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Coulomb Interference Corrections in Potential Scattering*
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Corrections to the usual formula which approximates the total phase shift by the sum of the nuclear
plus Coulomb phases are considered. The tirst correction to the phase is of order a (the same order as the
Coulomb phase itself) and has been shown to be important in a recent analysis of pion-helium scattering.
A convergent expansion in a is derived for the correction terms, and is explicitly exhibited through order
at.'. The corrections are finite in each order; previously encountered logarithmic-type divergences are elimi-
nated by a careful treatment of the asymptotic behavior of the Coulomb wave function.

I. INTRODUCTION

'n extracting information on strong scattering forces
& - from experimental data, it is usual to assume that
any eGects of Coulomb scattering can be taken into
account by regarding the total phase shift to be given by
the sum of the strong plus pure Coulomb phases. It is
known, however, that this is only an approximation.
Schi8' has considered the corrections theoretically and
finds that a term of order n (the same order as the
Coulomb phase itself) is to be included in the amplitude.
Recently, Block' has pointed out that this term is im-
portant in pion-helium scattering. In fact, he shows that
it is crucial if one is to obtain an estimate of the electro-
magnetic radius of the pion from the data.

Unfortunately, the expression which SchiG gave for
the correction is logarithmically divergent. However,
as Schi8 points out, ' this expression may still be used
to calculate the cross section correctly to order 0.. On the
other hand, by considering the phase shift rather than
the total amplitude, Block' has removed this divergence
by suitably subtracting Born-approximation Coulomb
terms from SchiG's equation. The resulting expression
leads to good agreement with the experimental data.

Although Block's equation is derived on the basis of
very plausible physical arguments, a more fundamental
treatment which allows calculation of higher-order
terms in a systematic way is desirable. In this paper,
we verify Block's conjectured form for the correction to
order n and derive a scheme which leads to finite results
in higher orders. We employ the Green's-function
method, and although the technique is basically simple,
the equations beyond first order are rather lengthy.

This problem has also been treated by Antoine' and
more recently by West. ' West finds corrections to the
scattering amplitude directly, rather than to the phase
shifts. It is not obvious that the results are equivalent
to those in this paper, although we suspect that they
must be. Our treatment is simpler than West's and

* Work supported in part by the National Science Foundation.'L L Schi6, Progr. Theoret. Phys. (Kyoto) Suppl. , Extra
Issue, 4OO (196S).

' M. M. Block, Phys. Letters 25$, 604 (1967).' L I. Schiff, Progr. Theoret. Phys. (Kyoto) 37, 635 (1967).' J. P. Antoine, Nuovo Cimento 44, 1068 (1966).
' G. B. West, J. Math. Phys. 8, 942 (1967); Phys. Rev. 162,

1677 (1967).

shows explicitly where the difficulty in Schiff's earlier
method arose, namely, in a careful definition of the
phase shift for the Coulomb problem. Our method lacks
the generality of West s discussion of various potentials,
but we believe that it oGers an approach which is more
intuitive and simpler to apply in the case of Coulomb
interference problems.

We begin in Sec. II by reviewing brieQy the usual
solution to the pure Coulomb-scattering problem. In
Sec. III, we develop an iterative technique for calcu-
lating the pure Coulomb phase shifts in a convergent
expansion in orders of a. The method of Sec. III is easily
generalized to include strong plus Coulomb scattering.
In Sec. IV, this method is developed, and the corrections
through third order in e are explicitly exhibited. Ap-
pendices A and B treat details of the derivation to order
n and n', respectively.

II. REVIEW OF PURE COULOMB SCATTERING

The reduced wave equation' for scattering of angular
momentum l in a potential V(r) is given by

l(l+1)
Ni"+ k' s(r)— N~

——0,

where k is the relative wave vector, and

s(r) = (2m/k') V(r), (2)

where rn is the reduced mass. The wave function itself is

&(r) =2 L»(r)/r3'i(cos8), (3)

e'" sinb~ ———,'k f(8)Ei(cos8)d(cos8) .

