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Estimate of the Sixth-Order Contribution to the Anomalous Magnetic
Moment of the Electron*
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An improvement of the estimate by Drell and Pagels of the anomalous magnetic moment of the electron
is given. Use is made of a sidewise dispersion relation in which the mass lV2 of one of the external electron
lines is analytically continued oB its mass shell. Only one-electron, one-photon states are retained in the
absorptive amplitude, but this is sufhcient to obtain attl terms in the absorptive part of the anomalous
moment proportional to (W' —nt') and (W' —rn')' as W' —& nt'. This calculation relates —,'(g —2) to the
Compton amplitude in its exact threshold region. An expansion is made in powers of the photon energy
in the Compton amplitude rather than a perturbation calculation in powers of a=1/137. The Schwinger
term a/2v is reproduced exactly. A entoil is chosen so that the fourth-order term is —0.328ar/vr approxi-
mately reproduced. This cutotf leads to an estimate of the sixth-order term of =+0.13n'/ve.

dispersion relation in the low-energy region and lead
to a better estimate for —,'(g—2).

I. INTRODUCTION

II. CALCULATIONS

Let us review the calculation of Drell and Pagels. '
They used the fact that the Feynman amplitude for
Fig. 1 satisfies a dispersion relation in the invariant mass
W'= (p+l)' of one of the external lines, with the other
two lines on their respective mass shells. This property
is valid to all finite orders in perturbation theory. The
assumption was made that the dispersion relation for
the anomalous magnetic moment part of the interaction
requires no subtractions. Otherwise, the anomalous
magnetic moment s(g—2), like the charge e, would be
a parameter of the theory.

The scalar functions multiplying the spinor factors in
the amplitude for Fig. 1 are analytic functions of t/t/'

in the cut W' plane with a branch cut from rn' to + co.'
The absorptive parts of these amplitudes are given by
the discontinuities across the branch cut and are
obtained by setting the internal photon and electron
lines on their respective positive energy mass shells. This
is done by replacing the propagators of these internal
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Fzo. 1. Feynman graphs contributing to the first-order
radiative corrections of the electron current.

)
4 A. M. Bincer, Phys. Rev. 118, 855 (1960).
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ECENTLY, Drell and Pagels' (hereafter referred
to as DP) have given an estimate of the sixth-

' ~

~

order contribution to the anomalous magnetic moment
of the electron. It is the purpose of this paper to improve
this estimate and to make more plausible the approx-
imations involved.

Drell and Pagels wrote a sidewise dispersion relation
for the anomalous magnetic moment in which the mass
8"' of one of the external electron lines is analytically
continued o6 its mass shell. They kept relativistic
kinematics and used the full content of the exact low-

energy theorem on Compton scattering including the
magnetic moment terms which are linear in the energy.
Their calculation reproduced exactly the Schwinger'
term n/2'. When they included the moment to order
0. in the Compton amplitude, they obtained the correct
sign and approximately the correct magnitude for the
Sommerfield-Petermann-Terent'evs term —0.328os/rr'.
%hen the moment to order cP was included in the
Compton amplitude, a prediction of =+0.15crs/rrs was
obtained for the sixth-order contribution to the moment.
These predictions were obtained by using a cutoff of
=6m' on the dispersion integral for the anomalous
moment. Thus it was hoped that the magnetic moment
was dominated by the low-energy region of the disper-
sion integral.

In this paper, we calculate additional terms which
contribute to the dispersion relation to the same order
in the energy as the terms linear in energy in the low-

energy theorem for Compton scattering. In fact, we
obtain all terms in the absorptive part of the anomalous
moment proportional to (W' —rn') artd (W' —rrts)' as8' —+ nz'. These terms will improve the accuracy' of the

~ This work was supported by the U. S. Atomic Energy Com-
Qllsslog, .
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i S. D. Drell and H. R. Pagels, Phys. Rev. 140, 3397 (1965).
2 J. Schwinger, Phys. Rev. 73, 416 (1948).
e C. Sommerdeld, Phys. Rev. 107, 328 (1957); Ann. Phys.

