11)

In the fmal factor, by (2.38) and (3.1), M'=), s4, and
we write



168 COVARIANT ANGULAR MOM ENTUM ANALYSIS i59i

where X;„is the least of X~& and X34. This expresses the
fact that T(f) commutes with W' and cannot depend
on the value of the generator 3I~.

Then from (2.35), using Eqs. (3.7), (3.11), (3.14),
and (3.15), we have the generalized partial-wave
expansion

(q', »,» ~
T(f)

~ q x&») =c„*(f)c„(f)

equation

d'U dU—cotX
dx

UM„'—2 cosX Mr UMPH+M„sU

sin I (3.23)

X d„,,„,* '(X)(»,&&~T(W&,f) ~)',»)

d(—W')
X . (3.16)

2i tanir(j —~) ,, ))

For conventional normalization ' of dMM, (x),

Taking the appropriate matrix element,

d W' M' —2MM' cosX+M"-
+cotX——

dx sin X

XdMM '(X)=o, (3.24)

C;, (t) = (8s-/h(t, i,j)jrls.
which is the differential equation for the functions

(3.17) d, (X)

LM,Msj= —'
srM'

and cyclic permutations, where

easy +1 y

and, as usual,

(3.18)

(3.19)

Equation (3.16) is our main result. Before closing this
section, we make some further remarks about the little
group and the functions dw'(X).

The little group generators, defined in Eq. (2.30),
satisfy the commutation relations

4. ANALYTIC CONTINUATION

A. Syacelike Case

The expansion (3.16) for the scattering amplitude in
terms of its little group decomposition for t) 0 Dittle
group SO (3)j clearly reproduces the conventional
partial-wave expansion in terms of helicity amplitudes.

If t&0, by the substitution law we are considering
the process

(4.1)
M'r =M, (y" timelike),

Mr= —M„(p" spacelike) .
Further, since

m~8'„=0, (3.20)

expanded in terms of the little group SO(2,1) of imagi-
nary mass states of particles i and 2, or 3 and 4. To
make the analytic continuation, one can simply replace
6+(p) throughout by

we have a(p) =2 S(p' —~s) (4.2)
W'= W W +WsWs+W, W'

t(M s+Ms'+—M,s) . (3.21)
and interpret all. variables carrying particle labels 2 and
4 as signifying the negative of their physical values.
Kith this interpretation the entire discussion of the
little group and the functions dw'(X) remains valid. In
the brick wall (B.W.) frame" the "relative" momenta
q and q' are related by a Lorentz boost. LAn operation
in O(2, 1) with pure imaginary parameter X=iP still
given" by Eq. (2.33) (see Table I).g

The expansion (3.16) remains valid provided we
assume that the singularities in the —5" plane come
only from the kinematic factors. The contour C), in the
—5' plane is held fixed as a loop about the real axis
going off to +~, but owing to the change in sign of f,
it now encloses the cut and the poles from tanvr( j—~

X
~ )

at those negative values of j corresponding to
~ j~

which were excluded in the c.m. case. The integral thus

If we now consider the transformation in Eq. (2.35),

(3.22)U'(X) =&iMPx

then

U 'M~V= Mr cosX+M sinX,

and by the usual manipulations' we have the operator

"By the brick-wall (B.W.) frame we specifically mean that
frame in which P„has only space components (in particular, only
a 3-component, see Table I). In fact, this reduces to the con-
ventionally de6ned brick-wall frame only in the equal-mass case.

'~It is straightforward to show (using the coordinate system
of Table I) that, indeed, tanhP=~, where v is the magnitude of
the velocity of the I orentz transformation which takes q„ into q„'.

and utilizing (3.7) gives~

~ ~ ~

d(—W')/5
dM~' '(X)dM~ '(X') =2S(«»X—«sX').c„24tan4r (j—I lI,

I )

"Evaluating Eqs. (2.19) and (3.9),

(W',M,X44 )
ql'l, &44)

2 (~'), dO(gl'l, i%44
~
W",M', 44)2 (44r)9

=24 tan4r(j (X ~) 8(W'——W")4m,
and using (3.14) with this choice of C(t) gives

fdM),
* '(X)dM ), '(X) =2i tan4r(j —(X~) S(W' W")bMM . —

4vrt

Similarly, expanding
2t

{ql'l,X34~ tjl l lw, 34)= (44.)'- S(cosX—cosX')S(4 —4S')
a(t,3,4)
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incorporates the continuous and certain of the discrete
unitary representations of O(2, 1) and reproduces the
background integral of Regge-pole theory.

