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A relativistically invariant classical Hamiltonian mechanics is presented, in which each particle is de-
scribed by the eight dynamical variables of position, time, momentum, and energy. The two-partic], e
scattering problem which consists of both inelastic scattering and elastic scattering is completely solved
and reduced to quadratures. Special attention is given to elastic scattering, and it is shown that the two
particles participating in elastic scattering remain at a spacelike separation with respect to each other
throughout their trajectories. It is also shown that this theory is capable of describing the decay of one
particle into two particles.

I. INTRODUCTION

A CLASSICAL mechanics is essentially a rule for
constructing an ensemble of trajectories. For a

relativistically invariant mechanics, the rule will be
such that when each trajectory in reference frame A
is Lorentz transformed into a trajectory in reference
frame 8, the ettsembte of possible trajectories will "look
the same" from reference frame 8 as it looked from
reference frame A (i.e., if the coordinates of reference
frame 8 are substituted for the coordinates of reference
frame A in the equations for the trajectories in reference
frame A, it wiQ be found that these new equations
describe the actual trajectories in reference frame 8).

Recently there have appeared some new formulations
of relativistically invariant classical mechanics. Apart
from the intrinsic interest in such a classical mechanics,
there is the hope that it could lead to the construction
of a satisfactory relativistically invariant quantum
mechanics. '

In the mechanics of Van Dam and Wigner, s the
trajectories are solutions of a set of integro-di6erential
equations. Roughly speaking, the force felt by particle
1 at time t is exerted by particle 2 not only at time t,
but over the whole time interval during which the
trajectory of particle 2 is spacelike with respect to the
space-time location of particle 1. This theory is not
expressed in Hamiltonian form, so it cannot be used
to formulate a quantum mechanics.

In the mechanics of Currie' and Hill, ' the trajectories
are solutions of the usual set of second-order diGerential

equations. The forces however, must be specially
restricted functions of position and velocity, in order
that the equations of motion be I orentz invariant,

j An interesting relativistically invariant quantum mechanics
is described by S.Bakamjian and L. H. Thomas, Phys. Rev. 92,
1300 (1953); L. L. Foldy, iblg 122, 275 (1.961); R. Fong and
J. Sucher, J. Math. Phys. 5, 956 (1964). However, the analogous
classical mechanical equations are not relativistically invariant,
for the position variables do not transform properly under Lorentz
transformations; see also, D. G. Currie, T. F. Jordan, and E. C.
Sudarshan Rev. Mod. Phys. 35, 350 (1963).

' H. Van Dam and E. P. Kigner, Phys. Rev. 138, 15'l6 (1965);
142, 838)(1966).

' D. G. Curie, Phys. Rev. 142, 817 (1966).' R. N. Hill, J. Math. Phys. 8, 201 (1967);8, 1756 (1967).
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Kerner and Hi115 have pointed out that any set of
second-order differential equations can be cast in
Hamiltonian form by any one of. a number of suitable
changes of variables, and Hill' has shown how to apply
this procedure to the relativistically invariant differ-
ential equations. However, although the equations are
expressed in Hamiltonian form, the canonical variables
are not position and momenta. This means that the
usual replacement of canonical coordinates by operators,
which is used in constructing quantum mechanics from
Hamiltonian mechanics, may not produce a physically
meaningful set of quantum-mechanical equations.

In this paper we have decided to investigate a
relativistically invariant classical mechanics which
satisfies four useful requirements: (i) The equations
of motion are expressed in Hamiltonian form. (2) The
particle's positions and momenta are (at least some of
the) dynamical variables. (3) The theory is "mani-
festly" Lorentz invariant. (4) The results reduce to
those of the usual Galilean-invariant classical mechanics
in the limit of small particle velocities.

The Grst requirement of course means that we do not
need to search for a set of differential equations, but
only need to 6nd a single function of the dynamical
variables. This Hamiltonian function will not be the
energy of the system of particles (although it will be a
constant of the motion): it is merely a function through
whose agency one can obtain a set of equations of
motion.

The third requirement is interpreted to mean that the
Hamiltonian must be a function of Lorentz-invariant
scalar products of four-vectors. To satisfy the second
requirement, we shall introduce a time variable and an
energy variable for each particle as itsdepeedent dymatts-

ical nariuNes. This completes the position-time and
momentum-energy four-vectors out of which the scalar
products will be formed. In the next section we shall
discuss some of the unfamiliar features of this mechanics,
as compared with the usual mechanics where there is a
single time for all particles (which is not a dynamical
variable, but simply a parameter) and a single energy
(which is not an itsdepeedetst dynamical variable).

«R. N. Hill and E. H. Kerner, Phys. Rev. Letters 17, 1156
(1966).
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One of the results of this paper will show' that the
fourth requirement is satisfied if the Lorentz-invariant
Hamiltonian is constructed from the Hamiltonian of
the Galilean-invariant theory by replacing the rota-
tionally invariant scalar products of three-vectors with
Lorentz-invariant scalar products of four-vectors.

These four requirements were stipulated in the hope
that the classical theory which satisfied them would be
the basis for a useful relativistically invariant quantum
theory. The classical theory presented here does not
fulfill that hope; the reasons for this will be indicated at
the conclusion of this paper, in Sec. X. However, it
still may be possible to construct a theory possessing
some of the features of the theory presented here, which
would fulfill that hope.

II. SOME UNUSUAL FEATURES

The position-time and momentum-energy four-
vectors for the ith particle will be denoted by x;& and

p, &, respectively. The Poisson bracket of two variables
A and 8 is defined as

BA 88 BA 88
p. ,B]=p g~"

-coax " QP
" ciP " Qx "

where —g"=g"=g"=g33=1, and for i&j g'&=0; re-
peated Greek indices are to be summed over. In
particular, the Poisson bracket relations Lx,&,p,"]=g&"
show that —P,o is the variable carionically conjugate
to t, (t,—=x ).

We next parametrize the trajectories: All the
dynamical variables are functions of a single "evolu-
tion parameter" s. The equation of motion of a variable
A is then dA/ds= PA, H]. In particular, the equations
of motion for x,o and p;~ are dx;o/ds=gI'"clH/Bp;",
dp, &/ds= g&"BH/Bx—," These equ. ations will be form-
invariant under a Lorentz transformation (and there-
fore the trajectory solutions will satisfy the criteria for
a relativistically invariant mechanics mentioned in the
first paragraph of the previous section) if s is a scalar
invariant under a Lorentz transformation.

These procedures are well known. To elucidate the
first unusual feature of this theory, we turn to a system
of two particles moving in one spatial dimension. Con-
sider the two world lines as they are traced out with
increasing s, on a graph whose vertical axis is labeled

by both tj and t2, and whose horizontal axis is labeled

by both x& and x2. One may imagine a vector, drawn
between the two points representing the space-time
locations of the two particles at an "instant" of s. This
vector will usually not be horizontal )since usually
t~(s)Qts(s)], and its orientation will change as s in-
creases. In other words, the force exerted by particle 1

' C. Lanczos, The Uariationa/ Principles of Mechalics (Uni-
versity of Toronto Press, Toronto, 1964); H. Goldstein, Classical
Mechanics'(Addison-Wesley Publishing Co., Inc., Reading, Mass. ,
1959).

at time t& is felt by particle 2 at time t2, and vice versa.
This is in contrast to the usual Galilean-invariant
theory, where this vector would always be horizontal.
We shall call this vector the "relative event" vector.
The solution of the two-particle problem will amount
to the determination of the dynamics of the relative
event vector, just as in the Galilean-invariant theory
the crucial dynamics is that of the relative position
vector.

The most unusual features of this theory stem from
the fact that it is necessary to specify eight initial
conditions for each particle instead of the usual six
initial conditions (for particles moving in three spatial
dimensions). That is, once we have specified the posi-
tion and momentum of each particle at s=s„we still
have to specify the initial time and energy coordinates;
diGerent choices of these coordinates will result in
different particle trajectories. Let us examine these
initial conditions in the case of a scattering problem
(the bound-state problem, w'hich is more complex, will
be discussed in Sec. VIII). Initially, we start out with
two widely separated particles, of masses m& and m2

and momenta p~(s, ) and ps(s, ). The statement that a
particle has mass m; already implies the initial condi-
tion for p,e, the energy of the ith particle: At the
"instant" s„we must have p,'(s,) = Lp,s(s,)+res,s]"'.
As s increases, the particles move toward each other
and (it will be seen that) P;s and p; do not change until
the particles interact. Long after the particles separate,
say at s=sb, pcs and p; are once more constant. We can
then calculate —p,s(sb) —=p;"(sb) —pp(sb) which may or
may not equal m, .This is where the choice of the initial
time coordinates comes in. It will be possible, in a
typical case, to choose the initial time coordinates so
that —p,s(sb) =orb,s, i.e., the scattering is elastic. Other
choices of these coordinates will lead to inelastic scatter-
ing LO( —p,s(sb) prm, s] or even nonphysical scattering
L0) —p'(»)].

It is perhaps preferable to consider that, instead of
specifying the two initial conditions of time and energy,
we are specifying one initial condition and one final
condition: These are the values of —p,s before and
after the collision. "In this theory, the particle's mass

Q(—p,s) is a dynamical variable, instead of being just
a parameter. Since it is a Lorentz-invariant dynamical
variable, the choice of initial and final values ofg(—p,s)
selects a subset (of the full set) of trajectories in an
invariant way. The subset still satisfies the criteria for

~ cfote added in proof. For some potentials, there is a range of
inly al conditions (particle masses, positions and momenta) for
wliich it is impossible to choose the initial time coordinates (or
ajternatively, the anal values of —pP) so that the scattering is
elastic. It should be emphasized that in this paper we do not
discuss such existence questions as whether a class of potentials
exists for which one can obtain elastic scattering trajectories for
all choices of initial masses, positions and momenta. We con-
jecture, however, that a large class of such potentials does exist,
including those potentials which have "hard cores, " i.e., are
infinite for some spacelike or lightlike value of their argument
(see Sec. V1, as in the example presented in Appendix A.
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a relativistically invariant set of trajectories, which was
stated in the first paragraph of Sec. I.

