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Structures similar to classical geons are constructed using a matter field described by the Klein-Gordon
equation. The matter field creates a gravitational field which interacts with the matter. The coupled system
has stable, bound states. A spectrum of states is shown to exist with masses of the order of 107 kg, A
variational principle is derived which is in precise analogy with the Rayleigh-Ritz principle of conventional

quantum mechanics.

1. INTRODUCTION

HE geon was developed by Wheeler! in order to
introduce the concept of body into classical
general relativity. In addition to the original (photon)
geons, there have been geons constructed out of neu-
trinos? and gravitational® radiation. All of these fields
may be described geometrically*%; thus the subject of
geons may be considered a portion of the subject of
geometrodynamics, a term which connotes the philos-
ophy of describing a major portion of physics in terms
of geometry. These structures are all very large, and are
not fully stable, although the lifetimes may be quite
long.

It is possible to create a similar structure which is
much smaller in both linear dimensions and mass, and
which is completely stable. To do so, it is necessary to
invoke a field with nonvanishing mass. This is a rather
unsatisfactory feature, as only the massless scalar field
has been geometrized to date,* thus some elegance is
lost, at least temporarily. However, one can obtain a
spectrum of bound states which may be interpreted as
a set of physical masses obtained from a single (un-
observable) mass. This would provide a model which
contains a mass renormalization as an inherent part.

The physical model we construct is that of a field
which satisfies the Klein-Gordon equation generalized
to curved space-time, which produces a gravitational
field. This field in turn affects the dynamics of the
Klein-Gordon field. The coupled system of equations is
solved by numerical techniques, and normalized,
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stationary eigenstates which are localized in space are
sought.

In order to avoid the necessity of neglecting direct
interactions between particles which are very close to
each other, solutions are only sought for systems which
contain exactly one particle.

2. PARTICLE STATE FUNCTION

In a curved space, a Klein-Gordon field of mass m
may be described in terms of the Lagrangian density

£=(1/2m) (g*;a";6+mY* ), (€Y

where units are chosen so that #=¢=1. The variational
principle

) / L(—g)2dxtdatdx?dxt=0 2)
yields the equation of motion for the field:
" Viw—mY=0. 3)

We take coordinates (r,a,8,f) which reduce to spherical
coordinates in regions sufficiently distant from the
structure that space-time is essentially flat, but not
distant enough to make over-all curvature effects of the
universe significant. This study is restricted to struc-
tures of spherical symmetry, which is here taken to
mean that the field amplitude is independent of « and .
We seek solutions that are harmonic in the time variable
in order to represent a stable configuration. Then

¥=o(r)ert, 4)

This gives a metric tensor similar to that of Schwarzs-
child: g,,=diag(e", 7%, #* sin’e, —¢*). The functions A(r)
and »(r) are yet to be determined. With this form for
the metric, and setting

k=(m*—E'*, p=Fkr, X=E/m, ©)
(3) simplifies to
p—A 2 ex—1
¢+( +—)¢+ew—~—=o. ©)
2 »p 1—x

Dots denote differentiation with respect to p.
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3. EQUATIONS FOR THE METRIC

Using a prescription due to Rosenfeld,®

L 9L
Tp=—*—v,— £, @)
('91,0;,‘* a‘p:“

we have, for the energy-momentum tensor given by the
Lagrangian (1)
Ty=(1/2m)[g"*(¥;¥;»*+¥;a"¥:0)

— (WY ptm )8 ], (8)

This gives
T 1[ *(d¢)2 (m>—eE?)
1=___e—_,_m___-—v22 9
2m dr q)] ©)
and
1 do\?
L= —~[e-x(—) Forteme . o)
2m dr

These are the only important components since 7'
=T3, as required for compatibility with the struc-
ture of the Einstein tensor, the off-diagonal elements
vanish, and the Bianchi identities yield one equation
relating the nonzero components.

