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The statistical physics of rotating fluids is discussed with particular emphasis on the rules for taking the
thermodynamic limit of in6nite size. The thermodynamics of a rotating ideal Bose liquid is explicitly
worked out. It is found that the rotating ideal Bose liquid undergoes a Bose-Einstein condensation; however,
the 6rst-order phase transitions predicted by Blatt and Sutler are not present when the thermodynamic
limit is properly taken.

I. INTRODUCTION
' 'N recent years, there has been a great deal of experi-

~ mental and theoretical work done on rotating
quantum liquids. ' The simplest model available is the
ideal quantum liquid, where the interaction between
particles vanishes, but where quantum statistics are
fully taken into account. In spite of its simplicity, there
is in the literature some confusion about the properties
of this model because the rules for taking the thermo-
dynamic limit of infinite size have been incorrectly
stated. ' The purpose of this paper is (i) to establish the
rules for taking the thermodynamic limit of infinite size
in rotating systems, and (ii) to explicitly calculate the
thermodynamic properties of the rotating ideal Bose
liquid.

2. STATISTICAL THERMODYNAMICS

Consider a system of E particles in a cylindrical con-
tainer of volume V and radius E. From symmetry con-
siderations it is evident that the angular momentum
about the cylinder axis is a good quantum number. If F
is the degeneracy of eigenstates with sharp values for
the energy E and angular momentum L, then the en-

tropy associated with an equilibrium state of rotation
is given by

S=k lnI'(E, L, V,N, R), (1)

where k is Boltzman's constant. In principle, Eq. (1)
contains complete information about the thermo-
dynamic properties of the system. The differential of
Eq. (1) with R held constant is the fundamental thermo-
dynamic relation

dE= TdS+(odL Pd V+pdE. — (2)

For a large class of systems (e.g. , classical fluids and
rigid bodies), the thermal parameter &u defined in Eq. (2)
represents the angular velocity of rigid-body rotation.
For quantum fluids, this is not necessarily so. A discus-
sion of this important point may be found in Appendix
A. It is physically evident that the parameters 5, L, V,
E, and E scale extensively if the radius 8 is fixed. We
can therefore supplement the thermodynamic relation

' A comprehensive review of the literature on this subject may
be found in E. L. Andronikashvili and Vu. G. Mamaladze, Rev.
Mod. Phys. 38, 567 (1967).

2 J. M. Blatt and S. T. Butler, Phys. Rev. 100, 476 (1955).
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(2) with a scaling law

nE= E(nS,nL, n V,nlV, R)

and its associated Euler equation

(3)

E= TS+oiL—PV+pcV. (4)

The differential of Eq. (4) can be combined with Eq. (2)
to yield the Gibbs-Duhem equation for rotating systems

dp = sdT+vdP—/d&o, — (5)

where s, v, and l represent, respectively, the entropy,
volume, and angular momentum per particle. The
Gibbs-Duhem equation is a convenient starting point
for thermodynamic considerations (e.g. , the thermo-
dynamics of phase transitions).

Note that rotating Quids have inhomogeneous equi-
librium states. For example, the thermodynamic density
S/V is the spatial average of an inhomogeneous density
function n(r) which varies with the distance from the
cylinder axis. Similarly, the pressure P defined in Eq. (2)
is the surface average of the stresses on the ends of the
cylinder. It is a property of inhomogeneous systems that
the thermodynamic equations of state will often depend
on the geometric shape of the system. For example, the
angular momentum of a Quid in a cylindrical container
will differ from the angular momentum of a Quid in a
spherical container even if S, V, T, and co are identical
for both systems. If co=0, then the system is homo-
geneous, and the thermodynamic parameters depend
on E, V, and T, but not on the details of the geometric
shape of the container. If co&0, then the system is in-
homogeneous, and each geometry is a separate problem.
In this paper, the cylindrical geometry is chosen for two
reasons: (i) It is the geometry commonly used by
experimentalists; and (ii) the cylindrical geometry has
a simple scaling law LEq. (3)) and a correspondingly
simple associated Gibbs-Duhem equation LEq. (5)j,
which cannot be easily generalized to other geometries,
and which simplify the thermodynamics of rotating
systems.