To recapitulate: In the classical mechanics with which
we are familiar, all solutions of the pertinent equations
are possible trajectories for the particles, and the
particles do not change their masses during their motion.
This is not the case in the present theory, where the
equations must be supplemented by asymptotic con-
ditions, in order to select out the physical trajectories
of interest.

There are some other aspects of this theory that are
not found in the usual Galilean-invariant theories,
but they will be discussed in later sections. We shall
now proceed to examine the one-particle problem (Sec.
III), and. then we will introduce a useful set of coordi-
nates with which to discuss the two-particle problem
(Sec. IV). The two-particle scattering problem in one
spatial dimension (Secs. V and VI) and in three spatial
dimensions (Sec. VII) will follow: these form the bulk
of this paper. Miscellaneous topics including the bound-
state problem and the nonrelativistic limit appear in
Sec. VIII. A decay problem will be treated in Sec. IX.

III. NONINTERACTING PARTICLES

The Hamiltonian for g noninteracting particles will
be taken as

H=—g p 2/2m;=g p 2/2m; po'/—2m;

(we have set c=1), following the rule given in Sec. I
for constructing the Lorentz-invariant Hamiltonian
from the Hamiltonian of the Galilean-invariant theory.
It is worth noticing that the mass m; appears in two
places in this theory: in the asymptotic condition on
—ps and also as a parameter in the Hamiltonian.

Hamilton's equations of motion for the ith particle are

dx;/ds= y;/m;, dt;/ds= p, /m;,
(2)

dy/ds=0, dp'/ds=0.

The solutions of these equations are straight world
lines:

p;= const vector, p;o = const,

x;= (s—s;,)p;jm~+x;. , t,= (s—s;.)p; /m;+t;. ,

and we may eliminate the parameter s, obtaining

X~= X~a+ (t~ tia)p~/pi ~

Equation (4) is the proper relativistic expression for a
particle of mass m; moving with constant speed, pro-
vided we give p the initial value (pp+mp)'I'. Since
—pp is a constant throughout the trajectory, the initial
value t; is of no consequence in determining the 6nal
mass value. This is a degenerate case of the interacting-
particle problem in that there is an overabundance of
initial conditions which produce the same world lines.

The masses m; which appear in the Hamiltonian
have disappeared from Eq. (4), so that the mass of a
free particle is solely determined by the initial value of—pp. It would therefore be possible to have a different
mass in the ith term of the Hamiltonian than the initial
value given to g(—pp), without affecting the shape
of the ith trajectory. Yet the rute at which this world
line is traversed as s increases does depend upon the
mass in the Hamiltonian, as can be seen from Eqs. (2)
or (3). For example, if we do initially set —pP=mP,
we 6nd that the increment of proper time for the
ith particle satisdes the simple relationship dr;~
=——ga"dx, &dx;"=(—ps/m, s)ds'=ds', so that all parti-
cles have the same increment of proper time over the
interval ds.

P =pi +p2", X"=—(mixi +m2xi )/3f
p"=t (p "/ —p "/ ), —*"—=*"—*",

[with ~=mi+mu, ti=mim2/(mi+mg)g. The inverse
of these equations is

pi"——miP"/M+ p", x,"=X"+px /m„
p2"=m2P"/M —p", x2" X" ti——x"/m—, (6)

Of course P and P' are the total momentum and.
energy, respectively, while x and t (=—x') are the rela
tive space and time coordinates, respectively.

X and T (=—Xo) are the coordinates of a vector (in
the world line space) whose tip lies on the line connect-
ing the events (xi,ti) and (xi,t2). We shall call X and T
the "center-of-mass" coordinates. It is well to empha-
size here the difference between X and the usual rela-
tivistic center-of-energy (c.e.) coordinate. When there
is no interaction, X and X, , both are coordinates of
points at rest in the center-of-mass reference frame (a
Lorentz frame moving with velocity P/P', in which the
total momentum vanishes), but they are not necessarily
coordinates of the same point. The usual c.e. coordinate
Xo. .(Tr,)=[pi xi(Ti,)+pa x~(TI,)j/P' [we have set
p;0=(p,s+mp)'12j is computed when xi and x& have
as arguments the same instant of time in the laboratory
reference frame. The expressions for xl and x& given in
Eq. (4), with ti=t&=Tz„yield

X. , (t)= (pioxi +pg'x, .)/P'
-(yiti. +pit2.)/P+T, P/P. (~)

On the other hand, X(s)—= [mixi(s)+m2xi(s)j/M is
computed when x1 and x2 have as arguments the same
"mstant" of s. Substitutmg Eqs. (3) (with si, =s„—=s,)

IV. COORDINATES FOR TWO PARTICLES

Before proceeding to the interacting two-particle
problem, we will discuss a useful change of coordinates
in the context of the noninteracting two-particle prob-
lem. The new set of canonical coordinates are related
to the old set of coordinates by
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into the definitions of X and T yields

X(s)= (mixi. +msxs. )/M+ (s—s.)P/M,
(g)

T(s) = (mitt. +msts. )/M+ (s s.)—I"/M .

Since T is in one-to-one correspondence with s, we may
write X in terms of the time T:

X(T)= (mixt, +msxs, ) /M
(m]gta, +msfs, )P/MP'+ TP/P '. (9)

From Eqs. (7) and (9) we see that X, , computed at
time Tz and X computed at time T are points moving
with velocity P/I", but they are only the same point
for special values of the initial coordinates (X, , and
X can also be brought into coincidence simply by
computing X at time T+r, where r is an appropriate
constant).

An important difference between X and X, , arises
when we introduce an interaction. It will later become
obvious that even in this case dX//dT=P/P', where

P, P' are constants of the motion. On the other hand,
X, , does not move with constant speed during the
interaction, (although before and after the interaction,
X, , does move with constant speed P/P'). Similarly,
when each momentum is evaluated at a common time
TI, and not at a common value of s, the sum of the
momenta is not constant during the interaction
(although before and after the interaction, the sum
remains at the constant value P). It is therefore the
center-of-mass Lorentz frame, moving with constant
speed P/P', that is useful in this theory. In this Lorentz
frame, the sum of momenta evaluated at the instant
s vanishes. It is only before and after the interaction,
that the center-of-mass reference frame coincides with
the c.e. reference frame.

Much of the algebraic simplicity of this theory occurs
because the useful coordinates (5) in which the equa-
tions of motion simplify are related to the individual
particle coordinates by essentially the linear relation-
ships of the Galilean-invariant theory, even though this
is a Lorentz-invariant theory (compare X for example,
with the nonlinear expression for X, , ). This is possible
because the particles are not forced to interact at the
same time.

To see what interpretation to give y,p', we write the
two-particle Hamiltonian )Eq. (1)$ in terms of the new
variables /using Eqs. (6)j

II= (P I o*)/2M+(y' p&')//2/ —. (10)—
Hamilton's equations of motion are then

dX/ds= P/M, dT/ds= P'/M,
dx//ds= y//ts, dt/ds= p'//t,

while dP/ds=dP'/ds=dy/ds=dp'/ds=0 Thus p/tt is.
the "velocity" (quotation marks because the deriva-
tives are taken with respect to s) of the tip of the rela-.

tive event vector x" in the x-r, plane.

We cannot regard x" as the position-time coordinates
and p" as the momentum-energy variables of a fictitious
particle of mass p, , for three important reasons. The
first reason is simply that y —P"&—tts. In fact, if
P;s= (y,s+m,s)'/s, we Qnd by using Eq. (5) that

p
ys Per —2 L(y 5+m 2)1/2(y 2+m 2)1/2

3f
—(yi ys+mims)]&0 (1.2)

t the inequality follows from the Schwarz inequality
(a( ~b~)a b applied to the four-dimensional vectors
(yi,mi) and (ys,ms)$. Thus the second reason is that
when particles obey the correct energy-momentum—
mass relationship, p" is a spacelike vector Lassuming

(yi, mi)&(ys, ms)). The actual velocity of the 6ctitious
particle would therefore be greater than the speed of
light (~dx/dt~ = ~y/p'( &c), so we cannot even regard
p" as the momentum-energy of a particle whose mass is
not /t. Thirdly, the sign of p' need not be positive.

The solutions of Eqs. (11) are Eqs. (8) and

x=x +(s—s.)y/ ,/ttt=t, +(s s,)p'//t. —(13)

If p' is negative, Eq. (13) tells us that t will become
increasingly negative as s increases. This is perfectly
proper: It does not mean that "time is running back-
wards" or anything of the sort, since the particle's
time coordinates are not t, they are t; 'Equatio. n (13)
also tells us that the two particles asymptotically have
a spacelike separation, since as ~s~ -+ oo, we have
x' P +s'(y' —p")/—/t'-—+ +

The considerations of the last paragraphs are relevant
to the scattering problem, because it is asymptotically
a free particle problem. Irt the sctttterirtg problem, the

particles start out artd eld up /Jf tt sp/Jcelihe separatioN.
Actually, we have not quite shown that the particles
end up at a spacelike separation when there is in-
elastic scattering Lg( —P,s)=m Wmi as s —++co),
since in Eq. (12) we have chosen g(—ps) =m, . How-
ever, we shall shortly see that as a result of the dy-
namics, y' —p" is the same finally (s —++co) as
initially (s -+ —0o ). Therefore the inequality (12)
holds for outgoing particles since it holds for incoming
particles, from which it follows that the outgoing
particles achieve a spacelike separation as s —++oo.