(N. Y.) 5, 26 (1958); A. Petermann, Helv. Phys. Acta 30, 407
(1957);M. V. Terent'ev, Zh. Experim. i Teor. Fiz. 43, 619 (1962
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particles by"
(q'+ie) '(k' —nl'+ie) ' ~ 27r'h(k' —m')

&f/(/ )5(q')0(q.). (I)
The absorptive amplitude is then given by

W PLANE
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Xu(P)X(q, k,P)
q +ze 0 ass+'le

8"—m'
dx u(p)$(W', x), (2)

32xW'

where x= q 1/~ fl) ) I) in the frame where p+/= (W,O)

and q= —k. The function E is the numerator factor in
the amplitude and is a polynomial which does not
influence the analytic properties of the amplitude when
the two ends of the internal photon are tied together
by~ g„„.The "cut" graphs corresponding to the absorp-
tive amplitude of Eq. (2) are shown in Fig. 2. These
graphs illustrate how the absorptive part of the ampli-
tude is obtained by multiplying the electromagnetic
current by the Compton amplitude and then integrating
over the scattering angle cos8= x as in Eq. (2).

In Dp, the electromagnetic current was represented
by u(k)y"si(p), while in this paper the most general
possible expression4 for a current of this type will be
used. Thus while DP had the threshold behavior of
the absorptive part of the amplitude correct, they

2=0

FIG. 3. Analytic properties of the invariant functions F;+(W').

obtained only some of the terms proportional to the
next order in energy L(W' —m')']. It is the purpose of
this paper to obtain all terms in the absorptive part of
the amplitude proportional to (W' —m')s in the limit
H/'~ m. This will increase the accuracy of the calcula-
tion in the low-energy region and will make the cutoff
procedure more plausible.

The most general expression for an electromagnetic
vertex with the emerging photon and electron on their
respective mass shells (P = 0 and p' =m') is of the form'

~(p) &,(p, p+/)
= st/(p) f I

Fi"(W')~,+F.+(W ) ( itr„„/—/2m)

+F3+ (W')/ ](P+ l+m)/2m+ [Fi—(Ws)y

+Fs (Ws)(—io„P/2m)+Fs (Ws)/ ]
X (—P—l+ m)/2m) . (3)

The scalar functions F,+(W') are functions of the
invariant Ws= (p+/)' and are analytic functions in the
cut H/' plane with a branch point, at t/I/' =m'. This is
illustrated in Fig. 3. For W')ms, F;+(W')—= lim, s+

F;+(W'+ie). In addition, the Ward-Takahashi identity
requires

~(P)1.(P, P+/)/" =~(P)/.

p+g

p+g

2- m2 It follows from this that Fi+(W') =F (W')=1 for all
TV'. Thus the charge as well as the normal Dirac
moment g= 2 are subtraction constants in the sidewise
dispersion approach. The anomalous magnetic moment
of the electron s (g—2) can be found by evaluating Fs+
on the mass shell, ' S'=m'

FxG. 2. Cut Feynman graphs contributing to
the absorptive amplitude.

~ S. Mandelstarn, Phys. Rev. 115, 1741 (1959); R. Cutkosky,
J. Math. Phys. 1, 429 (1960).' V/e use the notationp '=po' —p'= p p& g&"= (1, —1, —1, —1),
y"y"+y"p"=2g"", o""= ',i (y y" y"y"), P=-p„'r, —/i= c 1, and
n =e'/kr =1/137.

7It is necessary to specify this particular gauge choice in
computing the absorptive part because the amplitude for an
off-mass-shell particle with arbitrary W' to come onto the mass
shell upon radiation of a photon, P=O, is not in general gauge-
invariant. By tying the internal photon line endings together
with a g„„we ensure that the numerator E{g,k,p) in Eq. (2) is
purely a polynomial and does not influence the analytic properties
of the Feynman amplitude which are determined by the denom-
inator factors and for which there is a Nambu representation.

8 J. C. %'ard, Phys. Rev. 78,
Cirnento 6, 370 (1957).

'The term proportional to
variance; see F.J. Krnst, R. G.
119, 1105 (1960).