This discussion has been based on the microcanonical
ensemble where the energy and the angular momentum
have sharp values. Concrete calculations are more com-
monly carried out in the canonical ensemble where the
energy and the angular momentum are exponentially
distributed. The rules of statistical physics for changing
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ensembles yield the canonical density matrix'

p= Q))(
' expL —(H o)L—)//kT],

where the partition function Q)) is determined by
normalizing the trace of the density matrix to unity,

Q))t= tr exp) —P(H —(dL)], P= (kT) '.
Once the partition function is known, the free energy
can be calculated from

H (dL—= Ikt(r)(k —a)l)lk(r)d'r, (10)

where h and l are the diRerential operators

3. IDEAL BOSE LIQUID

For an ideal Bose liquid, the operator (H—taL) can
be written in the second quantized form

F= kT lnQ—)((——E—TS (dL, — (g)

and the fundamental thermodynamic relation LEq. (2)]
becomes

dF = SdT L—d(d P—d V+tt—dN.

and

k= —(ks/Zm) Vs

The eigenfunctions

(l= —itt~ x—y—(.
5 ay ax)

(12)

It is well known that the various ensembles are
equivalent only in the limit of large systems. Mathe-
matically, we let V-+ co and N-+ ao, with N/V re
maining finite. A superficial examination of the scaling
law LEq. (3)]might lead one to believe that the radius
R should also remain 6nite as V —+ ~.This "long-tube"
thermodynamic limit has been suggested by Blatt and
Butler. This limiting procedure is certainly incorrect,
because the ratio of the surface area to the volume re-
mains finite as V~ . The reason why this is un-
acceptable (for the special case a)=0) has been discussed

by Fisher. In particular, the ideal Bose liquid will not
undergo a Bose-Einstein condensation in the "long-
tube" thermodynamic limit even when co=0,' whereas
it is well known that Bose-Einstein condensation does
take place when the thermodynamic limit is properly
taken. ' The proper procedure is to allow E.~ ~, with
the ratio 1(."/V remaining finite. Having established that
E must grow ever larger, a new problem presents itself.
For 6nite ~, the particles near the surface of the con-
tainer will have a velocity of order coR.~ The kinetic
energy per particle will therefore diverge unless so ~ 0
in such a way that orR. is kept finite. This added condi-
tion on co completes the rules for taking the thermo-
dynamic limit of in6nite size for rotating systems in the
canonical ensemble. '

(k 1)ll'( )=~A'( ) (13)

are a convenient set of basis functions for the
occupation-number representation. It follows from
Eqs. (10) and (13) that

H —(dL=Q 8;ttt;E;,

Qt)t= p' exp( —p p n,E';),
(ngJ

(15)

where the prime on the summation restricts the total
occupation number P n, to the value N. It is convenient
to sum over the occupation number mp of the lowest
eigenvalue Ep after summing over all of the e;, with
j/0. Therefore we write

Q))j'= Q K(N —n()) exp( —pn()E()),

with
K(N)=Z' I(—PZ t»).

jap
(17)

where a;~ and a; are, respectively, the creation and
destruction operators for the normalized one-particle
state P, (r). The partition function will then have the
form

'It is often convenient to use H'=H —oui. as an effective
Hamiltonian in the rotational canonical ensemble, just as it is
often convenient to use H'=H —pX as an effective Hamiltonian
in the grand canonical ensemble. There is no deep physical
significance in this fact. In particular, in deriving the rotational
canonical ensemble, no effective Hamiltonians for rotating
coordinate systems ever need be mentioned.' M. E. Fisher, Arch. Ratl. Mech. Anal. 17, 377 (19o4).

'The reason that the "long-tube" thermodynamic limit does
not produce a Bose-Einstein condensation is mathematically
similar to the reason that a one-dimensional ideal Bose liquid does
not produce a Bose-Einstein condensation.

'Most statistical-mechanics textbooks discuss Bose-Einstein
condensation. A particularly clear discussion may be found in
K. Huang, Statistical ttf echastics Uohn Wiley 8z Sons, Inc. ,
New York, 1963).

