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The distribution of vortices in a rotating cylinder or annulus filled with helium II is studied by two distinct
methods. In the continuum approximation, a vortex-free strip of width =1.4n "occurs near each wall,
where n is the vortex density. Exact computer calculations show that the vortices in a cylinder tend to form
concentric circles about the origin. Only some of these patterns display triangular symmetry. In consequence,
any experiment relying on the spatial periodicity of the vortex array is unlikely to give consistent results.

the free energy J =E—NQ, "where E and N are the
energy and angular momentum of the liquid. Since the
final expressions are independent of the Quid density p,
we shall set p, =p[T=O'j in describing helium II.
Furthermore, all calculations refer to a unit length
along the axis of rotation. In the limit of many vortices,
the free energy is given approximately as

I. INTRODUCTION

HE Onsager-Feynman' model of rotating helium
II predicts that the superQuid contains an array

of rectilinear vortices, each with circulation It=It/rtt
= &0 3 cm' sec '. In the continuum approximation, the
vortices are uniformly distributed' with a density e
= 2Q/tt, where Q is the angular velocity of the container.
Extensions of the continuum approximation have sug-
gested the possibility of vortex-free regions, both near
the walls' ' and about the central vortex. ' Previous
studies have neglected the discrete nature of the vortex
array, except for infinite systems, where the vortices
form a triangular lattice. ' "The present paper reports
a two-dimensional calculation for finite systems, includ-
ing the effect of image vortices. Section II treats the
continuum approximation, while the lattice structure is
discussed in Sec. III.

F= F,)+AN(ptts/47r) ln(b/a),

where A is the area occupied by the vortices with
density n, a is the effective core radius, and b is a length
comparable with the mean vortex spacing s—=n 'I'. The
first term F,& is the free energy of a classical liquid
whose velocity field is equal to the mean velocity 8 of
the vortex system averaged over regions containing
many vortices. The second term represents the self-
energy of the vortices and vanishes in the classical
limit (tt —+ 0, rttc= const). In previous papers, ' "one of
us has criticized the form of Eq. (1) as unproved, but
Tkachenko' has constructed a rigorous derivation for
an infinite triangular lattice, where b=0.27s Lbecause
ln(0. 27) = —4.15/ )s.rFurthermore, b seems to be very
insensitive to the precise lattice structure, so that Kq.
(1) is presumably generally valid in the limit of high
vortex density.

As a first application of this continuum approxima-
tion, consider the vortex-free region near the wall of a
rotating cylinder of radius R. Ke assume that the
vortices are confined to a circle of radius R,&R.Since the
vortices must move with the velocity Q & r,"the vortex
density is tv= 2Q/tt for r&R,. It follows that the mean
velocity is 6(r) =Qr for r&R, and 0(r) =QR,'/r for
R,&r&R. The calculation of F is straightforward, and
the equilibrium condition dF/dR, =0 yields

II. CONTINUUM APPROXIMATION

An equilibrium distribution of vortices in a rotating
container necessarily represents a stationary value of
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In obtaining Eq. (2), we assume s«R and use the ex-
pansion in(1+@)=x——,'x'. If E denotes the actual
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number of vortices and Eo (=2s.R'Q/~) the number
that wouM 611 the cylinder at the same density, Eq.
(2) predicts

X=1Vo{1—[2 ln(b/a) j'lsEo 'Is)
(3)=Ps{1—51Vo 'ls)

as So—+~, which agrees with Hall' s' expression, but
divers from Khalatnikov's by a numerical factor.

Equation (1) also applies to a large number of vortices
in a rotating annulus (inner radius Rt, outer radius Rs,
~&&Rt, s((d—=Rs—Rt). We assume a circulation I' about
the inner cylinder and a vortex-free region R&&r&R;,
surrounded by vortices at the equilibrium density e
= 2Q/». The mean velocity is 8(r) = I'/2sr for R&& r &R,,
and 8(r)= (I'/2sr)+Q(r' —R;s)/r for R;&r&Rs Equ.a-
tion (1) must now be minimized with respect to both
parameters I' and R;. The condition BP/BR; =0 implies

(R;/s)'=~ '{(I'/s)+-', »(b/a)Dn(R /R;) J '}, (4a)

while BF/BI'= 0 implies

I'=2s.gin(Rs/Rt)$ '

X {QR'L-'+in(Rs/R;)g —-,'QRP) (4b)

A combination of Eqs. (4a) and (4b) with the condition
s((R& eventually yields

(R;—Rt)/s= P(2s.) ' ln(b/a) j'Is+0(s/Rt), (4c)

r=2 QR;s{1+O(ss/Rts) j. (4d)

Equation (4d) shows that the mean velocity v(r) is
equal to Dr for r&R;, as it must be to avoid frictional
drag from the normal component. Our results agree
with calculation 1 of Ref. 4, but disagree with calcula-
tion 2 of the same reference and with Ref. 5.