The corresponding components of the Einstein tensor
for a metric of the type under consideration are’

1dy 1
Gi=——e?—(1—e?) (11)
r dr 72
and
1adx 1
Gé=——e 2 H—(1—e). (12)
rdr 72

Equating the Einstein and energy-momentum ten-
sors, making the substitutions (5), defining

e*r=1—a(p)/p

7(p)=¢"",

(13)
(14)

and

one finds

&=%xp<p—a>{¢Z+[(g)2;”—;+(€—)zr]¢2} (15)
and
2ol ]

In these equations, k=8nG/m. In all the numerical
work, G/m has been set equal to unity. The matter field
satisfies, in terms of the new variables, the following

(16)

equation:
orro1 m\? p?¢? P @
¢+[ } %K(“) ]sb'*- (TX— ——)-—= 0.
p p—a k/ p—o p—a/1—X
(17)

(1;416) Rosenfeld, Mem. Acad. Roy. Belgique Cl. Sci. 18, No. 6
7 Seé, e.g., C. Mgller, The Theory of Relativity (Oxford University
Press, New York, 1952), Chap. XI, Secs. 121-123.
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4. DISCUSSION OF THE EQUATIONS

In order to solve the system of equations (15)-(17),
we must determine a set of boundary conditions.

We first require that the state functions must be
normalizable. This implies that the solution which
approaches the zeroth-order solution in the gravita-
tional field, o= Ae~*/p (for large p), must be taken.

The metric at large distances should approach that
of Schwarzschild; this leads to the requirement that
o—2Ek and 7— (1—o/p)™? in our coordinates as
p—> .

The constant 4 is not trivial since this system of
equations is nonlinear and it must be determined with
E to get the desired stationary states. To do so we fix a
norm for the state function to be unity. The choice of
norm requires some argumentation; this will be done
in Sec. 5.

It is not clear @ priori that the coordinate system
chosen will be usable everywhere. If well-behaved
solutions to the equations exist everywhere, the metric
is well behaved, and the coordinate system is satis-
factory. This situation will occur unless o=p, which
will produce a pseudosingularity of the type found in
the Schwarzschild solution, indicating the presence of
a bridge or wormhole. No proof of the lack of this
behavior was constructed, but the form of the equations
makes it appear unlikely. In the computed solutions no
indication of singular behavior exists. This suggests that
the ostensibly static solutions sought will be truly
static, in contrast to the Schwarzschild-Kruskal
solution.®

The energy spectrum is determined by insisting on
smooth behavior of the state function at the origin. It
is of interest to note that the energy appears four times
in the equations: twice (in the form of its square) in the
variable X in Eq. (17), once (again squared) in Eq.
(15), and once (to the first power) in the initial value
of g.

It can be shown that, except for eigenstates, no
power-series solution exists for the system in a neigh-
borhood of the origin. The only simple solution to the
equations in that region is the set

o=¢e/p, e=¢elnp+b, (18)
+=21/p, T=cp?, (19)
b= —bofp,  a=frme,  (0)

where b, ¢, e, and f are constants, as yet undetermined.

The eigenvalue criterion is that the constant e vanish.
The constant f is negative except for eigenvalues. At an
eigenvalue, a solution with f=0 could exist; however,
it is not clear whether such must be the case.

8 The latter solution is described in M. Kruskal, Phys. Rev.
119, 1743 (1960).
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5. NORMALIZATION

The normalization which we use in this paper is

/ 122 (1) dpdadB=1. 1)

Except for the first factor, everything seems obvious:
There is the usual square of the space part of the state
function, multiplied by the invariant three-volume
element, and of course everything is integrated over the
entire three volume. But why the first factor? One
answer is given in the presence for this norm, and only
for this norm, of the energy minimum principle of the
next section.

A stronger justification is found in the consideration
of energy. For a stationary state, the difficulties in the
definition of an ‘“‘energy density” caused by the differ-
ence between the covariant divergence and the ordinary
one do not appear and we have a conserved quantity:
the energy-momentum vector®

Jr= _/T4M(—g)ll2dx1dx2dx3. (22)

Requiring that J*, the Hamiltonian, be E2/m where the
symbol E must have the same meaning as it does in
Eq. (4) yields Eq. (21) as the normalization condition.
This discussion raises another interesting point. In
quantum mechanics, a ‘“‘probability” current density
j* is defined. For a well-defined problem, j* should be
related in a natural way to J#, but such a relation is not
immediately evident. Nevertheless it exists. To see this,
note that for a self-consistent solution, the static
gravitational field assumed in Eq. (22) is equivalent to
the separability of the state function into the product
of a spatial part and a harmonic time dependence.
Direct calculation then yields