'These considerations will be especially clear if the special
example of rigid-body rotation is kept in mind.

8 If an ensemble where L is microcanonically distributed is used,
then the rule becomes I —+ ~, with (NE) 'L kept finite.

The generating function for K(N) is defined by

+(s)=P K(N)r~.

If %(s) is known, then the coefficient K(N) may be
found by doing a contour integral

e(x)=(2 ~) '$@(z)s &"~"ss

1n@(s)= —Q ln(1 —se-sist), (20)

along a closed curve surrounding the origin. It is easily
seen from Eqs. (17) and (18) that
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which may be expanded in powers of s:

in+(s) =P s—'s'a(sP),

where

(21)

cylindrical coordinates,

( '—)'=( '—)'+p'+p" p—p' o(v —v') ( )

Therefore it follows from Eqs. (29) and (31) that

a(t) =g exp( —E,t). (22) G= 60 exp', (33)

The crux of the problem is to evaluate the sum on the
right-hand side of Eq. (22) in the thermodynamic limit.
This can be carried out by the method of Green's
functions.

The retarded Green's function for the operator
(h—col) may be defined as

g(r, r', t) =8(t) P exp( —E;t)P;(r)P,*(r'), (23)

where 8(t) is unity if t&0, and zero if t(0. Once g is
known, then a(t) can be found by integration:

a(t) = g(r, r, t)d'r —exp( —Ept).

where

y=(mpp'/Art)icos(p —y' tA(o—t) cos—(rp q')—j. (34)

In particular,

G(r r t) =8(t)(m/2nA' t)'". exp(o p'/R') (35)

o=(mR'/A't)/cosh(Acct) —1j. (36)

Combining Eqs. (24), (30), and (35), we find that
as V —+~,

V 'a(t) ~ (m/2n. A't)'"(1/o)(e' —1)—V 'e Ep'. (37)

At this point, it is crucial that ~ —+ 0 and E—+ 0, with
coE finite. It is shown in Appendix 3 that Eo will remain
finite in this limit; therefore

limo = -'mco282t, (3S)

It follows from the completeness of the eigenfunctions
'Eq. (13)j and the definition ~Eq. (23)] that the re-
tarded Green's function satisfies

and

limV 'a(t) =(m/2' A' t)'"(2/maPR't)(e""'~"" 1). (39)—

f(8/Bt)+h —coljg(r, r', t) =8(t)8(r—r').
If we let

(25) X(s) =limV 'in&(s), (40)

In order to solve this equation directly, we look for a
solution of the form

then it follows from Eqs. (21) and (39) that

g(r, r', t) =exp(~tl)gp(r, r', t). (26) x(s) =(~'()-'2 s-'""("-1)",
8=1

Since Ph, lj=0, gp is the retarded Green's function of
the diGusion equation

where
X=(2mA'/mkT)'"

27
is the thermal wavelength, and

(42)
'(8/Bt)+hjgp(r, r', t) =b(t)8(r r'). —

In the limit of large volume,

Gp(r, r', t) = lim gp(r, r', t),
p-moo

it is well known' that the solution of Eq. (27) is

$=-'Pmo)'R' (43)

The explicit expression for X(s) maybe used in the usual
formalism of statistical physics to deduce the thermo-
dynamic equations of state.

'm ~'t'
Go(r, r', t) =8(t)~

~

exp
2 Ast

—m(r —r')'-
(29)

2 fi2t

4. THERMODYNAMIC EQUATIONS OP STATE

The free energy per particle

Furthermore, if we let f= kTlimlV 'lnQ"— (44)

then

G(r,r', t) = lim g(r, r', t), (30) as a function of n, co, and T contains complete informa-
tion about the thermodynamic properties of the system
If Q(N, np) is defined as

G(r, r', t) =exp(rAl)Gp(r, r', t). (31)

The exponential operator in the above equation is most
easily examined if the position r is expressed in cylin-
dricalcoordinates(p, y,s). The operator exp(cotl) replaces
the real angle y with the complex angle q —i7i~t. In

Q(E,np) =E(Ã—np) exp( —PnpEp),

then it follows from Eq. (16) that

In max Q(E,np) &lnQN,

lnQ"&in' max Q(1V,np).