' See, for example, L. I. Schi6, QNantum mechanics (McGraw-
Hill Book Company, Inc. , New York, 19SS),2nd ed. , pp. 114—121,

i568

and for potentials which fall off faster than (1/r), it
goes asymptotically like

f(y)~cia r+ tLf(8)/y]pier (4)

where f (8) is the scattering amplitude. This leads to

kgi(r)/(21+1) (i)'e"& sin(kr —~sls+8i), (5)
where
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However, in the Coulomb case where

2m ZtZse' 2/k
s(r) =

A2 r r
(7)

the phase shift behaves like

rig
—$ ln2kR+0 (1/kR) .

Expanding 8 in a power series in g as

(16)

the amplitude has an additional logarithmic dependence
which is conventionally subtracted from the definition
of the phase shift. Thus, for Coulomb scattering,

kuq(r)/(21+1) (s)'e'r i'& sinpkr —tslz+p(r)), (8)

8= ri& ) l—n2kR —$ (ri~' —ln2kR)+ ts (rl ~'"/3!)+0(P)
=a—(+ed+

we find
e" sinb= a(+iaP+ (c—-', a') P+ . (17)

where

p(r) ri~ ] ln2kr—.

A term-by-term expansion of Eq. (14) used in Eq. (15)
can now be compared with Eq. (17). For example, to
lowest order, ua(r) is given simply by kr j(kr). Thus

In Eq. (9), q& is defined to be the Coulomb phase shift
and is given by g= hm —2

g ~oo
xj'(x)dr+0 (1/kR), (18)

&,= argLI (l+1+ s~)j.
III. COULOMB PHASE SHIFTS FROM

PERTURBATION THEORY

(10)
which is easily seen to be

a= q&' ln2kR+—0(1/kR), (19)

A straightforward approach to potential scattering
is to write

u&(r) =krj&(kr)+ G&(r,r')s(r')u&(r')dr', (11)

where G~(r,r') is the Green's function for the tt=0 case,
with scattering boundary conditions~

Gq(r, r') =krj&(kr&)r&$n~(kr&) —ij&(kr&)j. (12)

Unfortunately, in the Coulomb case this equation does
not have the correct asymptotic behavior. Both the
incoming and outgoing waves must be modified by
logarithmic phase factors. The equation can be used,
however, if we are careful in handling the logarithmic
divergences.

To treat the Coulomb potential, we define

as expected. In Appendix A, we show that Eq. (19)
follows from Eq. (18), and in Appendix B, the sub-
traction of divergences is carried out explicitly to order
P. The coefficient e of Eq. (17) is given in Eq. (B5).

The essential element of this technique is to correctly
define the phase shift relative to the logarithmic terms

t Eq. (19)g in the limit R~ ~. We generalize the
method to include strong potentials in the next section.

IV. COULOMB CORRECTIONS TO
STRONG SCATTERING

When the potential has a strong, short-range part
plus the Coulomb potential. , we consider

ua(r) =krR~(kr)+ G~e(r, r')ss(r')ug(r') (20)

sg (r) = 2&k/r, r (R
=0, r&R.

We consider the equation

instead of Eq. (14). Here again sz(r) is given by Eq.
(13) (13), but now

G~e(r, r') =kr&R~(kr&)r&t I~(kr&) —iR~(kr&)g, (21)

uz(r) =krj&(kr)+ G(r,r')sz(r')uz(r')dr', (14)

with the phase shift given by

e' sinb=— rj(kr)sg(r)ug(r)dr. (15)

By matching the regular Coulomb solution at r =R with
the free solution for r&R, we can see that for large R

R~(kr) (1/kr) sin(kr ——',lz.+be),
Ig(kr) —(1/kr) cos(kr ——,'lz.+le), (22)

where bq is the strong phase shift.
As in Eq. (16), the phase shift of u& in Eq. (21)

behaves like

ri~
—

$ in2kR+A~+0(1/kR) (23)

where R~ and I~ are the regular and irregular solutions
of the strong-scattering problem (san=0), respectively.
Asymptotically, they behave analogously to j& and m&.

' We normalize as in Ref. 6, pp. 77-79. See also Eq. (22) of this
paper.

