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Exact expressions for the retarded electromagnetic potentials are derived for certain extended, rigid,
accelerated, but nonradiating charge-current distributions. An unexpected result is that the oscillating
parts of these potentials vanish identically for all points of space-time which are outside the distributions.
Since each of these nonradiating distributions undergoes time-periodic orbital motion, with the “radius”
of the orbit less than the radius of the distribution, this result means that the oscillating part of the electro-
magnetic field energy is localized within a volume of the same order as the volume of the distribution.

INTRODUCTION

N an article in 1964, one of us (GHG)! explicitly
demonstrated several charge-current distributions
which would not radiate while in rigid periodic motion,
orbiting about some fixed point in space and/or spinning
about some fixed axis through the center of the distri-
bution. A general criterion was derived in I by con-
sidering the radiation to infinity from a localized source.
The rate of radiation of energy to infinity is defined by

R=lim |[dQ «%-S,

>0
where dQ is the solid-angle element, dQ2=sinf df d¢, £ is
the outward pointing unit normal to the spherical sur-
face of radius %, and S is the Poynting vector. Using this
expression, a sufficient condition for nonradiation is
easily determined to be

J(waZn)=0, (#>0)

where J(k,z) is the Fourler transform of the current
given by

1 T
J(kn)=— / dt / a3 3(x,t) expi(k-x—wal),
TJo

with j(x,f) the source current distribution and w,
=2mn/T, n integer>0. Using this criterion, several non-
radiating distributions were derived in I; one of the con-
ditions imposed by J(w.f,#)=0 is that the assumed
spherical extent of the distribution must be an integer
multiple of ¢T (¢c=speed of light).

Here, we wish to show that all those nonradiating
distributions previously found in I generate no oscillat-
ing fields outside themselves. To be exact, we shall show
that, at any point which is always outside one of these
distributions, there exist no oscillating fields. This result
implies that a nonradiating distribution acts somewhat
as a resonant cavity, trapping all its oscillating electro-
magnetic field energy entirely within the total spatial
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volume which it sweeps out during the course of its
motion. Since the radius of an orbit is less than the ex-
tent of a distribution (1), this total volume is of the
same order as the volume of the distribution itself. This
attribute of our distributions is to be contrasted with
the field patterns of typical radiating arrays, which
possess near fields markedly different in character from
their radiating fields.

GENERAL EXPRESSIONS FOR,VECTOR
AND SCALAR POTENTIALS

In the expression for R defined above, only the lead-
ing 1/x terms of the retarded vector and scalar poten-
tials, A(x,f) and ¢(x,f), appear. In order to investigate
the condition J(w.&,2)=0 further, the general expres-
sions for A(x,f) and ¢(x,?) are considered. A(x,f) is given
by

A(x,t)=/d3x’ [x—x'|75(x, t— | x—x']).

Here and in what follows, we set c=1; we use Gaussian
units throughout. Using the Fourier transform of j(x,?)
and making a change of variables,

Ax)=0n)® 3 | d% Jkn) exp[—ilk-x—cwnt)]

X/d“u. u~t exp[ —i(k-ut-wau)].
Integrating over the # variables, A(x,f) becomes

1 = &k ‘
A(X,l)=——-— > — J(k,n)e itk -x—wnt)

(2m)? n=—0
e—itktan L1
]
l ko, ) :‘

gili—on) L1
Xl:lim (
L~ k—wn,

The corresponding expression for ¢(x,s) is

) 1 i d*k k- J(k,n) et
¢ X,t — — g~ ik -x—wn
( (271")2 n=—o k (OF)
eih(—on) L1 p—ik(Hwn)L__ 1
|
Lo k—w, kt+wa
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where the expression for the Fourier transform of the
charge density is required by continuity, except for the
n=0 term, as discussed in I. The expressions may now
be explicitly evaluated using the Fourier transforms of
the nonradiating charge-current distributions.