As a matter of convention, we shall always choose
p')0 as s~ —co (if pe is negative, we need only
exchange particles 1 and 2 to make it positive) so that

r The equation of motion dt;/dr= pto/m; [Eq. (2)], which also
holds when there is an interaction, assures that t; will increase
with s provided the particle's energy p is positive. If there is a
particularly strong interaction, however, p; may become negative
during part of some trajectories. In these cases, x; will be three-
valued over an interval of t;. This "doubling back" of the relative
event world line may be interpreted as particle-antiparticle
creation, following Wheeler and Feynman t R. P. Feynman,
Phys. Today 19, 31 (1966)j. This is not "permanent" particle
creation because the Gnal asymptotic world line will still be
single-valued.
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for large negative s, t either increases or remains con-
stant as s increases.

For our last topic dealing with noninteracting parti-
cles, we examine the nonrelativistic limit ~v;~ /c=O (we
shall not set c=1 for this discussion). Inserting the
de6nitions of y and p' LEq. (5)] into Eq. (11),expand-
ing in powers of v;=—p;/m; and retaining only the leading
terms gives us

dx/ds=vt —Us, dt/ds= s (vp/c' vs'/c—') (14)

We see that the temporal separation changes much
more slowly than the spatial separation, in the non-
relativistic limit. When c is set equal to ininity, the

temporal separation becomes a constanPof the motion. If
the initial condition then speci6es that the temporal
separation equals zero, we obtain the,'Galilean. -invariant
theory. It wiH be shown in Sec. VIII that for any
problem, the Galilean-invariant theory is obtained in
the limit as c-+ co and c(t;—t;) —+ 0.

V. SCATTERING OF TWO PARTICLES IN
ONE SPATIAL DIMENSION

The one-dimensional case shall be treated 6rst be-
cause of its relative mathematical simplicity as com-
pared to the three-dimensional case, and because it is
easier to visulize a relative world line in the x-t plane
than in the four-dimensional x-t space. However, since
the one-dimensional trajectories correspond to those
three-dimensional trajectories which have zero angular
momentum, the one-dimensional results have a some-
what limited generalization to three dimensions.

The Hamiltonian for two interacting particles is

P~ (pl pl )/2mt+ (ps —ps )/2ms

+V+([(xr—xs)s —(tr —ts)sl'ts) (15)

I our notation is x;"=—(x;,t;), p;"—= (p;,p;)j, which is
constructed from the Galilean-invariant theory with
potential V+( ~

xt—xs
~
). Immediately the following

worry appears: What if the dynamics is such that the
argument of V+ becomes imaginary' If V+ depends
upon an odd power of its argument, then V+ and the
dynamical variables will become complex, which is
physically meaningless. To insure that this does not
happen, we simply deQne a new potential function that
is always real and which equals V+ for p'= (xr —xs)'
—(tr-ts)') 0, e.g.,

V= tt( ')V+(v'p')+—tl( p') V (V' p')— -—
Lwhere 8(z) =1 for s&0, 8(z) =0 for s(0j.Of course the
Galilean theory furnishes no guidelines as to what the
function V may be. We shall pay special attention to
those trajectories for which the two particles remain at
spacelike (or lightlike) separation for all s, since for
these trajectories, the choice of V is immaterial. In
particular, we shaH concentrate on showing that the
important elastic scattering trajectories are alt "spacelihe-
seParated" traj ectories $p'(s) &0 for ~ &s& —~ j.

Our aim in this section will be to 6nd the general
solution of the scattering problem, in the form of
quadratures. First, we write the Hamiltonian L(Eq.
(15)j in terms of center-of-mass and relative-event
coordinates:

h= (p' —p")—!»+V((x' —t')"')

The Hamiltonian equations of motion are

(16)

dx/ds= p/t dp/ds= L&V (p)/-dp jxlp,
(17)

dt/ds p'/pt, dp'/ds= —pd V (p)/d p jt//p,

or more simply, d'x"/ds'= —V'(p)x"/p. We seek those
solutions x(s), t(s) of the differential equations which
satisfy these initial conditions at s=s, :

x(s.)=x. , dx/ds(, .=p./p= p,./m, p,./m, ;—
(18)

t(s.)= t. , dt/ds ~,=,.=p.'/p= pr. '/mr —ps.'/ms. —

We shall assume that V vanishes (or is negligibly small)
for a sufficiently large value of its argument: say for
p p pp where po, the range of the potential, is some
positive number. ' The choice of initial conditions will
be such that x,'—t,'&&po', so that the relative event
world line will be initially a straight line.

There are two important constants of the motion. Of
course, one is h. It follows from the vanishing of V at
s= s and the two-dimensional version of the inequality
(12) that the ualste of h= p, p,/2' is positise. The other
constant of the motion is

N~xp' pt. —

It is easy to show directly that dE/ds=O, using Eqs.
(17). Alternatively, E is the generating function of
Lorentz transformations. That is, if x=xcoshw+t
)&sinhw, t= t coshw+x sinhw, p =p coshw+ p' sinhw,

e We shall also assume that V(p) vanishes (or is negative
valued) for suKciently large negative p': say for p'( —pes, where
pP is some positive number. This will ensure that the relative
event vector becomes spacelike and not timelike as s —+ ~, as
consideration of the "energy diagram" associated with Eq. (20)
(et seq. ) will make apparent.

H=P P/2M+p p/2@+V(p).

)The notation is: x"—= (x,t), p"—= (p,p), X"=(X,—T),
P"= (P,P—'); p'= x —P—; given a two-vector a", we write
a.a= (a')' —(a')' instead of using our previous notation
as= (a')' —(a' )s, in order to avoid writing, e.g.,
p'= p' —p".j The 6rst term in the Hamiltonian gives
rise to a center-of-mass motion indentical to that dis-
cussed in the previous section. If the initial conditions
are that at s=s„particles 1 and 2 have momenta pr„
ps, and energies (pr,s+mrs)'ts, (ps +mss)'ts, then

pre+pse~ P'= (pre'+mr')'t'+ (ps.+ms )'ts are con-
stant for all s.

The dynamics is contained in the second and third
terms of the Hamiltonian
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p'= p' coshw+ p sinhw, and F(x,t,p,p') is any function,
then

F(xA p p') =F(x,t,p,p')+w/N, Fj
+ (w'/2') I:N, LNP')3+

(The brackets are the Poisson brackets defined in
Sec. II.) If h is substituted for F in the above equation,
we see that the manifest invariance of h implies that
fN, h7=0, and therefore dN/ds=0. Actually, it will be
most useful to think of E as "angular momentum" in
the x tplane-(since p 'N= xdt/ds tdx/—ds), rather than
as a generating function.

Since there are four dynamical variables and we know
of only two constants of the motion, we must 6nd two
quadratures in order to solve the problem. The first
quadrature, obtained by expressing Eq. (16) in the
form of a differential equation, will enable us to 6nd
p(s). In order to do this, we must write p p in terms
of p(s). The square of Eq. (19) is

N'=(x p)' —p'p p,
and using dp'/ds= 2x p/p (Eq. (1'7)j we have

p p= (I"/41') (di'/d~) N'/I'—
which, inserted into Eq. (16), yields

8p(dp'/ds)'+/V(p) hgp'= N—'/2y (20)

This is a most useful form because of its similarity to
the one-dimensional energy-conservation equation of
ordinary Galilean mechanics Lthe equivalent form
h= ,'p(dp/ds)'+V-(p) N2/2pp' is n—ot as useful because
dp/ds becomes imaginary for p'(0, so that (dp/ds)'
is not positive

definite

.
Visualize an "energy" diagram of Eq. (20), where

the effective potential" LV(p) —hfp' is graphed versus
p'. The "interaction term" V(p)p' is superimposed upon
the "constant force" term —hp', which tends to push
the particle in the direction of increasing p' (since h is
positive). If V(p)p' —+0 as p'-+0 (which we shall
assume, for simplicity), the effective potential vanishes
at p'= 0. This has the consequence that, for all potentials
satisfying LV(p) —h]p~(0 for p')0 (this includes all
attractive potentials), the only trajectories which do
not become timelike-separated for some range of s are
those for which the effective energy" N'/2p vanishes
(i.e., N=O). For a strong repulsive effective potential,
where LV(p) —h)p')0 for p )0, the trajectories are
spacelike-separated for all

~
N

~
between zero and. some

maximum value. For ~N~ above this maximum value,
the trajectories become timelike-separated over some
range of s.s

It is also useful to visualize the relative world line
on an x-t diagram. The spacelike-separated region lies
outside the light cone. In this region lie the two hyper-
bolas x'—t'= po', beyond which the potential vanishes.
W'e may visualize a relative world line starting as a
straight line of slope p'/p (1&p'/p&0) in the negative-

x—negative-t quadrant. As s increases, the relative world
line enters the left-hand hyperbolic potential "bound-
ary. " It continues through the potential region, and
may emerge via the right-hand boundary. This "trans-
missive" scattering world line must obviously cross
inside the light cone, where p is timelike, unless it
passes through the origin (in which case N=O). The
line may also veer inside the potential region, and exit
from the left-hand potential boundary through which
it entered. This is "rejective" scattering, for which
the relative world line may or may not cross inside
the light cone.

The erst quadrature we seek is the integral of
Eq. (20):

s—const= &2
P dp2

(21)
&N'+2- t:h- V(.)3"'

~(~) ~(&.)= (N—/~) d~'/~'(~').