Near the outer wall of the annulus, the vortex-free
region must be the same as that in a cylinder. Com-
parison of Eqs. (2) and (4c) then shows an identical
vortex-free region at each side of the annulus and at
the edge of the cylinder.

If I' is set equal to x, Eq. (4a) may also be used to
study the vortex-free region around the central vortex
in a cylinder. In this case, we find R;=0.9s, which is
comparable with the nearest-neighbor distance 1.1s in a
triangular lattice. This result means that there is no
vortex-free region, in conRict with the conclusion of
Ref. 7.

The source of the disagreement with previous work4 '
is easily found. In these calculations, 4 the mean velocity
was allowed to be discontinuous at r=R or r=R;.
Such a velocity pattern can be produced only by an
additional ring of vortices situated at the discontinuity,
but the energy of these vortices t (ps'/4s) ln(b/a) per
vortexj was apparently omitted. ' Note that our calcula-
tions increase the already considerable discrepancy be-
tween theory and Tsakadze's experiment. "

~~ D. S. Tsakadze, Zh. Eksperim. i Teor. Fiz. 46, 505 (1964)
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The derivation of Eq. (4) assumes both s«Rt and
s&&d'—=R2—R», but the second restriction does not ap-
pear essential. If the circulation F achieves its equi-
librium value, the critical angular velocity 00 for the
appearance of the first vortex in a narrow annulus' is
very nearly equal to the angular velocity 0&, at which
a row of vortices with spacing s appears in the center
of the channel. Since there is a vortex-free region of
width -', d on each side of the row, 0& may be estimated
from Eqs. (2) or (4c) to be

Qt ——(s/s. d') ln (b/a) . (5)
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Equation (5) reproduces the exact formula (Eq. (54)
of Ref. 14j with logarithmic accuracy, so that the
continuum approximation correctly describes both a
single row of vortices and many rows. Thus it probably
also remains valid for aB intermediate vortex densities
(s&sd&&Rt). In particular, if Qs denotes the critical
angular velocity for the appearance of two rows of
vortices a distance s apart, an elementary calculation
yields

Qs/Qt (2X 1.4+1)'(2X1.4) '= 1.85.

This estimate agrees well with the recent experimental
value of Q"/Q'=1. 9 of Bendt and Donnelly "

In contrast to the discussion given by Hall, ' Hess, "
and Andronikashvili and Mamaladze, '~ we do not
ascribe the vortex-free regions to the presence of images,
which were not explicitly included in any of the above
calculations. Instead, the following explanation appears
more reasonable: The equilibrium distribution of vor-
tices represents a compromise between two opposing
effects. In an attempt to minimize its free energy, the
rotating helium II imitates solid-body rotation as closely
as possible; however, the formation of each vortex re-
quires a certain minimum energy. The omission of
vortices near the center of a cylinder greatly alters the
mean velocity, which renders such a configuration un-
favorable. On the other hand, a vortex-free region near
the outer wall reduces the free energy, while the solid-
body rotation is essentially unaGected. In an annulus,
vortices may also be omitted near the inner cylinder,
provided that the change in the mean velocity is com-
pensated by an increased circulation I'. These argu-
ments are independent of the shape of the boundaries,
and we therefore postulate the following: In rotating
helium II, a vortex-free strip of width L(2s) ' ln(b/a) )'~'
s is formed near all boundaries whose radius of curvature
is large compared with the mean vortex spacing s; the
equilibrium circulation about each inner boundary is2', where A is the sum of the area enclosed by the
boundary and the area of the vortex-free region.
Throughout the occupied region, the vortex density is
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e= 20/~. This postulate contains the lowest-order quan-
tum corrections to the classical results of Ref. 2.