= —(e/2m)F, +(W') (5)

1821 (1950);Y. Takahasi, Nuovo

l„vanishes by time-reversal in-
Sachs, and K. C. Kali, Phys. Rev.

In order to calculate Fs+(Ws), we define two projection
operators v„&'+&(p,/, s) such that

Tr P eN(p, s) r„(p, P+/) v„f'+i (p, /, s)
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FIG. 4. Three-body intermediate state contributing to the
absorptive amplitude to order o.'.

For P=O

p„&'+&(p,l,s) = $(p+I+m)( Zo.„—,l') ju(p, s),
2 (W' —m')'

()
~," '(p, l,s) = L(—P—~+m)

2(W' —m')'

X ( io„—,l') . 6m—l„ju(P,s) .
The dispersion relations for Ft"(W') are assumed to

be unsubtracted, i.e.,

1 "dW" ImFe+(W")
F2'(W') =- . (7)

m~ 8"'—8"'—ie

The anomalous moment is thus to be calculated from
the radiative corrections.

In line with the assumption that the low-energy
region is dominant in the dispersion relation, we keep
only the two-particle intermediate state of one photon
and one electron as in Fig. 2. We ignore all three-body
and higher intermediate states, such as in I'ig. 4. This
will be justified below. In this approximation, we write,
using Eq. (2),

ImFp+(W') = (m'/Svr) L (W' —m')/W'j

and Goldberger" that the Compton amplitude through
first-order terms in the energy ~=K'—m may be
written exactly, i.e.,

e„(l)e„(q)u (p,s) Tt'"u (k,s') .x,*[—(e'/m)
(co=W—m-+0)

X e(l) .e(q)+ (ie2/m) (o&/2m) [ (g 1)o .e(l) X e(q)

+(-:g')o.[.(.(q) xq) x (.(l) xl)]
+(-:g)L(.(q).l).(l). ( xl)—(e(l) q)e(q) (~Xi)j}l~", (10)

where co=
~

l~ =
~ q[, l=i/or, and q=q/ca. For our

purposes, it is simpler to write the Compton amplitude
in a relativistic notation which reduces to Eq. (10) in
the limit 8'—m —+ 0. This can be done by writing the
Compton amplitude as in I ig. 5.

u(p) T„„u(k)= —e'u(p)LI'„( —l) (p —l—m) 'I', (q)
+I'„(q)(P—q —m) 'I'„(—l)ju(k), (11)

where I'„(l)=y„—((g—2)/Sm) Ly„,lj. This includes the
entire content of the pole terms.

The result of performing the operations indicated in

Eq. (8) is two coupled equations relating ImF2+(W')
and ImF2 (W') to both F2+(W~) and F2 (W2). When
Eq. (7) is used, the two equations in Eq. (8) are trans-
formed into two coupled integral equations of the
Omnes type. "Within the spirit of our approximation,
i.e., dropping terms in ImF2+(W') of order (W' —m')'
and higher as 8' —+ m, these two coupled equations can
be solved by iteration. Also, since Imu(p, s)T&"u(k,s')
is proportional to oP as co ~ 0, we may replace the two
complex functions F2+(W') which occur in I'„(k, p+l)
in Eq. (8) by ReF&+(W'), again dropping terms of
order (W' —m')' as W~ m.

The right-hand side of Eq. (8) was evaluated using

NPins

dx u(p, s) T&"u(k,s')

XI.„(k, p+l), „&2+&(p,l,s), (8)

where e„(l)e„(q)u(p,s)T&"u(k,s') is the Compton ampli-
tude for an initial photon of momentum q and polariza-
tion e„(q) and an electron of momentum k and spin s'

to scatter to a Gnal state of a photon of momentum l
and polarization e„(l) and an electron of momentum
p=k+q —l and spin s. Equation (8) is evaluated in
the center-of-mass system of the Compton scattering
process; y= —I, q= —k, pe+le=W, and @=q 1/~q~~l(.

The exact Compton amplitude or any satisfactory
approximation to it will satisfy the requirements of
current conservation, i.e.,

l„u(p) Tt'"u(k) =0,
q„u(p) T&"u(k) =0. (9)

The second of these relations permits us to drop terms
proportional to Fs+(W') in F„(k, p+l) in Eq. (8).