NONRADIATING CHARGE-CURRENT
DISTRIBUTIONS

In I, the nonradiating charge-current distributions in-
cluded the spherical shell,

p(z) =e(dmr*)18(z—7),

where z=x—a(f), = |z|, a() is the position vector of
the “center” of the distribution, assumed periodic with
period 7, and  is the radius of the shell;

p(z)=Az7! coswgz 2D
=0, 2>b

where wg=2wrq/T, g=integer, and 4 is a constant;

i(z)=(@Xz)g(z) 2<b
=07 z2>b

where Q is a constant angular velocity and g(z) is a
spherically symmetric distribution; and

i(z,0) = (@ X 2)g(2) (21 cosQi+2; sinQ) 2<b
=0, 2>b

which includes asymmetry as well as spin.

Using the Fourier transforms of the nonradiating dis-
tributions, the general expressions for A(x,f) and ¢(x,f)
may be evaluated. We do this in detail in the Appendix.
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For example, for the spherical shell, we get

0 T
Ax)=—er'T1 3 / a'
n=—00 0

X[expiwa(t—t —z)Ja(t') sinw,z,

valid for all # such that x is always outside the distribu-
tion. For the condition for nonradiation, r=1IT, l=inte-
ger>0, this expression vanishes. Similarly, A(x,f) and
¢(x,f) vanish, for the conditions given in I, for all the
other distributions given in I.

DISCUSSION

The above results demonstrate that the nonradiating
distributions found in I have only static external fields;
that is, for all points x which are always outside the dis-
tribution, only static electric and magnetic fields are
present. Thus, that part of the electromagnetic field
energy which is locked in the oscillating fields is entirely
localized in the near neighborhood of the distribution.
If we were to attempt, as in I, an interpretation of these
theoretical particles in terms of observed particles, we
would surely want the electromagnetic field energy to be
so localized, in order that it could be counted as part of
the rest mass of the particle. Furthermore, if the oscil-
lating fields of a real particle were indeed as localized
as these, we could never observe them; indeed, we do
not observe oscillating electromagnetic fields associated
with a free massive particle.

We should remark that we have been unable to show
the general result which we might expect to be valid:
namely, that J(w.%,%)=0 implies localized oscillating
fields. All we have done above is to show that all the
nonradiating distributions which were found in I possess
localized oscillating fields.

APPENDIX

Here, the nonradiating charge-current distributions are used to evaluate the expressions for the vector and
scalar potentials given above. All calculations are for z > or 2>7. For the spherical shell,

Ax)=—

e ® T . d*k
> da e“”"(‘“")z'l(t')l: / — sinkre~*% 2 ! lim
(27)2 Ty n=—= /o k? Lo

¢it—emL_1 gilktom)L_1
1
( B—wn  Eton )H

For further evaluation, only the portion of the expression in the square brackets is used.

* sinkz eitk—om) L] g—i(ktun)l_1
[ :|=41r/ dk sinkr P {lim ( - )}
0

g | Lo k—w,

ktw,

ei(khw,.)L._ 1

s /‘“" ik [Cosk(z+r)l:zcosk(z—r)] {%’fﬁi (

—00

k—w,

e—iliton) L1
o)l
ktw,

00 eik(z+r)_ etk (z—1) et (b—wn) L 1 gt (b—wn) L__ 1
=—7r/ dk{lim [( )( )+( )
—w L 2kz k—wn, k—w,

gtk (z+7) — g—ik (2—7) gik (z+r) _I_ gtk (a—1)
«( J+( X
2kz 2kz

e—iUrton) L { e—ika(tr) _ g—ik(e—r)\ yg—ilitum) L1
+ =)
kton ) 2kz ktw,
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This may be treated as an integration in the complex % plane with simple poles on the real axis at k= Zw,. The
first and fourth terms give no contribution. The second and third terms give

= —A47%w, 177! exp(—iwaz) sinwn?.