Equation (24) is all that is required for spacelike-
separated trajectories. In this case, we see that n(s)
monotonically increases (if N)0), decreases (if N(0)
or remains constant (N= 0). If the trajectories become
timelike-separated, the equation

u(s) = (N/p) ds'/p'(s')+ const

must be used as well.
This completes our determination of the general

solution of Eqs. (17) with initial conditions (18). Once
p'(s) and. n(s) Ln(s)$ are known, one can determine
x(s) and t(s) using Eqs. (22), while p(s) and p'(s) can

The negative sign is used when dp'/ds(0, in which
case the constant is s and the lower limit of the integral
is p'(s, ). The positive sign. is used when dp'/ds)0, in
which case the lower limit of the integral is the solution
of N2+2pp Lh —V(p)j=0, while the constant is the
value of s corresponding to that value of p'.

The second quadrature is most simply expressed in
terms of a new variable. We define

x=—p cosho. , t—=p sinho. for x'—t'& 0;
(22)

x=—p sinho, , t=—p cosh' for x' —t'&0.

Curves of constant p (p) are hyperbolas outside (inside)
the light cone; curves of constant n (a) are straight
lines of constant slope outside (inside) the light cone. We
hand that

dn/ds=d(tanh '(t/x))/ds=N/pp' (23)

which follows from the equations of motion t Eq. (17)]
and the definition of N LEq. (19)). Similarly, da/ds

N/y p2= N/p p' —(since in the timelike region,
p'= x' —P= —p'(0). Upon integration we have
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be found by differentiating x and t LEqs. (17)g. The
four constants h, S, p'(s ), &r(s,), which appear in the
solutions (21), (24), can be evaluated in terms of the
four initial conditions x, t„p„and p, .

my y 1Ãy @$2' F2=8$] SZ2 ~ (26)

Any two final masses consistent with Eq. (26) can arise
from suitably chosen trajectories in a suitably chosen
potential. Even an imaginary mass is possible.

According to Eq. (25), elastic scattering occurs when

P(Pb —P,)—P'(Pb' —P,)=0. In the center-of-mass ref-
erence frame, where P= 0, this elastic scattering condi-
tion is pb' ——p, . It then follows from Eqs. (6) that
pi '= pib' and p&,'= p»', as expected. From asymptotic
h conservation Pb2 —(Pb')'=P, '—(P,')' we conclude
that

~ pb~ =
~ p, ). When pb

———p„ the scattering is
refiective (notice that if P= 0, then pi ———p2

——p) while
the scattering is transmissive when pb ——+p, .

We will now elucidate some interesting properties of
regectiwe elastic scattering in the center-of-mass refer-
ence frame.

l. tg= —t

The initial conditions at s=s were de6ned in Kq.
(18). We now define some useful "final" conditions.
The relative world line crosses the point (x„t,) at s„
continues through the interaction region, and Qnally
returns to the spatial coordinate x at some larger value
of s, which we shall call s~. When s=s~, the considera-
tions of the previous paragraph tell us that pb ———p,
and Pb' ——P,'. In order to relate 4 to t„we employ
these relations and the constancy of X $Eq. (19)$:

X,P,' P.t.=XbPb' Pbtb= X—,P ' (—P,)t—b, —

VI. ELASTIC SCATTERING IN ONE
SPATIAL DIMENSION

The masses of the particles after the scattering is
completed will depend upon the values of p, p' for
large s. If we aux subscript b's to momenta, energies,
and masses to denote their Anal values, it follows from
the definition rN;b2=— p, b

—p;b, from Eqs. (6), from the
constancy of P"=P~', and from the asymptotic h-con-
servation law pb. pb ——p p that

mib' ———(ribiP/M+ pb) (miP/M+ pb)
= ribi2 —(2mi/M)P (pb —p.)

(25)

mob' ———(m2P/M pb) (mm—P/M pb)—
= rlbb+ (2rN~/M)P (pb p.)—

By eliminating P (pb —p ) from Eqs. (25) (or alter-
natively, by using asymptotic H-conservation pib2/2rli
+p»'/2mb ——pi, '/2mi+ p&,'/2mb), we find that the
6nal masses squared obey the linear relation

so that tb ———t . We summarize the "final" conditions

x(sb) =x. , dx/ds
i
„= p.—/p, ,

t(sb) = i.—, dt/ds
i
„=p.'/N.

(27)

x(s.) =x(sb+s, —s,)=x, ,

dx/ds i&,.= —dx/ds
i „=p./p, ,

t(s,) = t(sb+s, —s,)=t„—
dt/dsi&, .=+dt/dsi „=p.'/IJ, ,

(29)

which are identical to the intial conditions on x"
t Eqs.

(18)j. Since x"(s) and x"(s) satisfy the same equations
and initial conditions, they are identically the same
functions.

3. dy'/de=0 when 1=0

From the equation t(s) = t(sb+s,—s) comp—uted at
s=-', (sb+s, ), we find that t(-', (sb+s,))=0.

By taking the derivative of x(s) =x(sb+s, —s) with
respect to s, and evaluating the resulting equation at
s=-,'(sb+s, ), we find that dx(s)/ds~l&, b+„i——0.

Now we see that dp'/ds~ &„~,,i~2=0, since dp/ds
= 2xdx/ds 2tdt/ds and dx/—ds

~ &„+,,&~2
——t(~~(sb+s, ))=0.

4. y'(s)&0 for all s

Finally, we are in a position to prove that all re-
Qective elastic scattering trajectories are spacelike-
separated. Consideration of the di6erential equation
(20) for p'(s) and it associated "energy" diagram shows
that in a scattering problem there is only one minimum
of the function p'(s) and no maximum. But we have
just found that p'(s) is stationary at s=-', (sb+s, ).
Therefore, it is at this value of s that the unique mini-
mum occurs, and so

p'(s)&x'(l(s +s.))—~(l(s +s.))
=x'(-,'(sb+s, ))—0&0.

This treatment of reQective elastic scattering is
quite similar to the discussion of three-dimensional
elastic scattering (next section). On the other hand,
transmissive elastic scattering is somewhat unusual.
To begin with, we can prove that all transmissive
trajectories satisfying E=o are elastic scattering
trajectories. Since

p 'E=dxt/ds tdx/ds =x'd(t/—x)/ds =0

2. x(s) =x(sb+s —s), t(s) = —t(sb+s, s)—

Now we can show' that a relative worM line for
reQective elastic scattering is unchanged if it is reQected
across the x axis and run backwards. We de6ne

x(s)=—x(sb+s, —s), t(s) = t(sb+—s, s) . —(28)

One can easily see that x(s), t(s) satisfy the same second-
order differential equations that x(s) and t(s) satisfy
LEqs. (17)). Furthermore, the pibal conditions on x"

jEq. (27)j determine the igi tia1 conditions on x":
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and cV=xp0 p—t=0 imply that t/x= po/p=const (we
need not consider the possibility that x=0), these

relative world limes are straight. Although p0(s) and p(s)
change during the interaction, they maintain their ratio,
so that p, '/p, =pp/p&. This equality, together with
asymptotic h conservation p,2—(p,')'= pi2 —(pi, ')' im-

plies that either pq'= —p, ' and pi,
———p. or else that

pp= p, ', pq= p, . The latter corresponds to elastic
transmissive scattering (the former corresponds to an
inelastic reflective scattering).

The E=O elastic transmissive scattering has many
of the properties of elastic reflective scattering:

(1) tq t,——. The u—seful final conditions for transmis-
sive elastic scattering are that the relative world line
travels froin the point (x„t,) at s, through the scattering
region and eventually reaches the spatial coordinate
—x, at some larger value of s, which we shall call s~.
If we define t(s&)—= t&, the constancy of the ratio t/x
requires that tq= —t,.

(2) x(s)= —x(sq+s, —s), t(s)= t(sb+—s, s). It—is

readily verified that

x(s)= x(—si,—+s, s), —t(s) —= t(si,+s, —s)—
satisfy the same differential equations and initial
conditions that x(s) and t(s) satisfy, so that they
describe the same relative world line. Note that x(s),
t(s) describe the world line reflected through the origin
(this differs from the reflection symmetry of reflective
elastic scattering) and run backwards.

(3) dp'/ds=O whee t=O. Since the relative world
line passes through (x,t) = (0,0), both p'= 0 and
dp'/ds=0 when t=0.

(4) p'(s) &0 for att s. Since the relative world line is
a straight line which has a slope p'/p of magnitude less
than 1, and it passes through the origin, it lies wholly
in the spacelike region.

The question arises as to whether there are any
transmissive elastic scattering trajectories other than
those which satisfy E=O. We will just state, without
proof, that for some (not all) potentials it is possible
to specify initial conditions of some transmissive elastic
scattering trajectories which satisfy neither E=O, nor
p'(s)) 0 for all s. We shall regard these trajectories as
anomalous: They can be eliminated by a suitable choice
of V for p2(0.

The hallmark of the elastic scattering relative world
lines (when P=O) is their reflection symmetry in the
x—t plane. Crudely speaking, the particles leave the
interaction region on trajectories which are the "re-
verse" of the trajectories on which they entered. The
other interesting property of the elastic scattering
trajectories is that they are spacelike-separated (of
course, there are inelastic scattering trajectories which
are also spacelike-separated). This property is also
possessed by the trajectories of the Galilean-invariant
theory. In both theories, the elastic scattering trajecto-

ries are determined by the same potential function of
positive argument.

h=-:LY—(p')'5+ V((»' —t'P')

gives rise to the equations of motion:

dxlds= ylp, dy/ds= —
Ld V (p)/dp5xl p,

dt/ds= p /p, dp'/ds= fdV—(p)/dp5tl p

(30)

(31)

The interesting new feature is that there are six con-
stants of the motion. In addition to h Lwhich is positive
because of the inequality (12)5, there is the well-known
generator of homogeneous Lorentz transformations

E"~=x~p" x"p~— — (32)

which satisfies d¹"/ds= 0, as may be verified by direct
differentiation and use of Eqs. (31).¹"can be written
in terms of two three-vectors

j—=x)(y and n= xp' yt. — —

It might be concluded that Eqs. (33) contain six in-
dependent constants of the motion but there are only
Gve because

j n=O. (34)

Of course j is the angular momentum, while n might
be thought of as components of "angular momentum"
in each space-time plane. How'ever, we 6nd it preferable
to think of n simply as a vector in three-dimensional x
space. It lies in the plane of the scattering, since it is
orthogonal to the angular momentum LEq. (34)5.
We will shortly see that in the center-of-mass reference
frame, the elastic scattering trajectories traced out by
the relative position vector x(s) are unchanged by
reflection across the vector n.