(45)

(46a)

(46b)

R. Kubo, Statjstical3fechaoics(North-Holland Publishing Co.,
Amsterdam, 1965), p. j.78. The above inequalities enable one to approximate the
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partition function by the largest term in the sum
LEq. (16)]. The error made in the free energy per
particle will be of order S ' lnÃ, which vanishes in the
limit E~ ~. Therefore we may write the free energy
per particle as

where

f= min f(a),
0& a(l (47)

f(a) =—kT limE —' lnQ(E, aE). (48)

The behavior of Q(E,tto) in the thermodynamic limit
may be found from Eqs. (19), (40), and (45):

ol
C'(tt, a,f') =0,

(1- )=f~'(f).

(52)

(53)

It can be directly checked from Eq. (41) that the above
equation has a solution if tt(1 —a) is less than the critical
density

n, (to, T) = ()tsar)
—' Q s—('/'&(1 —e-'f).

s=l
(54)

Furthermore, 4 "(tt,a,|))0, which shows that f is at a
minimum of C along the real axis. Therefore Eq. (49)
may be evaluated by the method of "saddle-point"
integration. '0 In particular,

1nQ(E, tts) = V4(E/V, no/E, f')+O(ln V), (55)

which, together with Eqs. (48) and (50), implies that

f(a) = kTL(1—) lnt —a(—tt '&(P)]. (56)

The parameter f may be eliminated via Eq. (53).
Physically, f(a) represents the free energy per particle
associated with a fraction 0, of the particles in the Bose
condensate P()(r). The actual fraction of particles in the

' The method of "saddle-point" integration (also known as the
method of "steepest descents") is discussed in M. M. Morse and
H. Feshbach )Metho(ts of M(tthemotica/ Physics (McGraw-Hill
Book Company, Inc. , New York, 1953), Vol. I, p. 440$. The
application of this method in statistical physics is discussed in
most standard textbooks Le.g., K. Huang (Ref. 6)g.

Q(N, ss) = (2er') 'g espVC(N/V, er/N, s)r(s, (49)

where
C (tt,a,s) =X(s)—tt(1 —a) lns+na( .(50)

In deriving Eq. (50) we have used the result (proved in
Appendix B) that

limPEp ————,')/lm(o' R'=——$.

Consider the analytic properties of C (tt,a,s) as a func-
tion of z for 6xed values of n and o.. Along the positive
real s axis, X(s) is monotonically increasing, while
—N(1 —a) lnz is monotonically decreasing. Therefore
we expect C (tt,a,s) to pass through a minimum for some
value s=f on the real axis. A necessary condition on t
is that

condensate will be, according to Eq. (47), the fraction
eo which minimizes the free energy per particle. There
are two regions (i.e., phases) of interest. (i) If the density
is less than the critical density LEq. (54)], then as=0,
and there is no Bose-Einstein condensation. The free
energy per particle is obtained from the parametric
equations

(57a)f= kT(lnf' —tt 'x(f)},
=f~'(f). (57b)

(ii) If the density is greater than the critical density,
then a()= (I I,)/—I, and the free energy per particle is
given by

(58)f= —kTfg+tt 'X(e—t)}.
All of the thermodynamic equations of state for the

two phases follow from Eqs. (41), (57), and (58). A
useful set of functions for describing the thermodynamic
properties is

gs(s)=Q s ss*.
g~l

(59)

A partial list of important thermodynamic equations of
state will be given below. For each equation, the upper
expression refers to the normal phase (tt(tt, ), and the
lower one refers to the condensation region (N&N, ):
0.0= G (60a)

=1—( )~'k) 'Lg / (1)—g / ( ')],
~I'= () '~)-'h». (e«)- gr/. (1)]

= (k'k) 'Lg7/s(1) —gr/s(e ')],
ts=kT in''

(60b)

(6»)
(61b)

(62a)

(62b)

I= (~R'~/k'I&') Lgsls(l e') k gris(f")—+gris(f)] (63a)