It was shown by Thirring, Low, and by Gell-Mann

i~(q) p+8

1 (-8) p-q

(o-~)[~(~)=r~-,
FIG. 5. Pole-term contribution to the Compton amplitude.

~o W. Thirring, Phil. Mag. 41, 1193 (1950);F. Low, Phys. Rev.
96, f.428 (1954); M. Gell-Mann and M. Goldberger, ~bid. 96,
1433 (1954)."R.Ommhs, Nuovo Cimento 8, 316 (1958).
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ImFs+(W') =n

m' ln(W'/m') —W' —W'm' —W'm' —m' (W'+3m')ln(W'/m')
!(g—2) + +!(g-2)

2(Ws —m') 8$'m' 16(W'—m')
—4W'+ W'm' —4W'm' —ms —m' ln(W'/m') 3W'm' —m'

+ nFs-(W') +
4 (W' —m') SW'

—(Ws —ms)r- ——ln(W'/m') 2Ws —3W4m'+2W'm' —m'
+-,(g-2), +!(g-2)

8gj4m2 3 2''m'
—2m'ln(W'/m') 5W'm' —m —m'(W'+7m')ln(W'/m')

+-' —2
(W' —m')' 2W4(W' —m!

—6ws+17W4m'+10W'm4 —Sm'-

32$"4m'

16

.(g )
) 4(W' —m')'

(W' —m')'
+i 2 2

ImFs (W')=n

SW'(W' —m')
.(g )

88"4

m' ln(W'/m') —3W'm'+m'
+s(g—2)

4(W' —m') SW'

ln(W'/m') (W' —m') (—2W +W'm' —m')
+-.'( —2)' +nFs W'

—(W' —m')'-
+nF s+(W')

8$'4m'

-m&(W& —5ms)hg(Ws/ms)
( )

32$'4m' 4(W' —m')'
ms ln(W'/m ) W —3W m' —3W'm +m't

2(W' —m') SW4m'

—ln(W'/m') (W' m') (3W' —m')—
+~(g—2)' +

16
—4W'+ 9W'ms+ 4W'm4 —m'

+s(g—2)
SW4(W' —ms)

(12b)
32$'4

the algebraic computer program RzDUcK."This program performed the necessary traces, substituted the appro-
priate functions of t/I/"' and x for the four-vector invariants and carried out the integration over x. The result is

W' —m' m m' ln(W'/ms) 6W—4+9W m' 5m—4 m' In(W'/m')
— +s(g—2) + +-.(g—2)'

2W' W' 4 (W' —m') SW4 4(Ws —m')
—2W4+ Wsm' —m4 3m' ln (W'/m') —4W' —W'm' —m4+- ynFs+(W') —+8$"' 4(W' —m') 8$'4

In both Eqs. (12a) and. (12b), the coeficient of
Fs+(W') is proportional to (Ws —m')' as W-+ m. Thus,
consistent with dropping terms of ImFs+(W') propor-
tional to (W m')' as W ——+ m, we may replace Fs+(W )
by Fs+(m')—= is(g

—2). Similarly, it would appear that
it is sufficient to replace Fs (W') in Eq. (12a) by
Fs (m'). However, Fs (ms) is infinite. If we solve for
ReFs (Ws) using Kqs. (12b) and (7) and expand it as
8'~ m, we obtain

2D
ReF s (W') .- ——ln((W' —m')/m')

W ~2$

+O(const (W' —m')) (l3)

This singularity comes entirely from the first term in
square brackets in Eq. (12b). Since the singularity is
logarithmic, it is integrable and will not cause further

»A. C. Hearn, Comm. Assoc. Computing Machinery 9, 573
(1966): See also REoUcE User's Manual, Stanford Institute of
Theoretical Physics Report No. ITP-247 (unpublished). Com-
puter time supported by the Stanford Artificial Intelligence
Project through the Advanced Research Project Agency of the
Ofhce of the Secretary of Defense (SD-183).