We have eight dynamical variables and six constants
of the motion, so again we need two quadratures. The
quadrature for p(s) is once more obtained by eliminat-
ing p from the expression for h. We calculate
g2—Lg ps@Atty

1P= (x p)' —p'p'=n' —j' (35)

Using dp'/ds=2x p/p LEqs. (31)5, we again obtain
p'= (p'/p') (dp'/ds) 1P/p', and upon —insertion into

VII. SCATTERING IN THREE SPATIAL
DIMENSIONS

This section will contain essentially a duplication
of the discussion that appeared in Secs. U and UI.
To And the quadratures of the three-dimensional
scattering problem, we consider the Hamiltonian

H =pi2/2m, +p22/2m, +V (p) =P'/2m+ p'/2@+ V (p)

(p'=—x2—t; we have returned to the three-dimensional
notation of Sec. IV, e.g. , p =y' —p"). The center-of-
mass motion caused by the term P'/23f has been
discussed. The interaction part of the Hamiltonian
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Eq. (30),

(p/8)(dp'/ds)'+LV (p) I—)p'= (n' P—)i» (36)

The only difference between Eq. (36) and its one-
dimensional counterpart (20) is that in three dimensions
the constant 3l' can take on negative as well as positive
values, because the angular momentum j need not be
zero. Upon consideration of the energy diagram associ-
ated with Eq. (36) we see that, since we assume the
effective potential LV(p) —h)p' vanishes as p-+0, all
trajectories for which the effective energy N2/2p is
negative (or zero) are spacelike-separated trajectories.
When N'&0, the trajectories may or may not be
spacelike-separated, depending upon the position and
height of the maximum value of the potential, just
as in the one-dimensional case.

The 6rst quadrature, the integral of Eq. (36), is
identical to Eq. (21). The second quadrature is most
simply expressed in terms of new variables n (or n):

These equations are a bit more complicated than the
one-dimensional version (24) l which may be obtained
by letting N'=n' in Eq. (41b)). The con.stants and
signs in these equations may be obtained from the
initial conditions of the problem. We can set the lower
limit of the integral in Eq. (41a) equal to s, Land there-
fore the constant = &sin '((—N'/n')'" sinhn, )] be-
cause the equation is valid for all s (the trajectories
never become timelike-separated when N2(0). We
observe that Eq. (41a) restricts the magnitude of
sinh'n according to sinh'n(n2/( —N2). This restriction is
also apparent from Eq. (39), where the right-hand side
is forced to be greater than or equal to zero since the
left-hand side is the square of a number.

When E'&0, the trajectories may become timelike-
separated and. Eq. (41b) must be supplemented by a
quadrature for n. The analog of Eq. (38) is

d coshn/ds= —(p'p) 'n x.

l xl =—p coshn, t=psinhn, —x'—P&0;

l xl —=p sinhn, t= pcoshn, —x'—P&0.
(37)

Equation (39) becomes (n x)'= p'(N' cosh'n —n') from
which we see that cosh'n&n'/N'. The differential
equation

Equations (37) are identical to their one-dimensional
counterparts (22), except that here we are dealing
with the lxl t half p/al—e in-stead of the x t plane, so-
that the ranges of the variables must be suitably
restricted (i.e., p&0, and p&0, n&0 or p&0, n&0). We
compute d sinh n/ds,

d sinhn/ds=(p2p) ~(x2p' —tx p)=(p2p) ~n x, (38)

by using Eqs. (31) and the definition (33) of n. In
order to obtain n x in terms of n and p, we 6rst note
from Eqs. (33) that nXx=jt. This expression, together
with the identity (nXx)2=n2x2 —(n x)' and the ex-
pression in (35), N'=n' —j' yields

(n x)'= n'p'+N'P= p'(n'+N' smh2n) . (39)

Putting Eq. (39) into Eq. (38), we obtain,

(n2+N2sinh2n) '/'d smhn/ds=+(p2p) '. (40)

The integral of Eq. (40) depends upon whether N2 is
is positive or negative. After a little manipulation, the
results are

n2 &/2 (—N2) v2

»nhn= ~l
E—N' 4p, ' j

(N2 COSh2n —n2) //2d COShn/dS =+ (p2p)

(using p'= —p') has the solution

rn'~"' N2~'/' ds'
coshn=

l

—
l

cosh
&N2J t '1 +const . (41c)

p'(s')

This completes the solution. Once p'(s) and n(s)
l n(s)) are known, one can determine

l x(s) l
and t(s)

from Eqs. (37). Six other dynamical variables (e.g.,
y, p', y, 2) can be written in terms of lx(s) l

and t(s)
and the eight initial conditions x,",p,", using the expres-
sions for the six constants of the motion h, gt"".

We proceed to investigate the properties of the elastic
scattering trajectories in the center-of-mass frame
(where P=O). According to Eq. (25), elastic scattering
occurs when p2'= p, '. This result, together with
asymptotic t'2-conservation p22= p,', tells us that
I1221 =112.l.

Four properties of elastic scattering trajectories,
similar or identical to those that appeared in the dis-
cussion of one-dimensional scattering, will now be
presented. In the following discussion, we will assume
that n/0 and j/0. The special cases of n=0 or j=0
will be taken up separately.

ds'
+const, N2(0.p'(s')

( n2 1/2 —(N2 1/2

sinhn=al — sinh l-
LN2 kp'

d$'
X — +const, N'&0.

p'(s')

(41a)

(41b)

1. tr,=—t~

The relative world line at s=s passes through the
point (x„t,), proceeds through the interaction region
and emerges. Eventually, at some larger value of s
which we shall call sq, the magnitude of the radius
vector again equals l x, l. The time coordinate t(s/) —=t2
will now be related to t by use of the 6nal conditions
x22=x,2, y22=12,2, p2'= p, ', and the constancy of n, j.
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We first need to relate the angles between x, n, and
p to the angles between x&, n, and p&. By equating
the value of j'=x'p' —(x p)' at s=s, to its value at
s=ss, we find that (x, .p,

~

= (xs.ps~. In fact, because
p is an incoming vector while p~ is an outgoing vector,

xa'pa+xs ps= 0. (42a)

Next, by evaluating n&(p= jp' LEq. (33)j at s= s, and
at s=sq, we find that nXp, =nXpq. This implies that
either

Il '
pa, +Il p s=0 (42b)

A. xs=2n n x,/n' x„ps=—p, —2n n p, /n'

All the anal conditions have not yet been related to
initial conditions; i.e., expressions for xq in terms of x,
and p& in terms of p, are still lacking. Ke now remedy
this deficiency. As a preliminary, we need to compli-
ment Eqs. (42) by a relation between n x, and n xb.

By computing n x=x'p' —x pt at s=s, and at s=s~
and comparing these two expressions, it follows from
relations already derived that n bisects the angle be-
tween x, and x~.

Il Xg=n'Xg. (42c)

Next we will show that x,+xs and p,—ps are parallel
to a. Indeed, j, n, and jXn form an orthogonal set of
vectors, of which I and jXn lie in the plane of the
motion. Taking the scalar product of j with the relation-
ship n&&p= jp', and evaluating the result at s=s, and
at s=s~, we see that j.nXp, =j.nXp~. A permutation
of the variables in the triple product leads to (ps —p.) .
jXn= 0. Similarly, by taking the scalar product of j
with the relationship nX x= jt, and evaluating the result
at s=s, and at s=ss, we find that (x,+xs) j)&n=0.
Therefore, we may write x,+xs=An and ps p,=Bn-
The constants 2 and 8 are easily evaluated by taking
the scalar product of these equations with n and
employing Eqs. (42b) and (42c). The whole set of

f'The two cases where y =yf, are the cases of no interaction,
and forward scattering. When there is no interaction, Eq. (42b)
is satished, for in this case n. y =n pf,

——0 (see the discussion
in Sec. VIII). There also exist forward-scattering trajectories
satisfying Eq. (42b), when the potential is attractive. For certain
potentials, it is possible to 6nd elastic scattering trajectories
satisfying p =pq but not satisfying Eq. (42b). This represents
forward scattering of an anomalous nature, just as do the one-
dimensional transmissive scattering trajectories for which E&0.
Such trajectories may be eliminated by suitably altering the
potential function for p'&0.

or p, =p~. We will exclude this last possibility from
dlscussloll.

If we now evaluate n p=x p p' —pst at s=s, and
s=sb and add the two equations together, we obtain

(ts+t.)p.'= p.'(x. p.+.xs ps) (n—p.+n ps).

The expressions in parentheses on the right-hand side
of this equation vanish on account of Eqs. (42), which
gives the result t~= —t, that we seek.