2
sz YY) () e
m

=E / JH(— @)t Pdatdatda? (23)

which may be verified in any standard quantum-
mechanics text.lY Comparing Eq. (23) with Eq. (22),
one has the relation

Je=Ej*, (24)

which is as natural as could be desired. This result holds
in every coordinate system for which the system is
static. A standard argument!! shows that the right side
of Eq. (23) and the expression which reduces to the

9 Reference 7, p. 299.

10 See, e.g., L. 1. Schiff, Quantum M echanics (McGraw-Hill Book
Co., New York, 1955), 2nd ed., Eq. 42.8.

1t Reference 7, pp. 339-340.
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right side of Eq. (22) for static fields each transform
like a vector under Lorentz transformations. Hence
Eq. (24) holds for all those cases where it is clear that
it must.

6. ENERGY MINIMUM PRINCIPLE

It would be interesting if an energy minimum could
be shown to exist for the states sought. This is only
possible for the normalization of Eq. (21), as it is only
for this choice that the stationary property of the
Lagrangian afforded by the variational principle of
general relativity leads to a stationary property for the
Hamiltonian (i.e., — 7).

We want to demonstrate a minimum principle for £?
as defined in Eq. (22) subject to the constraint of Eq.
(21), and to do so we show that

W= —A4np2e ™+ 12T 4
E2

=] 1= [ pripaads i) @5)

m

has the desired property, /"Wdp= E?/m, whenever the
constraint is satisfied. The function f(p) is arbitrary
except that /" fdp=1.

We shall use a theorem given by Bliss!? after some
necessary preliminaries : Define

I=/Wip;
then
o= / W W ei)dp (26)
and
#l= f 2 (o,150)dp, @7
where
n=d¢,
20=W o0+ 2W pomi+ W yi?, (28)

and subscripts indicate partial differentiation. The
integrand function (W) must have continuous deriva-
tives through the fourth order on some region R(p, ¢, ).
An arc is defined as a specific functional dependence of
the dependent variable (o) on the independent variable
(o), e.g., that illustrated in Fig. 1. The arc in question
must contain only points which are interior to R or,
under some conditions, on the boundary. In our case,
the origin is such a boundary point.* The desired
theorem states that W is minimized by an arc that
satisfies four conditions:

Condition I is essentially the requirement that the

12 G. A. Bliss, Lectures on the Calculus of Variations (University
of Chicago Press, Chicago, 1946), pp. 82, 83.

13 This causes no difficulty since the origin may be eliminated by
excluding a neighborhood of radius e of the origin from the range
of integration. The theorem is certainly true with this restriction.
Then pass to the limit as e — 0.
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first variation of W be zero. This satisfied, since

/ Wip= / (=g Pdpdads+Em,  (29)

and we insist that the first variation of

/ [ / £(—g)”2dpdadﬁ]dl

vanish for arbitrary time extent.
Condition II requires that along the arc

8(9} @, ¢yq>) = W(p, (P:é) - W(p, [ ‘p)
—(@— @) Wi(p,0,0)>0  (30)

for every admissible set (p,¢,d) different from (p,¢,¢).
In this problem one finds
E=12mp?eMR($— )2 >0 (9% ¢). (31)

Condition III requires that W,,>0 everywhere on

the arc. In our case we have
Wio=3p"¢">0. (32)

Condition IV requires that there be no solution to the
problem
8 / 2wdp=0,

which is zero at the initial point of the arc and at
another point, but not identically zero. We regard p=
as the initial point. Evaluating w, we find that

(33)

w= / (1) (—g)!dads. (34)

Thus, the Euler equation for this problem is the same
as Eq. (6), except that ¢ is replaced by 5. If there are
acceptable solutions with no nodes in ¢ and with
¢(»)=0, condition IV will be satisfied. This occurs
since the metric is kept fixed during the variation, hence
A and v are the same for the problem (33) as for the
original one, and Eq. (6) is linear in ¢."* Numerical
calculation shows that the ground state has the required
properties.

On the other hand, examination of the necessity
statement of condition IV only permits the possibility
of a node at the final point, p=0. Thus, any state with
a node at a finite value of p cannot even be a relative
minimum. Such states include the higher-energy states.