This is zero for the condition given in I.
The scalar potential ¢(x,) for the spherical shell is given by

e w T gion(—t)) &k gili—omL_1 gitkton)L_q
o(x,0)=— > / ar a(t')- I: / — ¢ %%k sinkr { lim ( f )}] .
(2m)2Tr n=—= J4 Wn k2 Lseo k—w, E+wn

The part of the expression in the square brackets is

* dk (k sinkr coskz sinkr sinkg gilb—en)L_1 g—i(klon)L_1
W/ ;( >{1im ( ; )} ,
0

Z 22 Lo k—w, ktwn,

where 2=1z/|z|. This can be written

gi(k—wn)L__ 1 e—-i(lH—wn)L_l
n )}

© dk [k 1
w8 / — [—[sink(z—}—r)—sink(z— 7) J+—Lcosk(z+7)—cosk(z— r):I:Hlim ( }
—w k Lz 22 Lo k—w, ktw,

0 [eik (z47r) eik (z—r) eik (z47r) — eik (z—r) e—ik (z+7) e-—ik (z—r) e—ik (z47) — 6—ik (z—r)]

=i / dk {Hm { 4
o L-w 21z 2k2? 2iz k22

gilbi—wn)L_1 g—ilktwn)L__1{
X( f >} = —47%8 exp(—iw,2) (177w, 1272) sinw,r.
k—w, ktw,

Again, this is zero for the conditions in I.
Considering now the volume distribution, the vector potential is given by

T . a3k [coskb—17 gilh—om)L—1 g-ilkten)L_1
A(x, t)—— Z dt' e“’"(‘_")é(t')[/ —_— [———]e‘“‘"{lim ( + )}] .
7T n=—w kL E2—w? L k—w, ktws,

The portion of the above expression in the square brackets is

° smkz coskb— I:H (e“’“‘"’")’:—lJ e‘“"*‘“’ﬂ”’-—l)}
/ z L B—w’ A k—ow, l ktwa

0 sink(z+b)+sink(z—b)—2 sinkz eihmeml—] gmiltom)l_]
il T o))

Il

2(B2—wo?) Loe k—wn I ktown
o ¢k (D) L gik (s—b) _ Qgibs ik (D) f g—ik (—b) — Dg—iks gili—um L1  gi(btom)L_q
=7 / dk l: :H lim ( f )} .
© 21z(k2—w4?) 2i5(k2—wq?) Lo k—w, k+w,

Here, there are simple poles at £w, as well as tw,, giving
eonz4(coswb—1) fcoswgb—1 4 COSW,Z eiwgan L gilogtun) L
? + — 21 sinwyz hm >:| R
Z(w,,z—qu) We3 wn2_wq2 Loe Wg—Wn wq"l‘wn

which vanishes since coswzb=coswb=1.
For the corresponding scalar potential,

T eiwn(t—t') &3k coskb—1 gili—omL_1 g—ilitun)I_1
s £ s [ [ £ e g (£ N
7T n=m Wn k R2—wg? AL k—w, l k+ws

0
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Again the terms in the square brackets amount to

o k coskb coskz—Fk coskz sinkz coskb—sinkz etb—om L1 gilkton)L_ 1]
21ri§f dkl: j”lim( -+ )}

2(k?—wy?) 22(k2—wg?) Lo k—w, I k+w,
® k(cosk(z+b)+cosk(z—b)—2 coskz)  sink(z+b)
=2mig / dk [
—w 2(k2—w)z 2:2(k2—wg?)

sink(z+4b)—2 sinkz] [ i (ei“‘—“’")L—-l ' gitbton) L 1)}
im
222(k2—wg?) E—w,  kton

L->w

z A(k2—wg2) iz (B2—w,2)

o E ik (etd) | gik(=b) _Dgiks  ik(+b) L gik(s—b) _ Ygiks
=28 / dk
—o0

F ek (etb) ik (s=b) _ Qgmiks  gmik(eHb) | ik (—b) _ giks eitb—unL_{ g—ilktamL_1{
F4 4(k2—ws?) 4322(k2—wg?) L k—w, k+w,
wa (coswnd—1) (coswgb—1) fwg COSW 43
=47r%3( eiori—————(—iw,— 77 )+ —————| — sinw.z+
Wl —wg? wal—we? \ g 2

COSwe3  SiNWgs etwel  g—iogl
— (cosweb— 1)i< + > [ lim l:e—i“"L( — ):” ) ,
23 quz Lo Wg— Wn wq+w'n
which is zero for the conditions used above.