complications. The contribution to ReFs (W') of all
other terms of Kq. (12b) is finite as W-+m. Thus we
will separate ReFs (W') into two parts: (a) the con-
tribution of the first term in square brackets of Kq.
(12b) and, (b) the contribution of all the other terms.
These two parts will be denoted by ReFs (W') &,&

and
ReFs (Ws)&b, &, respectively, where the subscript i
indicates that a particular term was derived from the
ith term in square brackets of Eq. (12b). For part (a)
we must calculate ReFs (Ws) while for part (b) it is
sufhcient to calculate ReFs (ms). Since our object is
to calculate the n' term of —,'(g—2), it is sufFicient to
insert for ReFs (Ws) in Kq. (12b) only that part we
call part (a); the other part contributes to rs(g —2)
ta order n4 and higher.

The 6rst term in square brackets in each of Kqs.
(12a) and (12b) is exact in perturbation theory. For
these two terms, we use Kq. (7) with its correct upper
limit, ininity. All other terms are not exact, i.e., they
are correct only in their low-energy limit. These terms
diverge when the integration of Kq. (7) is performed and
the integral must be cut off with an upper limit 32m'. In
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Fro. 6. Graph of coeflicients of e'/vr'
and os/s' as a function of the cuto8
parameter ) '.
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m4 m2

+ —(~/4) —
, (14)

4lV4 48"
where"

* —»I1—rl
dy. (15)

o

The limit of Eq. (14) as W-+m is Kq. (13). The
contribution of the remaining terms of Eq. (12b) is
calculated in part analytically and in part numerically.
The second and fourth terms of Eq. (12b) give

every case, however, the divergence is only logarithmic.
Let us now solve for ReFs (W') in order to insert it

into Kq. (12a). The contribution of the f(rst term in
square brackets in Kq. (12b), i.e., part (a), is

ReFs (Ws)(,)

2n m4L f(1—W'/m')+ (W'/m' —1)j
7r (W' —m') '

m'lnL(W' —m')/m'7 m'ln(W /m')

tion of the seventh tenn of Eq. (12b) was computed
numerically using Kq. (14) for ReFs (W'). The result
is shown in Table I. All other terms of Eq. (12b)
contribute to sr (g—2) to order n4 or higher.

%e now turn our attention to the calculation of
Fs+(m')=-', (g—2) from Eq. (12a). Again part of the
calculation can be done analytically while some must
be done numerically. The contribution of the erst
three terms of Kq. (12a) is identical with the result in
DP

I
see their Eq. (31)j. They got Lthe subscripts

indicate which terms of Eq. (12a) give rise to a partic-
ular contribution to sr(g

—2)j
(r a - (3 1

l (g—2) (r, s, s) =——:C(Z—2)—(1»')
I
-+

2() —1))
7 5 (z- 1—-+ +-,'(g —2)'—1»s—1+—. (17)
4 4X' 2w

The fourth and fifth terms contribute

(r 7X'—1 2X +1
(g s2) (4

—") s.(g=2)—
rr SXs 4 (Xs—1)

Q 3
ReFs (m')(bs4) = s (g , ,2)——

~ 4&2 Z~ —i
(r 1 1( l('—]) 1 ps+1

+-,'(g —2)'——-I Z' —1—
ys j ink. '

( 1 3)-——,'+ (ink')
I

——I, (16)(()'—1)s 4)

where Fs+(ms) has been replaced by —',(g—2) and the
integral in Eq. (7) hasbeen cutoff at Xsms. The contribu-

+ K. Mitchell, Phil. Mag. 40, 351 (1949).

The sixth term contributes only to order o.4. The
contribution of the seventh term is calculated in two
parts: (a) that associated with the logarithmically
divergent part of ReFs (W'), i.e., Eq. (14); and

(b) that associated with the nondivergent part of
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TABLE I. Table of values of (2'2/n2)Ret2 (7&&2) &b, 7) as a
function of the cutoff parameter )P.

TAsr, z II. Tables of values of (7r2/n2)24(g —2) &7,&
as a

function of the cutoff parameter ) '.