With the normalization of (24) the theorem yields the
following result: The ground state is a minimum energy
configuration under sufficiently small variations of ¢,
and arbitrary variations of ¢, while the excited states

1 Linearity is required since the solution for 7 is proportional to
that for ¢, but not necessarily equal to it, since there is no normal-
ization requirement on the % solution.
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are not minimum energy configurations. It is interesting
to note that these are the same results one has in
elementary quantum mechanics.

7. SOLUTION OF THE EQUATIONS

The solution of the nonlinear system of equations
(15)-(17) with two eigenvalues (£? and 4) which enter
nonlinearly has been done by numerical methods.

The basic-solution method is to choose a value of p
large enough that asymptotic solutions of the system
are valid, and use these to start a step-by-step numerical
integration toward the origin. When a sufficiently small
value of p is achieved that the approximate solutions
(18), (19), and (20) are valid, the integrations are
terminated and the quantities e=p¢ and d, defined as
a measure of the deviation of the normalization integral
from unity, are calculated.

We then assume that we have to solve simultaneously
the transcendental equations

e(F%,A4)=0,
d(F2,4)=0.

(35)
(36)

At this point, the normalization becomes very sig-
nificant. For reasons detailed below, the norm of Eq.
(21) makes the location of normalized eigenstates very
difficult. The first goal was thus to obtain eigenstates
which were not normalized. Figure 1 depicts the ground
state so obtained. Other states were checked, and it was
found that, in analogy with usual quantum-mechanical
results, the ground state had no nodes while the nth
excited state possessed # nodes. This result is inde-
pendent of the satisfaction of Eq. (21); hence it is
possible to apply the results of Sec. 6 to assert that the
ground state is a minimum energy configuration with
respect to variations in the state function (for fixed
metric) and that the higher states are not. Note that in
flat-space quantum mechanics the last point is almost
trivial since there are perturbations in each excited
state which mix some of the ground state into the wave
function, and this must lower the expectation energy.
In the present case this argument fails due to lack of
superposition ; nevertheless the result still holds.

The results of the analysis of the entire system with
m? set arbitrarily to 0.1 are shown in Fig. 2. An un-
expected difficulty appeared. The region in which the
family of eigenfunctions meet the curve of normalized
functions occurs at values of E? and 4 so small that the
equations become quite ill-behaved. It was possible to
find solutions where o/p reaches 3X10~¢ of unity. This
caused 7 to become large (~102), and shortly there-
after ¢ would reach such large negative values
(~—10%9) that there was acute danger of machine
overflow. At least the start of this phenomenon is not
due to the exceeding of the capabilities of the numerical
procedures involved. These procedures involved a
fairly sophisticated self-checking for error, and cut the
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F1c. 1. The state function
for an wmnormalized ground
state. The small negative slope
for p<0.03 is due to residual
errors in locating the eigen-
value. Examination of the
function for p<0.002 shows the
presence of a weak divergence
(po~—1079).

STABLE STATES OF SCALAR PARTICLE

1449

step size to keep the single-step error sufficiently small
that numerical instability should never have been
possible. A rather singular function was integrated by
this program with entirely satisfactory results.

In any case, the portion of the curve of normalized
functions (CNF) lying in the region 4>1F2, E2<0.05
was not observed except to place upper bounds on the
value of 4 at each energy. The belief that the CNF
actually passes through this region and therefore inter-
sects the curves (35) requires justification. The main
evidence is that the portion of the CNF at small values
of A and E?>0.05 is well established ; thus there are two
breaks in the CNF or none. Also, Egs. (15)-(17) are
sufficiently well behaved everywhere in the region
E2<m?, A#0 that unless o=p for some p5%0 (never
observed), the solutions are continuous functions of
their initial values. This implies that the left-hand sides
of Egs. (35) and (36) are continuous, which implies that
none of the curves described by these equations can
terminate except on the line 4=0. Upon noting that
E?=A4=0 is a trivial (and well-behaved) solution to
Egs. (15)-(17) and (35), but not to (36), one becomes
convinced that at least the ground-state curve reaches
this point and that the CNF lies above it.