2. x(s)=2n n x(ss+s, —s)/n' x(s —+ss,—s),
t(s) = —t(ss+s, s)—

Now we are able to show that the relative world line
is unchanged if x is reQected across the vector I, the
sign of t is reversed, and the whole trajectory is run
backwards. We define

x(s)=—2n n.x(ss+s, —s)/n' —x(ss+s, —s),
(44)

t(s) —= t(s2+—s, s) . —
It is straightforward to show that

x(s)2—t(s)'= x(2s+s.ss) t (—ss+—s. s), —
and then to show that

d'x" (s)

ds

v'((x2 —t')'/')x"

(x2 t2) 1/2

follows from the equations of motion (31) for x". The
initial conditions for x" at s= s, are related to the final
conditions for x" at s=sb, and when Eqs. (43) are
employed, we discover that x'(s, )=x"(s,), dx"/dsj, .
=dx"/ds~ „. Since x"(s) and x"(s) satisfy the same
equations and initial conditions, they are identically
the same functions.

3. dy'/ds=0 when t=0

By evaluating the equation t(s)= t(s&+s, s) a—t-
s=-2,(ss+s.), we conclude that t(-', (ss+s,))=0.

If we compute n=xp' —pt at s=-2'(ss+s, ), we find
that n=xp'~ (»+,.)/2

—0, so that x ss paratlel to n whee
/=0.

Upon taking the derivative of Eq. (44) with respect
to s )after setting x(s) =x(s)j, and evaluating the result

y(s) = —2n n p(ss+s. —s)/ns+p(ss+s. —s)

at s=22(ss+s, ), we discover that n y( 22(ss+s, ))=0.
Since p is perpendicular to n, it is also perpendicular
to x at s= 2(ss+s,).

It is now clear that

(tP/dsl (~(+~ )/2 2/I (x'y tP ) I (~2+~ )/2

since x p and t both vanish at s=-2'(ss+s, ).

4. y2(s)) 0 for all s

The proof of this statement is identical to that
employed in the case of one-dimensional reQective

relations may then be tabulated:

x.=2n n xs/n2 —xs, p.= —2n n ys/ns+yb,
(43)

tu thy Pu Pb

x, is the reQection of the vector x~ across the vector
n, p, is the reQection of the vector p~ across the vector
jX~.
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elastic scattering, and the reader is referred back to
that paragraph.

In the above discussion, we have assumed that j/0
and n&0. We shall now examine the elastic scattering
trajectories which satisfy j= 0 and/or n =0, and
demonstrate that they possess the four properties
itemized above.

When j=O and n/0, the three-dimensional problem
essentially reduces to the one-dimensional problem.
Since j=O implies that p and x are parallel or anti-
parallel, we may pick our three-dimensional spatial
coordinate system so that x and p lie along the x axis
during all of the motion. The vector n thus points along
the x axis and is of magnitude xp' —p, f. It then can
be seen that all of the three-dimensional results are
identical to the one-dimensional results. For example,
the quadrature equation (41b) for n reduces to Eq. (24)
when E2 is set equal to n', while the diGerential equation
(36) for p' reduces to Eq. (29). The four elastic scatter-
ing properties are also identical: The invariance of the
world line with respect to reQection across the x axis
(Sec. VI, property 2 for reQective scattering) is identical
to the invariance of the world line with respect to the
combined operations of reQection across the n vector
(which has no effect at all) and reversal of the sign of t

(Sec. VII, property 2).
When a=0, it follows from p 'n=xdt/ds tdx/ds-

Pd(x/t)//ds=—0 that there are two possibilities:
either x=constXt (the constant is p/p') or else t=0
The former possibility requires that x)&p= j=0, and
the scattering must be elastic (from the constancy of
p/p' and asymptotic h conservation). Since j=0, all
the comments of the previous paragraph apply, except
the statements about the direction of n, which is a
zero vector. Actually, since n bisects trajectories, in
the limit as p~-+ p„ the direction of n becomes per
persdicular to the trajectory (although n-+0). The
invariance of the world line with respect to reQection
through the origin (Sec. VI, property 2 for transmis-
sive scattering) is identical to the invariance of the
world line with respect to the combined operations of
reflection across a vector perpendicular to the tra-
jectory and reversal of the sign of t (Sec. VII, prop-
erty 2).

The trajectories for which t=0 are especially inter-
esting. In fact, when t(s) =0, the equations of motion
(31) become p'=ddt/ds=O, dp'/ds= V't/p=0, and-
(since p= [x~)

dx/ds= p/p, dy/ds= —V'(~x~)x/[x[ . (45)

These are just the equations of relative motion of the
Galilean theory. In the present Lorentz-invariant
theory they describe the scattering of particles whose
initial and 6nal masses and momenta are such that
p.o= p&o ——0. These are not necessarily elastic scattering
trajectories, even though all solutions of Eqs. (45)
satisfy the relation p&2=p, 2. Elastic scattering only

occurs if P (pi, —p,)=P (p&—p.)—0=0 [Eq. (25)j,
and P may not be such as to satisfy this condition.
However, in the center-of-mass frame where w'e have
been analyzing the properties of elastic scattering, P=0,
and Eqs. (45) together with the relations 5=0, p'=0
do describe elastic scattering. It is the elastic scattering
of equal-mass particles [since p,0=p((p, 2+mi2)'i~/m&
—(p,'+@&22)'"m&) only vanishes if mi ——m2j.

These equal-mass elastic scattering trajectories may
easily be shown to possess the last four properties that
the other elastic scattering trajectories possess. For
example, although n vanishes, its direction (in the
limit as t~0, p' —+0) approaches that of the well-
known bisector of the scattering trajectory described
by Eqs. (45). Reflection across this bisector and re-
versal of the sign of t (which has no effect at all) does
take the world line into itself.

Thus it can finally be concluded that, with the
possible exception of some forward-scattering trajec-
tories, all the elastic scattering trajectories satisfy the
same four properties.

VIII. NONRELATIVISTIC LIMIT; NO INTER-
ACTION LIMIT, BOUND STATES;

ADVANCED ACTIONS

(A) Let us imagine that we have solved the equations
of motion (31) for x(s), t(s) with appropriate initial
and final conditions. We wish to find the limits x„., (s)
=limx(s), t ., (s) —= limt(s) as c ~~, assuming that
these limits exist.

It may first be observed that all trajectories become
elastic scattering trajectories in the limit as c~ ~.
The leading terms in Eq. (25) are

m1, 25 ~1,22 2

and the second term on the right-hand side of this
equation vanishes as c —+ ~ [we assume that the initial
particle velocities are not expressed as fractions of c,
so that each p/c —+ 0 as c —+ ~; the leading terms in
each p' go as vi2 —v22).

The equation of motion dct(s)/ds= p'/pc reduces to
the equation dct„, (s)/ds=O in the limit a.s c~ ~, so
ct„., is a constant. From the equation of motion
c 'dp'(s)/ds= —V'(p)c1/p taken in the limit as c —+ ~,
we see that the constant value of ct„, is in fact zero
[assuming V'(p)WO: see Eq. (14) et seq. for the case
in which V(p) =Oj. Now if ct ., =0, the other two equa-
tions of motion (31) become

dx , /ds= p , /p, dp , /ds= —V'([x , ])x„., /[x , ),
which are the equations of the Galilean-invariant
theory. While x„, and a solution x of Eqs. (45) are
identical functions of s, we emphasize that they are
interpreted di8erently. x is a solution of the Lorentz-
invariant equations for certain special initial and Gnal
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conditions, while x ., is the c—+ ~ limit of any solution
of the Lorentz-invariant equations.

(B)Although no-interaction trajectories are not really
scattering trajectories, they obviously do satisfy the
elastic scattering asymptotic conditions, and it is of
some interest to exhibit the way in vrhich they can be
made to possess the four properties of elastic scattering
trajectories. The free-particle vrorld line solutions are
x,"(s)= (s—s;,)p;"/rn;+x;, ")Eq. (3)j.Without affecting
the vrorld lines for particles 1 and 2, we may choose
s&, and s2 so that for some value of s—say s=0—the
trajectories satisfy the two conditions t=0 and dp'/ds
=2p x/p=0 (these two conditions lead to two linear
equations in s&, and sm which can be solved). Then the
expression for x"=x~"—xg" becomes

x(s) =sp/p+xo, t=sp'/p (where p xo——0). (46)

A relative world line (46) is the limit of an elastic
scattering relative world line as V ~ 0. The other vrorld
lines (Eqs. (3)j for which si, and sm, have not been so
chosen are the V —+ 0 limit of inelastic scattering vrorld
lines.

It is straightforward to verify that Eqs. (46) possess
all the properties of elastic scattering trajectories. The
vector n=xop' satisfies n p=0, and bisects the tra-
jectory. Likewise p'= s'p'/p, '+xo') 0, the equality
occurring only if the tvro particle world lines intersect
at s=0 (i.e. xo——0).

(C) The difiiculty in the two-particle bound-state
problem is that there is no relationship which plays
the role that the asymptotic energy-momentum —mass
relationship plays for the scattering problem. From the
point of vievr of consistency of the theory, the most
satisfactory way to obtain a bound state would be to
consider a four-particle scattering problem. For example,
suppose particles 1 and 2 interact with each other (they
are the particles which will become bound) while

particles 3 and 4 each only interact vrith particle 1.
Starting out with all particles far apart, but particle 4
much farther away from the others, we arrange the
initial conditions so that particle 3 "hits" particle 1
when it is in the vicinity of particle 2, taking away some

energy and leaving it bound to particle 2. At a later
value of s, particle 4 arrives and breaks up the bound
state. The particle trajectories are then completely
determined by the initial positions and momenta and
the initial and final masses of all particles.

When we are given only two particles, hovrever, the
problem is underdetermined. It is possible to have two
diferent bound-state trajectories for which the particles
in both bound states have ideetica/ positions and
momenta at some "instant" of s. In order to uniquely
describe a two-particle bound state, it is necessary to
also specify the inital time and energy coordinates,
and it does not seem that there is a physically justihable
way of doing this, other than the method of the pre-
vious paragraph. We conclude that it is not very mean-

ingful to talk about the bound state of tvro particles
outside of the context of the creation and destruction
of the bound state. The two-particle bound-state
problem is thus intimately bound up with the many-
particle problem, and wc shall not discuss it further.