III. VORTEX LATTICES

The precise arrangement of vortices in the occupied
regions cannot be determined in the continuum ap-
proximation. Since this question is of interest, we have
computed numerically the free energy of various equi-
librium states in a rotating cylinder. Let r; be the posi-
tion of the jth vortex. In equilibrium, the Quid velocity
at r, produced by the other vortices must be Q x r;,"
because this is the self-consistent velocity of the jth
vortex. Such an equilibrium configuration may be ob-
tained from a suitable initial distribution of vortices by
an iteration procedure analogous to the Gauss-Seidel
single-step algorithm for linear problems:

Here r;= (x;,y, ) is the new site of the jth vortex, and
v, = (v„,v») is the velocity produced at the old site by
all the other vortices. The kth vortex contributes a
velocity field v(r)=x x (r—rI,)/27r~ r—rz~'. For each
vortex, the effect of the solid boundary at r=E. is
incorporated by introducing an image vortex with
circulation —x outside the cylinder at the position
r, (R/r;)'. The velocity v, is calculated by summing the
velocity due to all other real vortices and all image
vortices. In most cases, this iteration process con-
verged, but the convergence was very slow for large
vortex numbers.

These calculations have been carried out with up to
61 vortices. The free energy is calculated by numerical
summation instead of from Eq. (1); the kinetic energy
Z is taken from Eq. (29) of Ref. 14, with R/a=10',
while the angular momentum of the jth vortex is

,'p~(R' rP—) '3 Fo—r the. small number of vortices con-
sidered here, the images scarcely aBect the kinetic
energy. The most striking result is that the vortices
tend to form concentric circles about the center of the
cylinder. Two typical equilibrium configurations are
shown in Fig. 1, one with nearly perfect triangular

symmetry and the other with no particular symmetry.
In many cases, as in Fig. 1, a given number of vortices
has more than one equilibrium configuration for a fixed
angular velocity. Although it is hard to make a reliable
estimate of the energy barrier separating these states,
the diBerence between their free energy is small com-
pared with the energy in(b/a) (in units of p~'/4~)
necessary to create a single vortex line. This means
that the vortex array in helium should not contain
large holes, in contrast to the observed Aux-line lattice
in type-II superconductors. ' We infer from our calcula-
tions that a vortex array in rotating helium II can occur
in a variety of states, some displaying triangular struc-
ture, others containing lattice defects that destroy the
periodicity. For this reason, any experimental search
for vortices in rotating helium relying on the presence
of a perfect lattice (for example, Bragg scattering) is

unlikely to succeed.
These numerical calculations provide a check on the

accuracy of the vortex-free regions predicted in the
continuum approximation (s/R ~ 0). H R, is taken as
the distance of the outermost vortex from the center,
we find

(R R,)/s= 2—.1 for s/R= 0.2,

(R—R,)/s= 1.8 for s/R=0. 1,
in qualitative agreement with Eq. (2). Furthermore,
Fig. 1 is also typical in exhibiting a sharp boundary at
8 . Thus the first derivative of the mean velocity can
be discontinuous, which contradicts an assertion in
Refs. 5 and 6.

It is now interesting to examine the stability of these
configurations with respect to small two-dimensional
perturbations r;~ r,+u;. Since the quantum-mechani-
cal and thermal oscillations are small, "we may use the
harmonic approximation and neglect higher-order terms
in u. For Ã vortices, this procedure yields a real eigen-
value problem of dimension 2E. The finite geometry
precludes the use of plane waves to decouple the equa-
tions of motion; in the special case of sixfold rotational
symmetry, however, introduction of Fourier compo-
nents in the polar angle" leads to a considerable sim-
plification. If the small displacement is written as
u=nr+Pe, where r and 0 are unit vectors in polar
coordinates, then the substitution

~ ~ ~ 0 reduces the eigenvalue problem to one involving a
complex non-Hermitian matrix of dimension 3X."The
matrix elements were calculated analytically, and the
eigenvalues were obtained by a computer algorithm.
For the favored configurations, the results show that

FIG. 1. Two stable conhgurations of 37 vortices with s/R =0.2.
The left (right) arrangement was obtained by starting from a
triangular (square) lattice and has a free energy of —781.32
(—781.21) in units of p~'/4m.