B. Lightlike Case

group in 2-dimensions SO(2) T(2). The physical
process is the same as that considered immediately
above and the little-group expansion is given by the
formalism, though the limit is most simply dered if
it is taken from the negative-t region. We work in a
frame in which

We restrict the discussion to the case in which the
masses of the scattered particles are all unequal. From
Eq. (2.33), it follows that"

I'„= (co,O O,co) . (4.12)

4'�(s,1,u)
sin X=

Lv (1,1,2)lv (t,3,4)

where

Since co defines a particular frame, it should not appear
in any invariant expression. The little-group generators,

(4.3) Eq. (2.30), are then

u=g m, s s t= E—s—t—, ——

g (s,t,u) =stu (as+ bt—+cu),

(4 4) where

(4 5)
II = (J,—J,)

IIs ——(Jss—Jss)o1. (4.14)
and, for example,

b = (m 'm '—m 'm4') (mts+ m '—ms' —m4')/E.
Since the commutation relations (3.18) are insensitive

(4.6) to a common factor in II1 and Ils, the limit is well
defined and leads correctly to

The boundary of all three physical regions in the s, t
plane is

y(s, t,u) =0, (4.7) (4.15)

with P positive inside the physical region. The line

t=o

is an asymptote to the physical region, which cuts the
boundary curve, Eq. (4.7), at

Also, (3.21) gives

W'=lim (—(111'+II,')+(+~1~)J1,')= —Ils. (4.16)
t~o

From Eq. (4.3) we have that for small t
t =0, s= cd/(c a)= s~. — —(4 9)

X= t.+1, — (4.17)
By considering (4.7) for large s and small ~1~, it is easy
to show that if

c—a—=—E(mts —mes) (mss —m4') )0, (4.10)

the curve approaches the asymptote t=0 at large s for
t&0, and hence, that s=s&, t=0 lies on the boundary
of the s-channel (not the u-channel) region. In this case,
part of the asymptote, and also lines of constant t

()0) for the range

0(t(min[(m1 —ms)', (ms —m4)'j, (4.11)

lie inside the s-channel region. We consider this situ-
ation. For t= 0 (P„&0),the little group is the Euclidean

4y(s, 0)

6'(0, 1,2)LP (0,3,4)

—4(s—s,)

(mt' —ms') (ms' —m4')
(4.18)

lim ~
—iMpx ~

—i01t'
t~o

(4.19)

Explicitly, by Eq. (4.10) this is positive inside the
physical s-channel region. (This also follows quite
generally from the fact that @ is positive inside any
physical region. ) The transformation in (2.35) is

"T.W. B.Kibble, Phys. Rev. 117, 1159 (1960).Note that we Maging the change of variable to i in (3 24) and takinghave not assumed any ordering of the masses and have taken the
channels to be the limit so that

s= 32 -+ 24' t = 22 ~ 34 I=23 -+ 24.

We are indebted to Dr. Hugh Jones and Dr. R. Delbourgo for
discussions on relativistic kinematics.

COS+~ 1q

sinX ~ —(Qt) i, (4.20)
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reproduces the correct equation for the d functions":

d' 1 d
+——W' —(M—M')' Dsrsr. w'(j) =0, (4.21)

Then (3.16) becomes

where

Dsrsr '(j)=hmdsr~. s"(x)
t~o

(4.22)

X D»,»,'w'(j)(}',}'(r(W') ~}'}')

Xd(—W') . (4.25)

limi tanm j=%1,
t~o

(4.23)

so the integral in the completeness relation is just along
the real axis'5 and the corresponding normalization is

(W",m', }~,',}4'~ W'PS, }„}4)

=&(W —W")4r~ &)„x, &)„x," (4 24)

'4In the limit t —+0,

(~i'i l~'l'i) = s(f 1')s(~ -~'), -(4r)' 2

a (0,3,4} l.

r i ],5 (0, ,4)fdf dp
( p

2(4 )p

(W',M
~

W" M') b(W' =W")8—M~,

(
W~ 24)d( —W2)(W~ 2f

~

=1.
0

Hence, using (4.22), we have

rD* 'U)D 'Q)idid&=4'(W' W"), —

Since by Eq. (4.16) —W' remains finite at f-+ 0,
from (3.3) we see that j~ +i~ as —W'-++Do,
depending on whether (—W') is above or below the
cut (which is now along the positive real axis). The
corresponding limits of (3.5) are

All the above remarks (summarized in Table I) can
be checked against the excellent review paper by
Strathdee et al.'

5. CONCLUSlONS

The little group expansion of a two-particle scattering
amplitude has been written using covariant variables
throughout, so that the final expression, Eq. (3.16), is
valid in any frame of reference. It emerges very clearly
that, just as the Mandelstam variables t and s are
appropriate for the general covariant form, it is the
variable 8 which plays the crucial role in the covariant
little group expansion. It is also important that the
spin be described covariantly in terms of covariant
helicity, rather than the usual noncovariant helicity
states.

A very important aspect of the formalism is that for
unequal particle masses, it correctly reproduces the
zero momentum transfer limit with little group (the
Euclidean group) in two dimensions.

In this paper we have con6ned our attention to the
unitary representations. Thus, we are not concerned
with Regge poles. The formalism clearly provides a
framework for a manifestly covariant Regge-pole theory
which should facilitate a discussion of its crosssing
properties and zero momentum transfer limit. These
topics will be discussed in a separate paper.

'~ The contour in the —lV~ plane for t&0 is about poles. The
distance of the erst from the origin and the distance between
adjacent poles are both of order tj Since tj (j+1}. remains 6nite
as t —+ 0, in the limit t -+ 0+, this line of poles will coalesce to form
a cut along the real axis. However, this limit of tanm j is not well
de6ned.

One can evaluate the Sommerfeld-Watson integral for t&0 to
give a sum over discrete values of j, and then take the above
limit, which converts the sum back to an integral along the
positive real axis. This also leads to Eq. (4.25}.
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