(D) Because the scalar parameter s correlates the
particle motions at different values of their respective
time coordinates, the forces may be regarded as being
both advanced and retarded instead of being instan-
taneous as in the Galilean-invariant theory. When the
particles are spacelike-separated, the interaction may be
regarded as proceeding faster than the speed of light.
This means that a retarded force viewed from one
Lorentz frame will appear as an advanced force in
other Lorentz frames.

Some unusual features of advanced interactions in a
classical theory have been carefully discussed by
Wheeler and Feynman. " one occurs in the present
theory, for example, if particles 1 and 2 are interacting
with ti(s)) t2(s), and particle 3 (which only interacts
with particle 1) comes along and hits particle 1. What
we observe is a kink in the trajectory of particle 2 at a
time before the collision of particles 1 and 3 occurred.
It appears that particle 2 has anticipated the collision,
and undergone a violent disturbance without prior
cause.

There is another type of advanced interaction which
is peculiar to this theory. Suppose we are considering
the elastic scattering of particles 1 and 2 with specified
initial positions and momenta, and vre calculate the
trajectories of the two particles. Let the interaction of
particles 1 and 2 be fairly long range.

Noir vre consider a nevr problem, by introducing
particle 3 which has a short-range interaction with
particle 1 alone. We wish to calculate the three-
particle elastic scattering trajectories, vrhen particles
1 and 2 have the same initial positions and momenta as
previously. We arrange for particle 3 to hit particle 1,
say at s= 0, when particle 2 is fairly close to particle 1.
What vre will Gnd is that in order to have all three
particles come out of the scattering having the same
masses vrith which they entered, it is necessary to have
the initial time coordinates of particles 1 and 2 be
di8erent for the three-particle problem than for the
two-particle problem. This means that the trajectories
of particles 1 and 2 will be diGerent in the three-particle
problem from what they vrere in the tvro-particle
problem, even eariier than the tinses for which s=0. In
other words, to make the scattering elastic we must
anticipate the interaction with particle 3 and adjust
the initial time conditions. In consequence, a comparison
of the trajectories in the two problems makes it appear
that both particles 1 and 2 have anticipated the colli-
sion, and altered their trajectories long before particle
3 has actually collided with particle 1.

'0 J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 21, 425
(1949).
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IX. PARTICLE CREATION: DYNAMICS OF
TWO-PARTICLE DECAY

We have already commented7 that a strong enough
potential might cause a particle's world line to have a
number of position coordinates for a range of its time
variable in the region of interaction, and this might be
interpreted as particle creation. In such a case the
number of Gnal asymptotic trajectories will still be the
same as the number of initial asymptotic trajectories,
so that it is not possible to "permanently create"
particles in this manner.

It is possible to permanently create particles in a
slightly arti6cial but interesting way. We will illustrate
the concepts involved by describing a particle which
decays into two particles. The major idea is that the
equations of motion allow a meaningful dynamics of
two world lines, one of which extends from t~= —~ to
tl=+ ~, while the other one extends only from t2=0
to t2=+ ao. Particle 1 is both the decaying particle
(as tl~ —ao) and a decay product (as tl —++ao)
while particle 2 is a truly "created" particle since it has
no world line for t~ &0.

For simplicity we shall discuss the decay in the center-
of-mass reference frame. The initial conditions are of
course quite di6erent from those in the scattering
problem. We will set the initial momentum and energy
of particle 2 equal to zero at s=s„and there will be
no loss in generality if we place it at the origin of co-
ordinates: thus x2,= t2.= y2, =p2, =0. Since this is the
center-of-mass reference frame, the decaying particle
must be at rest, so yla

——0, Plb =ml. We shall give particle
1 an initial position coordinate x~„which is not too
far from the origin, but which is otherwise an adjustable
parameter, and we shall make t&, a very large negative
number. This means that —p'(s, )= tl,'—X1,2))0: &&e

particles start og loitk a timelike separatiol.
What we wish to see happen is particle 2 remaining

at rest at the origin of coordinates while particle 1
traces out a straight world line parallel to the t axis
and approaching the origin of coordinates. When
particle 1's world line nears the origin (say when
t.'—x,'= pb2) then both particles interact, and particle
2 starts to move. As s —+ ~ we wish to see particles 1
and 2 at a spacelike separation, tracing out straight
world lines commensurate with new mass values
ml, m2 (m, +m2&ml) and the conservation laws.

The Hamiltonian we use to describe the system is as
usual H= Pl'/2ml+P, '/2m2+V(p). However, the
masses no~ and m2 in the Hamiltonian are the final
asymptotic particle masses, and not the initial masses
as they were for the scattering problem. Moreover, we
must carefully select the functional form of V(p). In
order that particle 2 not change its space and time
coordinates while particle 1 is approaching it, the force
which is proportional to V'(p) must vanish for —aa &p2

& —pb2. We therefore choose V(p) = Vb in this region,
where Vb is a constant to be determined. When p' lies

between the timelike "range" and the spacelike "range"
(—pb2(p'(pb2), V(p) decreases from Vb to 0. The form
of V(p) in this region will help determine whether or
not a decay with satisfactory final asymptotic condi-
tions is possible, as will shortly be explained.

We may "milk" the conservation laws in order to
obtain the information they contain about the final
asymptotic coordinates at s=sb. The consequence of
momentum conservation is y»= —y2b= yb, and energy
conservation yields

ml plb +p2b (47)

Asymptotic H conservation guarantees that —m12/2ml

+Vo= plb'/2ml+ p2b'/2m2. We desire plb' ———m12,

p2b2= —m22, so that if we choose

Vb =m12/2ml —ml/2 —m2/2,

we have at least assured ourselves that

(48)

pl b /ml+ p2b /m2
= (yb'+ml')/ml+ (yb'+m2')/m2. (49)

Equations (47) and (49) may be solved. for p»' and
p2b', which are then expressed in terms of ml, m2, ml,
and yb'. These relations will not have the desired forms
plb'=(yb+m12)'~ ylb' ——(yb+m22)'t unless the initial
coordinate xl, and the potential function are so chosen
that the dynamics produces a Gnal value of yb' satisfying
m —(y 2+m )1(2+ (y 2+m 2)1/2

yb = E 1 (ml+m2) 7[ 1 (ml m2) 7/4ml ' (5 )

We emphasize that the 6nal value of yb' depends upon
the dynamics, and not upon any conservation law. It
is always possible to "sculpt" a shape for V(p) and to
choose an x~, so that the relative world line ends up
with the asymptotic value (50) for yb2.

We have not yet made use of the conservation of j
and n )Eqs. (33)7. From the initial conditions for the
relative coordinates y,=0, p, =tlml/ml& xa= xla, ta= tla,
we see that j=0 and n=xl, tel/ml. By equating n at
s=s, to n as s=sb,

(tlml/ml)Xla= Xbpb' —ybtb,

and realizing that j=0 implies that xb is parallel to pb,
we discover that the decay products are ejected along
the vector xl, . If we align our coordinate axes so that
the x axis points along x~, the y and s coordinates of x
remain at zero, and the problem reduces to a one-
dimensional decay problem. The quadratures (21), (24)
for the scattering problem are the quadratures for this
decay problem as well, since the equations of motion
for the two problems are identical.

It may be expected that a multiple decay or an
inelastic scattering with production may be described
by similar methods.
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X. CONCLUDING REMARKS

This relativistically invariant theory has a number
of useful features, chief among them being that it is
algebraically simple and that it is expressed in Hamil-
tonian form. This latter property is useful both because
it is a familiar classical formulation encompassing a
large body of thoroughly understood techniques, and
because a Hamiltonian formulation of a classical
mechanics is a necessary intermediate step in the
creation of a quantum mechanics out of the classical
mechanics. The question naturally arises as to whether
a quantum mechanics can be constructed out of the
classical theory presented here. In fact, the present
work was undertaken with a view toward investigating
whether it is possible to construct a useful, logically
consistent quantum mechanics in which time is an
operator, and not a scalar parameter.

Suppose one replaces the dynamical variables p;i' by
operators (0/i)8/Bx, „ in the expression (15) for the
Hamiltonian function H (as well as in the appropriately
symmetrized expressions for other dynamical variables).
One may solve the "Schrodinger equation" HP= iBQ/Bs
to obtain a solution P(xi, ti,xu, t~,s) which possesses the
property

d'xi d4x2
~ P )

' =const.

This follows from the conservation of probability in
the eight-dimensional configuration space:

1 pj 2r ~-(PH4 —

SHAN*)

= — +
Oxide' Bxz~J Bs

How can we interpret f? We cannot regard

~ lp(xi, ti~x2, t2,$)
~

d xid x2

as the probability for finding particle 1 in the volume
d'xi about the point x~ at time t~, and particle 2 in the
volume d'x2 about the point x~ at time t2. One reason
is that J'~lt ~'d'xid'x2 is not a constant, yet we know
that the probability is 1 that particles 1 and 2 will be
found somewhere in. space at times t~ and t2. It is clear
that our interpretation of P, our use of it to make
predictions, and the theory of measurement which

must be constructed if we are to have a complete
quantum theory w'ill be somewhat different from what
is usual in quantum theory. Ke may tentatively inter-
pret

~

P~' as a probability density in configuration space,
in view of the conservation of probability equation that

~ P ~

2 satisles Li.e., at a given instant of s,
~
iP~ 2d4xid4xq is

the fraction of systems belonging to an ensemble whose
coordinates lie in the volume d4x~d4x2 about the point
(xi, ti,x&,tq)j. Of course we have not shown that such
an interpretation can lead to a consistent theory, nor
shall we investigate whether this is possible within the
context of the relativistically invariant "quantum

theory outlined here, because this quantum theory
possesses a serious defect which would obscure such an
investigation.