"U. Essmann and H. Trauble, Phys. Letters 24A, 526 (1967);
N. V. Sarma, ibid. 2SA, 315 (1967)."T. H. Havelock, Phil. Mag. 11, 617 (1931). In Eq. (25), a
term 4n(p" —1) should be added to the expression for Q.
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TABLE I. The logical relation between a local minimum of the free energy 8—3fQ and the stability of a vortex system against small
perturbations. The influence of mutual friction with the normal component is calculated as in Refs. 12 and 13.The shorter arrow means
that the relation is assumed but unproved.

Without image vortices

(Energy minimum) ~ (Stability with friction)+~ (Stability without friction)

With image vortices

(Energy minimum) e. (Stability with friction) ~ (Stability without friction)

the image vortices have only a small inhuence on the
eigenfrequencies. In practice, it is dificult to obtain a
clear distinction between stable and unstable configura-
tions. Some of the eigenvalues are very sensitive to
unavoidable inaccuracies iri the vortex positions, and
even stable arrangements exhibit small imaginary (un-
stable) frequencies.

Fortunately, these vortex systems can be proved
stable without recourse to eigenvalue calculations, be-
cause the iteration procedure of Eq. (6) necessarily
yields a stable configuration. This result is easily proved
with Hess's Hamiltonian formalism. " It is convenient
to employ the rotating frame of reference, and we shall
use capital letters to denote the corresponding com-
ponents of position and velocity. Each vortex satisfies
the following Hamiltonian equations:

X;=OH/8Y, , Y;= r7H/BX, , — (8)

where H =F/p((. If X,(") and Y", ") denote the coordi-
nates after e iteration steps, Eq. (6) may be rewritten as

X'"+"—X'")=0 'V =—0 'c)H/c)X'")
W2 2 7

(9)
Y (m+1) Y .(n) Q

—1Y . Q
—lgH/g Y .(n)

which shows that each vortex is shifted in the direction
of the negative gradient of free energy. If the iteration
converges, the resulting configuration must be in a local
minimum of free energy. Such a configuration is guar-
anteed to be stable: Any small displacement would
produce dissipation from mutual friction with the nor-
mal component in helium II, but this is impossible at
an energy minimum; Eq. (6) therefore leads to a stable
configuration.

It is curious that the converse statement is untrue,
at least if mutual friction is neglected: As shown below,
there exist stable vortex configurations that cannot be
reached by the iterative procedure, no matter how the
initial configuration is chosen. This result clarifies the
relation between a system of vortices and the corre-
sponding Newtonian system in which Newton's second
law replaces the "Magnus force" LEq. (8))."Stability
"A. L. Fetter and P. C. Hohenberg, Phys. Rev. 159, 330 (1967).

in Newtonian dynamics necessarily implies a local
minimum in the free energy, and it is tempting to
impose the same condition on vortex dynamics. Indeed,
in the absence of boundaries, any stable vortex system
(finite or infinite) can be proved to occupy a local
minimum. Nevertheless, the inclusion of images renders
this assertion incorrect, as shown by the following simple
example. 2I Consider three vortices symmetrically ar-
ranged on a circle of radius r in a cylinder of radius R.
The stability of this configuration can be investigated
analytically. "Without using a computer, it is easy to
demonstrate that both the vortex system and the corre-
sponding Newtonian system are unstable for r/R = 0.57,
both are stable for r/R=0. 55, but for r/R=0. 56, the
vortex system is stable, while the Newtonian system is
unstable. As additional confirmation, the iteration based
on Eq. (6) diverged for r/R=0. 56.

In the absence of mutual friction, we conclude that a
stable vortex system need not occupy a local minimum
of the free energy. Instead, the system presumably lies
at a saddle point, where vortex dynamics confines the
motion to stable regions, even though Newtonian dy-
namics would lead to an instability. Note, however,
that an arbitrarily small frictional force probably
renders a saddle point unstable in vortex dynamics,
although an explicit proof has not been constructed.
The relation between the stability of various vortex
systems is shown schematically in Table I. For all
practical situations (for example, T&0), we expect that
an energy minimum is necessary as well as sufhcient
for a stable vortex array.
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"A similar situation occurs for a single vortex in the center of
a stationary cylinder, but we are interested in systems with
many vortices.