SThe parameter R is introduced for formal convenience. Ke
shall find results which are independent of R as R —+ ~. In what
follows, we shall often omit the subscript l, but it is understood to
index all quantities referring to a particular partial wave,

e" sinb=— rR (kr) sg (r)ug (r)dr .

for large kR and is given by

(24)
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5~ is the correction to the phase shift due to interference
of the Coulomb and the strong scattering which we wish
to calculate. Again we expand 5 in a power series, which
yields

II
( /I/+Q II/)

5—$(gi' —ln2kR+Ai')+P +P +
2f 3!=—u$+bP+c('+.

and thus

e" sinb —a&+ (5+io,')P+ (c ', a—'+-2iub) P+ . (25)

Note that we have kept a term of order P in the ex-

pansion of d E. We know that such a term is absent from

p&, and this can be shown explicitly by using the ex-
pressions in Sec. III. We have not been able to obtain
an analogous result for 6& and cannot see any physical
reason for it to be zero.

We can now proceed to subtract logarithmic in-
finites as in Sec. III. Using lowest order to illustrate
this procedure, we find

xRP (x)dx. (26)

Comparing this with Eqs. (18) and (19) suggests
writing

x[RP (x)—jP (x)$dx—2 xjP(x)dx.

x[RP(x) jP(x)jdx— (27)

from the definition of u. This is exactly the result
proposed by Block.'. We have let M —+ ~ because it is
finite in this limit.

Continuing to order P, we can easily identify the
(ia') term of Eq. (25) and find (after rearranging orders
of integration)

Since the last term behaves like a=q~' —ln2kR, we can
identify

behaved for large l. As is well known, we must keep all
the Coulomb phases q~ because they diverge like
$ ln(l+1) for large/. It is easily seen that this is not the
case for hi. In fact, we expect it to vanish for large l at
about the same rate as 88, the strong phase. This allows
us to write the total amplitude as

(c2i51'1)= (82iN I)+c2iqi(c2iig ])
+c»vie»i s (c&~&i 1 ) (30)

where we must keep all terms in the partial-wave sum
[Eq. (6)j for the first term, but only a finite number
need be retained in the last two. Thus Eq. (29) is of
practical value in calculating A~. For completeness, we
note that with our normalization,

(1/2ik) P (2l+ 1) (e2i" '—1)P i(cosg)

&iI2yo—)in[sin~ie/2i] I (31)
2k sin'(g/2)

From the point of view of 6tting data, the parameter
& is small enough in current experiments to allow one to
neglect all but the first three terms in Eq. (29). (The
P correction term is of interest in very-low-momentum
experiments. ) In applying this analysis to pion-helium
scattering, Block and Koetke' have found that the part
of the total amplitude due to the interference phase may
be as much as three times larger than the pure Coulomb
amplitude for scattering in the backward hemisphere.
This corresponds to Ai on the order of 5% of the strong
phase 8q. Of even more interest is the case when a
strong, complex optical potential is used. The inter-
ference phases develop complex parts and lead to a
6—7% difference in the 7r+-He inelastic cross sections.

Note added in proof After this
p. aper was prepared, it

was brought to the authors attention that a result equiv-
alent to the first-order correction in Eq. (27) has been
obtained previously by H. J. Schnitzer, Nuovo Cimento
28, 752 (1963).Although Schnitzer's result is defined in
terms of an infinite limit, it can be seen to be equivalent
to Eq. (27) by using our Eq. (A1).

xRP(x)dx yIi(y)Ri(y)dy. (28)

(Again, since this term is finite, we have taken kR to
infinity. ) As mentioned above, it is possible that this
term is zero, but this has not been shown. The general
procedure should now be clear. c is given by Eq. (35),
with j& and m& replaced by E& and I&, respectively.

To order P in the interference terms, the total phase
shift for the scattering is
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APPENDIX A

We shall show that for large I'
~r =&s+rli+ 6~i'+ 8 (~i"/2!)+$'(~i'"/3')+, (29)

where q& is given by Eq. (10), 6&' by Eq. (27), 6&"/2!
(=b) by Eq. (28), and DP'/3! (=c—n&"'/3!) by Eq.
(35). Note that the interference terms Di are well

2 xj Pdx=ln2P qi'+O(1/P). —

M. M. Block and D. Koetke (private communication).

(A1)
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Eq. (17)j

(c—23a') = 8
kR

—8xgP(x)dx
0
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0
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kR
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