=tttRs(o(ap+(Xslp) '
X P$gs/s(1) g7/s(1)+g7/2(e f)]}. (63b)

Other thermal equations of state can be derived from
Eqs. (61) and (62) by eliminating the parameter f' and
using the Gibbs-Duhem relation LEq. (5)]. Note that
no qualitatively new phase transitions (e.g. , the first-
order phase transitions of Blatt and Butler') arise when
the ideal Bose liquid is set into rotational motion. There
will of course be quantitative changes in the thermal
properties of the system. For example, if the container
has a low angular velocity, then the fraction of particles
in the Bose condensate has the temperature dependence

T) 1 (T/T )'/' (st~ tt )&&1) (64

In the high angular velocity region, the exponent
changes:

a()(T)= 1—(T/T, )'" (tt) tt, &))I) (65)

but the curve is qualitatively similar. Further quanti-
tative details are left for the reader to derive for himself.
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S. CONCLUSIONS

We shall conclude this paper with a brief physical
description of the particle and current density that is
present when the ideal Bose gas is in rotational thermal
equilibrium. The mathematical details are discussed in
Appendix C. If the average density of the system is less
than the critical density, so that there is no Bose-
Einstein condensation, then the particle density in-
creases in a smooth manner as the distance from the
cylinder axis increases, and the velocity field is of the
rigid-body type (i.e., v= ~Xr) If t.he average density is
larger than the critical density, so that there is Bose-
Einstein condensation, then the particle and current
density have two distinct parts: (i) the contribution due
to the particles in the condensate and (ii) the contribu-
tion due to the particles in the other single-particle
states. The density contribution due to the particles in
the condensate is nonzero only in a very small region
near the walls of the container. The current density due
to the particles in the condensate is mathematically
described by a single vortex line on the axis of the
cylinder; however, this is physically indistinguishable
from rigid-body rotation since the particle density of
the condensate is so strongly peaked at the cylinder
radius E. The contribution to the particle and current
density due to the particles which are not in the
condensate remains qualitatively unchanged as the
Quid passes through the phase transition.
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APPENDIX A

Consider a liquid in a cylindrical rigid-body container.
If the container can exchange energy with the liquid,
then it follows from thermodynamics that a necessary
condition for thermal equilibrium is that the tempera-
ture of the liquid be equal to the temperature of the
container (i.e., T&= T&). Similarly, if the container can
also exchange angular momentum with the liquid, then
a necessary condition for thermal equilibrium is that
co&=~2. It is easily shown that the thermal parameter co

for the rigid-body container is equal to its angular
velocity of rotation. Furthermore, the physical signifi-
cance of co for the liquid is simple in all cases where
classical statistics is su%ciently accurate. This is
deduced from a theorem in statistical physics which is
the rotational analog of the Bohr—van Leeuwan
theorem" of magnetic theory. The distribution function
for classical systems in the canonical ensemble is

f (~!)—'(2vrA) '~Q~ i expL —P(H —cvL)j, (A1)

"J.H. Van Vleck, Theory of Flectric and Magnetic Suscepti-
bilities (Oxford University Press, London, 1932), Chap. 4.

where

H —u)L= (I/2m) P (P;—m~XR )'

+U——,'m Q (~XR;)'. (A2)

By making the change of integration variables P, ~ p;
=P,—muXR, and integrating over p; first, it is easily
seen that

((P,—m~XR, )8(r—R;))=O. (A4)

The mass current and mass density associated with an
equilibrium rotational state are, respectively,

(A5)

and

(p(r)) =P m(b(r- R;)). (A6)

Therefore we have the following theorem":

(J(r))= (p(r))(~Xr), (classical statistics). (A7)

The physical significance of this theorem is apparent.
A classical system will rotate as a rigid body with
angular velocity ~ when in thermal equilibrium. A
simple consequence of this theorem is that the average
angular momentum

(L)= r X(J(r))d'r

may be written'3

(L)=~ (p(r))(x'+y')d'r—=aaI. (A9)

It is impossible to generalize (A7) to quantum
liquids, whose equilibrium currents can form much
more interesting con6gurations than equilibrium cur-
rents in classical liquids. However, there is a compelling
physical argument due to Landau and Lifshitz" which
states that (A7) would hold for all liquids if the current
(J(r)) and the density (p(r)) were "coarse grained" over
small macroscopic regions of space. The size of the
spatial cells needed for averaging the current and the
density is obviously connected with the coherence

"To the author's knowledge, this theorem has not been
previously stated in the literature.

