
PHYSICAL REVIEW VOLUME 168, NUMBER 5 25 A P R IL 1968

Electromagnetic Fields of Accelerated Nonradiating
Charge Distributions*

J. B. ARNETTt AND G. H. GOEDZCKE

Neer Mexico State University, University Park, ¹mMerico
(Received 30 November 1967)

Exact expressions for the retarded electromagnetic potentials are derived for certain extended, rigid,
accelerated, but nonradiating charge-current distributions. An unexpected result is that the oscillating
parts of these potentials vanish identically for all points of space-time which are outside the distributions.
Since each of these nonradiating distributions undergoes time-periodic orbital motion, with the "radius"
of the orbit less than the radius of the distribution, this result means that the oscillating part of the electro-
magnetic Geld energy is localized within a volume of the same order as the volume of the distribution.

R—=lim dQ x'x S,

where dQ is the solid-angle element, d&= sine dg dP, z is

the outward pointing unit normal to the spherical sur-

face of radius x, and S is the Poynting vector. Using this
expression, a suQicient condition for nonradiation is

easily determined to be

J(o)„z,u) =0, (I)0)

where J(k,u) is the Fourier transform of the current

given by
T

J(k,e)=-
7 p

dt d'x j(x,t) expi(k x—o)„t),

wtth j(x,t) the source current distribution and o)„
=2vru/T, I integer& 0. Using this criterion, several non-

radiating distributions were derived in I; one of the con-

ditions imposed, by J(M B,n)=0 is that the assumed

spherical extent of the distribution must be an integer

multiple of cT (c= speed of light).
Here, we wish to show that all those nonradiating

distributions previously found in I generate no oscillat-

ing 6elds outside themselves. To be exact, we shall show

that, at any point which is always outside one of these

distributions, there exist no oscillating 6elds. This result

implies that a nonradiating distribution acts somewhat

as a resonant cavity, trapping all its oscillating electro-

magnetic 6eld energy entirely within the total spatial
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INTRODUCTION

'N an article in 1964, one of us (GHG)' explicitly
- - demonstrated several charge-current distributions
which would not radiate while in rigid periodic motion,
orbiting about some fixed point in space and/or spinning
about some 6xed axis through the center of the distri-
bution. A general criterion was derived in I by con-
sidering the radiation to infinity from a localized source.
The rate of radiation of energy to in6nity is de6ned by

volume which it sweeps out during the course of its
motion. Since the radius of an orbit is less than the ex-
tent of a distribution (1), this total volume is of the
same order as the volume of the distribution itself. This
attribute of our distributions is to be contrasted with
the held patterns of typical radiating arrays, which
possess near fields markedly diferent in character from
their radiating 6elds.

GENERAL EXPRESSIONS FOR@VECTOR
AND SCALAR POTENTIALS

In the expression for R de6ned above, only the lead-
ing 1/x terms of the retarded vector and scalar poten-
tials, A(x, t) and P(x, t), appear. In order to investigate
the condition J((d„x,vi) =0 further, the general expres-
sions for A(x, t) and p(x, t) are considered. A(x, t) is given
by

A(x, t) = d'x' I»—x'~ 'j(x', t
~

x—x'~).

Here and in what follows, we set c=1;we use Gaussian
units throughout. Using the Fourier transform of j(x,t)
and making a change of variables,

A(x, t)=(2s)—' Q d't't J(k,n) exp[—i(k x—o)„t)j

X d'u u ' exp[—i(k u+o)„u)j.

Integrating over the u variables, A(x, t) becomes

d'k
J(k,tr)e—'(" *—" ')

(ei(s—rum) L 1 e i(k+«) &—
X lim/ +

k —o)„k+o)„)
The corresponding expression for P(x,t) is

1 d'k k J(k,u)
4(x, t) = ~

—i(Q.X—cotst)

(2s)' ~=~ k o)„

e"(»)r—1 e '"(+«)r 1~——
X»m +—

0—o)„ )r,+~„)
~68 &424
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where the expression for the Fourier transform of the
charge density is required by continuity, except for the
x=0 term, as discussed in I.The expressions may now
be explicitly evaluated using the Fourier transforms of
the nonradiating charge-current distributions.

NONRADIATING CHARGE-CURRENT
DISTRIBUTIONS

In I, the nonradiating charge-current distributions in-

cluded the spherical shell,

p(s) =e(4s.r') '8(s—r),

where z=x—a(t), s=
~
z~, a(t) is the position vector of

the "center" of the distribution, assumed periodic with
period T, and r is the radius of the shell;

p(s) =As ' cos(e,s s&b
=0 s&b

where (e~=2mq/T, q= integer, and 2 is a constant;

j(z) = (QXz)g(s) s&b
=0 s&b

where Q is a constant angular velocity and g(s) is a
spherically symmetric distribution; and

j(z,t) = (Qxz)g(s)(si cosQt+s2 sinQt) s&b
=0, s&b

which includes asymmetry as well as spin.
Using the Fourier transforms of the nonradiating dis-

tributions, the general expressions for A(x, t) and p(x, t)
may be evaluated. Ke do this in detail in the Appendix.