2.0
3.0
3.7
3.8
39
4.0
4.1
4.2
43

4.6

(2'/n')ReP2 (77&') &b, 7)

—0.4766—0.4517—0.4199—0.4154—0.4109—0.4065—0.4021—0.3978—0.3935—0.3893—0.3851—0.3811

2.0
3.0
3.7
3.8
3.9
4.0
4.1
4.2
43
44
4.5
4.6

(~ /n')-', (g—2) &7.&

—0.0159—0.0133—0.0099—0.0095—0.0090—0.0086—0.0081—0.0077—0.0073—0.0068—0.0064—0.0060

ReF2 (W2), i.e., Eq. (16) and Table I. The former was
calculated numerically from Eqs. (7) and (14) and the
seventh term of Eq. (12a). The results are shown in
Table II. For the latter, use is made of the fact that
ReF2 (W') may be replaced by the nondivergent part
of ReF2 (m'). This is then a constant with respect to
the integration over W" in Eq. (7). Thus, for this part,
we get
—', (g—2) (7b)

=—LReF2 (m') &b, 2,4)+ReF2 (m') &b 7))

xsm2 dW&2 — m2 ln(W12/m2) 3W&2m2 m4-

X +W"—m' 4 (W"—m') 8W'4

=—LReF2 (m')(b, 2 4&+ReF2 (m')(b, 7)j

1nX'

The functions A () 2) and B(X2) are plotted in Fig. 6.
We choose the cutoff P' to approximately reproduce
the perturbation calculation for the n' term, i.e.,
)'=4. Using the same cutoff for the n' term, we estimate
the coeKcient of ns/7rs to be =+0.13.This is very close
to the DP result of =+0.15. They obtained a cutoff
of )&2=6 which reproduced —0.328n2/7r2 and predicted
+0.17ns/7r'.

1
x — —. (»)

4(X2—1) 8)&2 8

The eighth term of Eq. (12a) is dropped because it is
of order (W' —m')' as W~ m. The ninth term of Eq.
(12a) is not included in this calculation since it first
contributes to —',(g—2) to order n4.

The estimate for the ns term of -'2(g —2) is then
obtained by inserting the value of —2'(g —2) "accurate"
to order n', i.e., 2(g —2)=n/27r —0.328n2/7r2, into the
right-hand side of Eqs. (17)—(19). The coefficients of
n/7r, n2/7r2, and ns/7rs are then calculated as functions
of )&2 from the sum of Eqs. (17)—(19) and the function
tabulated in Table II. We then get an estimate for
-'2(g —2) of the form

Since we retained a/t terms of order (W' —m')' in
ImF2+(W'), we would have expected a lower cutoff
than DP if the assumption that the low-energy region
dominated the dispersion integral is correct. This is
indeed the case.

The one-electron, two-photon intermediate states
such as in Fig. 4 have a threshold behavior such that
their contribution to ImF2+(W') is of order (W' —m')'
as t/t/' —+re. This is due to the fact that all virtual
photon radiative corrections to the Compton amplitude
have a threshold behavior of" &02(—e2/m) e(l) e(q),
where ~= 8'—m. Thus all one-electron, n-photon
intermediate states can be ignored. Intermediate states
of n electrons and any number of photons have a
threshold of n'm' (n is odd). Thus for n) 3, the thresh-
old is greater than or equal to 9m' which is higher than
our cutoff on the dispersion integral, Eq. (7), and
therefore these states can also be ignored.

III. CONCLUSION

An improved estimate for the sixth-order contribution
to the electron's anomalous magnetic moment has been
given. This estimate is

0!
—2, (g—2) =——0.328—+0.13—.

2' Ã2 7r3

The fact that this estimate differs little from the result
of DP (=+0 15ns/7rs) and . the fact that by including
all terms of order (W' —m')', the cutoff necessary to
reproduce the fourth-order result (—0.328os/7r') was
smaller than the cutoff of DP, gives one a certain
degree of confidence in the estimate. In addition, the
success of DP in calculating the magnetic moments of
the nucleons by a similar method gives one confidence
in the assumption that the 1ow-energy region is the
dominant contributor to the magnetic moment.
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