The spinning distribution leads to the following form for the vector potential:

n=—00

Bi ® T Bk citb—em L1 gilktun)L_1q
Aix)=— 2 dt’ et (t=tOQ X [/ —k[2(coskb— 1)+ kb sinkb]e"‘k"{ lim ( f )} :l
T 0 kS Lo k—wy, k+w,

The terms in the square bracket become

3 4 22

* dk (2k coskz(coskb—1) bk? cosksz sinkb 2 sinkz
4% / { -+
0

X (coskb—1)—

kb sinkz sinkd eitb—on L1 gmi(kten)L_1q
— G )
k—w, E+w,

L->w

ZZ

© dk k[ cosk(z+b)+cosk(z—b)—2 coskz] b2
=28 / l: . —?[sink(z-l— b)—sink(z—b)]
2

—00

2 bk ei(k—-wn)L___ 1 e—i(k+wn)L__ 1
~—2[sink(z+b)+sink(z— b)—2 sinkz]+—;[cosk(z+b)—cosk(z— b)]:l { iim ( + )]
z Z —>00

L
k—wy k+w,

0 eik(z+b)+eik(z—b)_zeikz b etk (z4b) — pik(z—b) eik(z+b)+eik(z—b)_2ez‘kz
=2mwig / dk .
—®

T
2k 47 k%z 2ik4z?
eik (z+b) eik(z—b) e—ik (z+b)_|_e—ik(z—-b)__ Ze—z'kz e——ik (z+b) e—-ik(z—b) 6——15k(z+b)
+1b : 1 +
k322 2k3%z 1k 2ik42?

e—ilc(z—b)_ ze—ikz e—ik(z+b)_e~ik(z+b) ei(k—wn)L_,l e—i(k+wn)L__ 1

: +1b 3
2ikig? 2k332 Lo k—wn ktw,

= —4n%Beion{(coswnb— 1) (lwn 37 'Fwn 272+ (38) sinw.b(iw, 25 4w, 3272)} .

Referring again to I, we find that this expression is zero.
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Finally, the asymmetric spinning current distribution gives for the vector potential

G o T ) d°k 4[ 2(coskb—1)-+kb sinkb] kb sinkb— k2b? coskb
Awd=—— % [t emenax] [ = (i * )
T n= J, kS kS
(2(coskb—1)-+kb sinkb) eith—om L1 g—ilkton)l_1
k4 Lo k—wny k+w,

where I is the unit dyadic and gi(f)=cosQ, go(f)=sin, and gs(¢)=0. The portion of the expression in square
brackets is

o 8(coskb—1)-+5kb sinkb— k2b% coskb k% sinkz 3k coskz 3 sinkz
—-21r/ dk {( ){2:2(— -+ )

kS 2 22 2
(coskz)k sinkz 2(coskb—1) kb sinkb\ sinkz gib—onL—1 gmilhtwn)L_1]
+l< >]+( : )l Hm( + )}
22 z8 k* k4 2 Low k—w, k4w,

Substituting in terms of the expressions sink(z+0b), sink(z—¥b), cosk(z+5), and cosk(z— b), and writing out these
functions in terms of exponentials, we get

0 2 6 6
_2,,,./ dk {I:gﬁ((eik(z-i- b)+eik(z—b)_2eikz)(_____+ >+ (D) — gik(:—b)
— ikiz kP2 ik%%®
( 56 156 158 b? 3b?

3b*
>+(eik(z+b)+eik(z—b))( — - ))+C.C.:|+[l((eik(z-l-b)_l..eik(z—b)_Zeikz)
4kdz  Aik's? 4RSS dik?z  4k%22 ik

2 2 1 58 Sb b
X (__+ + )+ (eik(z+b)_eik(z—b))( + ____)+(eik(z+b)+eik(z—-b))
k%22 kS 2ik'z dik'z 4RSz3  4k%z

b2 b2 ei(k—wn) L__ 1 e—i(k+am)L__ 1
X< - ))—i—c.c.]Hlim ( J )} ,
Akt 4k332 L—w k—wn ktwa

where c.c. denotes complex conjugate. Evaluating the above expression at k= Zw, and using the values for sinw,b
and cosw,b as above yields

422 e[ 88(w, 21— 31w, 32— 3w %) + 1 (lwn a2 —wa % %) .

This is, of course, nonzero by itself, but as was shown in I, it may be made zero by adding another concentric
distribution.