8. DISCUSSION

We have shown the existence of a spectrum of bound
states for the particular mass chosen. Converting back
to conventional units, we find that the mass parameter
was selected to be 1.28 X 10715 kg or 7.71 X102 amu. The

eigenenergy of the system, or (what is the same thing)
the mass of the system as seen by a distant observer, is
less than or about 0.07m, hence ES5X 107 amu. The
diameter of the system is of the order of 4X10-#m.
Thus the system analyzed is much heavier and more

1 1 1 1 1 1 1

002 .004 .006 .008 010 .02 .04 .Ole .018

A

F16. 2. The curve of normalized functions and the lowest six
members of the family of curves satisfying the eigenfunction
criterion for the case m?=0.1. The dashed portion of the curve of
normalized functions is imprecisely located and may be to the
right of its correct position, The ground state is located at E?
<5X1074; AL<2X1074,
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compact than a baryon.!® It would be of major interest
to investigate the effects of varying the parameter m,
but the numerical difficulties already mentioned inter-
fered too strongly with the cases m?=1 and m?= 10 for
any information to be obtained that would be precise
enough to indicate a trend.

There is an apparent difficulty due to the behavior
of ¢. It seems to be nonzero at the origin [i.e., f of Eq.
(20) seems to be nonzero]. If this result is true, the
curvature scalar would diverge indicating that space-
time fails to be a differentiable manifold at the origin,
although it would still be simply connected. However,
there are two reasons for casting doubt on this observa-
tion, even though the indications are sufficiently clear
that they would usually be taken as conclusive. First,
although f is always negative, normally suggesting that
it never vanishes, analytic investigation of the system
shows that whenever the eigenvalue criterion is not
exactly satisfied, f must be negative. Nevertheless, for
a precise eigensolution, f may vanish. This situation
could never be observed numerically, of course. Second,
after the completion of this calculation, one of the
authors (D.A.F.) learned of a similar calculation which
differed from the one described here in that a system of
many particles was investigated, and in the direction of
the numerical integration.!® In this calculation the
mathematically risky but physically reasonable assump-
tion was made that space-time is differentiable at the
origin, and this led to certain initial conditions. At (and
only at) eigensolutions, the functions behaved at
infinity so as to produce the conditions used in this work
for starting the integration. It turned out that the
solutions were extraordinarily sensitive to the energy,
in the sense that a slight variation from eigenenergy
produced an unexpectedly rapid divergence of the
solutions. One is inclined to believe that this is a result
of the lack of any solution of the type required by the
initial conditions except at eigenvalues. It seems most
likely that a combination of analytic and numerical
characteristics have combined to indicate a spurious
difficulty.

15 Quantum gravitational effects are expected to be of the same
order as the classical ones when masses of the order of 2)X1078 kg
are present in a region of radius of the order of 1.6X107% m. They
are therefore still fairly small in the system investigated here.

16 R, Ruffini, Ph.D. thesis, University of Rome, 1966 (un-
published), also private communications.
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9. INTERPRETATIONS AND EXTENSIONS

One is inclined to wonder whether the structures that
have been investigated have any relation to funda-
mental particles. We now have structures which are
some 45-orders of magnitude less in mass than the
original ones of Wheeler!; however, they are still much
more massive than any of the known particles. The
successes of the quark model of fundamental particles
also argues against the interpretation of these structures
as fundamental particles themselves since the group-
theoretic considerations which are at the core of the
quark model depend on a flat, simply connected space.
One may interpret these structures as analogs of quarks
in this sense: Two or more of these structures will
interact and, because of the attractive nature of gravity,
will form bound states. If the state function of one
structure has significant amplitude where it is near the
center of another, this compound structure may be
strongly bound. The nonlinearities of the Einstein
equations will enhance this effect. Such a compound
structure may have a smaller mass than the individual
components, and would have a larger radius. The larger
radius results in a smaller average curvature over the
complex. When the complex structures become rela-
tively large and light, space-time may be quite flat on
the scale in question.'” It should be mentioned that the
above remarks apply to any gravitationally derived
structure, not only the particular one investigated in
this work.

In order to investigate compound structures, one
should know the entire spectrum of states, including
states with angular momentum. Such states are under
investigation by A. Jones, who has kindly given per-
mission to mention his work. An angular part of this
problem can be solved analytically; the remainder is
under investigation by numerical techniques.
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