"In the limit ao —+ 0, this was erst shown by J. M. Blatt, S. T.
Butler, and M. R. Schafroth, Phys. Rev. 100, 481 (1955).

'4 L. D. Landau and E. M. Lifshitz, Stasis/ical Physics (Perga-
mon Press I td. , I ondon, 1958), pp. 34 and 35.

Here we are treating the thermal parameter co as a
vector along the cylinder axis, and we are assuming that
the potential energy U is the potential of velocity-
independent forces. The statistical average of a quantity
A is given by

(A3)
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length introduced by Blatt, Butler, and Schafroth, '5 implies that
but it is diKcult to make precise statements about this
roughly deined physical quantity. (C4)

APPENDIX B

Ep ——mini (A'x„ /2mR )—Aomj,
is then given by

where g is defined by Eq. (23). The single-particle

The lowest eigenvalue of the operator (k—pit) has density matrix in the thermodynamic limit

the form'
(B1) D(r, r') = I (It'(r')It (r)) (C5)

where x„ is the smallest root of the nth-order Bessel
function

J.(x.) =0. (B2)

Since the root x„ is a monotonically increasing function
of the integer index e with the asymptotic form"

(C6)

The right-hand side of the above equation can be
evaluated by using Eqs. (30), (33), and (34). First, we
have

x =e+O(e'") (B3)
where

as e ~ ~, it is easily seen that in the thermodynamic
limit

lim(g) =Gp expF,

F= lim(y);

(C7)

(CS)

Eo —+ ——',mio'R'= —k T$. (B4) then it follows from Eq. (34) that

This limiting value is needed in calculating the free
energy per particle.

First, let us consider the normal phase (i.e., no Bose-
Einstein condensation). The average occupation num-
ber is given by

where
(~'~)=f(&)

f(&)=D 'exp(») —1j ' (C38)

APPENDIX C

The particle and current density can be calculated
from the single-particle density matrix (pt(r')It(r)). If
the eigenfunctions LEq. (13)$ are used to expand the
field operators It(r) and ft(r'), then it follows from
Eqs. (6) and (14) that

8'( ')It'( ))=2 ( ' )k *( ')It ( ) (C1)

I'(r, r', t) = (mpp'/A' t)
X (iAcvt sin(q —

q ')+-,'(Ao)t) ' cos(oo —oo') $; (C9)

finally, we can combine (C6) through (C9) to yield

D(r, r') =P PG (ro,r', Ps) expF (r,r', sP) (C.10)
tt=l

Equations (29), (C9), and (C10) constitute an explicit
expression for the single-particle density matrix in the
normal phase. The modifications needed to take into
account Bose-Einstein condensation are straight-
forward. A condensate contribution of the form
%apso (r')Itp(r) must be added, and the value of f' must
be equal to exp( —$) Lsee Eq (62)j..Therefore, in the
region where the condensate is macroscopically occu-
pied, the density matrix has the form

D(r, r') =A"eoPo*(r')4 o(r)

=Q f'exp( —s»;)
s~l

(C3b)
+Q e-'&Gp(r, r', sP) expF(r, r', sP) . (C11)

a=j

is the Bose distribution function. The above expansion

"J.M. Blatt, S. T. Butler, and M. R. Schafroth, Phys. Rev.
100, 495 (1955)."G. N. Watson, A Treatise orI the Theory of Bessel Functions
(Cambridge University Press, New York, 1966), 2nd ed. , Chap. 2.

The nature of the wave function g p(r) has been discussed
by Blatt and Butler' and will not be reviewed here. The
explicit expressions (C10) and (C11) for the single-
particle density matrix allow one to calculate the
density and current distributions which are qualitatively
discussed in this paper.