The defect in this quantum theory arises because
the particle masses are not conserved quantities. This
does not matter in the classical theory because one has
16 initial conditions (for two particles) at one's disposal
with which to characterize the particle s trajectories.
By judiciously choosing these initial conditions, one
can select elastic scattering trajectories or inelastic
scattering trajectories.

However, in the quantum theory, one has, so to
speak, only eight initial conditions at one s disposal,
since a wave function can only be characterized by the
eigenvalues of a complete set of commuting variables
(for a quantum theory constructed out of a classical

theory with e variables, there can be no more than ~e
complete commuting variables: This follows from the
similarity of the algebras of commutator brackets and
Poisson brackets, and the fact that one can only con-

struct -',e functions whose Poisson bracket relations
with each other vanish). If we choose the eight variables
to be the four-momenta of the two particles, and w' e

construct a wave packet in conhguration space from a
superposition of eigeofunctions of these eight variables
whose eigenvalues are narrowly spread, we are left
with a probability density function

~ P ~

', which occupies
a certain volume in configuration space. A classical
ensemble of two-particle systems, which has the same

probability density function in configuration space and
whose four-momenta are all chosen to be equal to

Q ~
pi"

~
tt) and Q ~

p2&(ip), will develop with increasing s
into an ensemble of particles with varying masses. It
can be shown that the quantum theory wave packet
will develop with increasing s so that one predicts the
same behavior. It does not seen to be possible to pro-
ject out of the wave function a piece of it which only
describes elastic scattering behavior. This quantum
theory therefore describes a universe which consists
of particles which scatter into other particles with a
continuum of masses (including imaginary masses).

The relativistically invariant classical theory pre-
sented here is interesting in its own right, but it does
not appear suitable as a jumping-off place for a useful

quantum theory. Modifications of this classical theory
which have the property that particle masses are
conserved (at last asymptotically) are presently under
investigation.

APPENDIX A: EXAMPLE:
HARD-SPHERE SCATTERING

Because the mathematical expressions in the theory
presented here are very similar to those of the usual
Galilean-invariant theory, one might expect that most
of the analytically soluble problems of the latter theory
are also analytically soluble problems of the former

theory. It has been the author's experience that this
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is the case: The additional complications of the rela-
tivistic theory do not render such problems as Coulomb
scattering intractable. As a simple example, we will
consider the scattering of two particles where the
interaction potential function V(gx) is

V(gx') =0 for x'&d') 0,
V(gx') = ~ for x'(d'.

This is the relativistic analog of the familiar Galilean
problem of the scattering of two hard spheres, the sum
of whose radii is d. The two particles move along straight
world lines with momenta p1,",p2," until their spacelike
separation x' decreases to d', where they collide. Ke
will select the value of s at which they collide to be
s=0, and define the four-vector d" as the value of the
relative event vector when the collision takes place;
x"(s=0) =d". After the collision, the two particles move
off with momenta p1b", p~b", along straight world lines,
and it is these final momenta which Inust be calculated
in order to solve the problem.

Before and after the collision, the solutions of the
equations of motion dx"/ds= p"/p dp"/ds= —8V/ax„
are

x"=p,"s/tb+d", s(0 (A2a)

x'= Pb"s/tb+d", s)0, (A2b)

respectively. The straight world line (A2a) would cut
the hypersurface x'—xo' ——d' in two points, when s=0
and when s= —2p, d/pp, ', if this latter value of s is
negative. To ensure that this value of s is positive so
that the spheres do not collide before s=0, d" must
satisfy the inequality

p. d(0
Lrecall that p ')0: see Eq. (12)].

Because the potential function is so singular, the
equations of motion cannot be solved directly. However,
the value of pb" can be found in a straightforward
fashion by using the known conservation laws, just
as can be done for the Galilean hard-sphere problem.
We prefer, however, to present an illustration of a
direct solution of the dynamical equations, and so we
will consider the hard-sphere problem to be the limiting
case of a scattering of two particles whose interaction
potential function is

V(+x') =0 for x'&d',

V(gx2) = Vo(dn —x&)/(d2 —c ) fol d2&x )c (A4)

V(+x') = Vo for c'&x',

and where, as in the problem which is its Galilean
counterpart, the hard-sphere problem solutions are
obtained in the limit Vo —+ ~.

For this problem, the equation (A2a) is also the
correct solution of the equations of motion for s(0.
For s=0 and a short interval of s thereafter, x' lies
in the region where the collision takes place. The

tanhhsq=
—2pg 'd

tbsp(d' —p.'/tbsp')

After the relative world line emerges from the inter-
action region, it becomes a straight line:

x"(s)=P"(sb)(s s)—/bp, +x"( s)b, s&sb (AS)

where x"(sb) and P"(sb) can be found by putting the
value of sb LEq. (A7)] into Eq. (A6), and into the
derivative of Eq. (A6) with respect to s.

Since we are only interested in the Vo —+ limit of
this problem, we may let ) become very large, and
expand sb, x"(sb) and p"(sb) in inverse powers of Vo.
From Eq. (A7) we find that

sb= —P, d(1—c2/d')/Vo+ terms of order V0
—2. (A9)

When this expression for sb is inserted into Eq. (A6),
we find that

x"(sb) =d"+terms of order Vo
—'. (A10)

Finally, upon calculating p"(sb) by taking the derivative
of Eq. (A6) and inserting the expression (A9) for Sb,
we obtain

p"(sb) =p "—d"2p d/d'+terms of order Vo '. (A11)

As expected, we see that as Vo-+ 00, the interval s~
over which the collision takes place vanishes, the rela-
tive vector x" between the particles during the collision
approaches the constant value d", and the final mo-
mentum pb" approaches a value independ. ent of Vo or c.
The solution of the hard-sphere problem for s&0 is
kfrom Eqs. (AS)-(A11)]:

x"(s)= $p
" d"2p, d/d']s/tl+—d" s)0. (A12)

Now that the problem has been completely solved,
we can examine the solution (A2a), (A12) to see that
it possesses the properties remarked upon in Sec. VII.

A direct calculation of x'(s) shows that aly trajectory
is spacelike, and that d' is the minimum value of x'.
This is, of course, due to the infinite potential barrier,
which does not let particles penetrate into the region
of timelike separation. A direct calculation of It=—p'/2p,
n—=xp' —yt, and j—=xXy shows that they are conserved

equations of motion during this interval are

dx"/ds= P"/tb, dP"/ds= 2Vox"/tI, (d' c'—) (A5)

and the solution of these equations which satisfies
x"(s=0)=d", p"(s=0)=p," is

x"=d" coshXs+ (p,"/tbsp) sinhXs

(where X=C 2VO/p(d~ —c')]'t ). The relative world line
x"(s) is governed by Eq. (A6) until it once more inter-
sects the hypersurface x2=d'. The value of s—call it
sb at—which this occurs is found from Eq. (A6) to
satisfy
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quantities:

h=p, '/2p, n=dp '—p,do, j=d)&y, . (A13)

The Anal momenta of the two particles are, from Eqs.
(6) and (A11):

pro" p——g."+ " p(pg. /mg p—o./mo) d/. d',

p2b p2 d 2P(pl /ml p2 /m2) ~/d

from which one can directly compute the 6nal masses
m&o'= —p~o', moo'= —p2oo of the two particles Lor one
may use Eqs. (25)j:

mob =mp (—mr/m)(p, d)(P d),
mooo=moo+(2m2/m)(P, d)(P d).

The initial conditions that particles 1 and 2 pass
through the space-time points s], $2 " wMl momenta

p& ", p2, ", respectively, are not a complete set of initial
conditions for this problem, because there is still freedom
to choose the values of s—call them s~, and s2 —at
which each trajectory passes through the speciied
space-time point. Of these two free parameters, one is
inessential because the theory is translationally in-
variant in s, but it is determined by the added require-
ment that the collision occur at s=0. The remaining
degree of freedom appears in the solution for g"(s), in
that d" can be chosen so that d' is a free parameter,
while d is a function of the initial conditions and d'.
Depending upon our choice of d', which is the relative
time at which the particles collide, the scattering can
be made elastic, inelastic, or unphysical.

If we choose d' so that P d=P d P'd' vani—shes,
then according to Eq. (A15), the scattering will be

elastic. In the center-of-mass reference frame where
P=O, this becomes the condition:

d'= 0. (A16)

myo'= mP (2m]/M) p 'P—'(d')'
moo2= moo+ (2mo/M)PooPo(do)

(A19)

In this case, one sees that inelastic scattering tra-
jectories occur for 0((d')'(Mmq/2p, 'P', that particle
1 goes off with zero mass when (d')'= Mm/r2, P Po', and
that nonphysical scattering occurs if d")Mmq/2p, 'P'.

From Eqs. (A2a), (A12), and (A16) we And that for
elastic scattering in the center-of-mass frame

x= (p.s/p+ d)8 (—s)+ (pos/p+ d)6 (s),
A17i= p.'s/p.

The Gnal momentum,

po= p.—d(2p. d)/d' (A18)

has the same magnitude as the initial momentum. The
"angle of incidence" that —p, makes with d /or with
n, since~~by Eq. (A13) n=dp, 'j is the same as the
"angle of reflection" that p, makes with d (i.e., —p d
=po d). The collision occurs at t=0 where xo has its
minimum value d'. All the other special properties of
elastic scattering in the center-of-mass frame which
were pointed out in Sec. VII may be verified for the
solution (A17).

If d &0, there is inelastic or unphysical scattering.
For example, in the center-of-mass frame, one can
choose the initial conditions so that p, .d=0. From
Eq. (A15), the final masses of the particles are then