For example, for the spherical shell, we get

oo T

A(x, t)= e—r '1 ' g Ch'

e

XLexpuo„(t —t' —z)ga(t') sins&„r,

valid for all x such that x is always outside the distribu-
tion. For the condition for nonradiation, r =D.", /= inte-
ger) 0, this expression vanishes. Similarly, A(x, t) and
P(x,t) vanish, for the conditions given in I, for all the
other distributions given in I.

DISCUSSION

The above results demonstrate that the nonradiating
distributions found in I have only static external Gelds;
that is, for all points x which are akeays outside the dis-
tribution, only static electric and magnetic Gelds are
present. Thus, that part of the electromagnetic Geld

energy which is locked in the oscillating fields is entirely
localized in the near neighborhood of the distribution.
If we were to attempt, as in I, an interpretation of these
theoretical particles in terms of observed particles, we
would surely want the electromagnetic Geld energy to be
so localized, in order that it could be counted as part of
the rest mass of the particle. Furthermore, if the oscil-
lating fields of a real particle were indeed as localized
as these, we couM never observe them; indeed, we do
not observe oscillating electromagnetic Gelds associated
with a free massive particle.

We should remark that we have been unable to show
the general result which we might expect to be valid. :
namely, that J((e,a,rt) =0 implies localized oscillating
Gelds. AQ we have done above is to show that all the
nonradiating distributions which were found in I possess
localized. oscillating fields.

APPENDIX

Here, the nonradiating charge-current distributions are used to evaluate the expressions for the vector and
scalar potentials given above. All calculations are for s &b or s&r. For the spherical shell,

A(x, t) =—
(2s)'Tr —

()

dh' e'""('-"&a(t')
~ei(k-es) L 1 e ((4+A)L—

sinkre ""'*& lim
~

+—

For further evaluation, only the portion of the expression in the square brackets is used.

sinks J(e'(' ""&L—1 e '('+""&L—1~
=4~ dk sinkr lim

~

ks L " i k —co„k+(e„
Lcosk(s+r) —cosk(s —r)j &e'(" ""&L—1 e '('+""&L—1)

dk lim
]

ks k—~„k+~„
e"('+') ee'(* ')~ —e'(" "")L—1~ te'(a ""&L—1

dk lim
/ f+/

2ks I k —a&„) i k —a)„)
e
—' (*+ ) e

—'
( )) fe (*+ )+e (* )) 'e—'( + ) '——1) fe &*(+ ) e

—Q( —)-) '(e—'(&+ )L

(x i+i) k 2ks i k+~. 3 E 2ks iE k+ „)I+I
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This may be treated as an integration in the complex k plane with simple poles on the real axis at k= ~~„.The
6rst and fourth terms give no contribution. The second and third terms give

= —4n.2&o 's ' exp( —ico~) sinco r.

This is zero for the condition given in I.
The scalar potential P(x, t) for the spherical shell is given by

if (x,t) =—
(2n.)'Tr =-

T eiCOrb (t—t')
dt' a(t').

'(k+"z)

e '" zk sinkr lim
~ +

k—co„k+co„)
The part of the expression in the square brackets is

"dkt'k sinkr cosks sinkr sinks) (ec(" ~z) —1 e c(k'"z)L—1y
lim

/ +
s' ) L " ~ k —co„k+co„

where s=z/~z~. This can be written

"dk k pi (k lz) L —
1 e i (k+~„)L—

ail ——Lsink(s+r) —sink(s —r)g+—
t cosk(s+r) —cosk(s —r)) lim

~
+

k -8 2' k COz k+CO~

dk lirn
ei& (z+r) —ei& (z—r) ei& (z+r) ei&(z—r) e—i k (z+r) e

—ik (z-r) e—~k (z+r) e—ik (z—r)—

2is 2ks2 2is

fe'(~"")L 1e '(k—+"z)L—1)
X~ +

~

=—4+2iS exp( —ico„s)(is '+co 's ') sinco„r.
k —co„k+co„

Again, this is zero for the conditions in I.
Considering now the volume distribution, the vector potential is given by

A(x, t) = dh' e'"""—c') a(t')
d'k coskb —1-

k —k GO@

e i(k—o&rb) L g e
—i(g+~~) L

e
—ik ~ z

k —~„ k+co„

The portion of the above expression in the square brackets is

sinks coskb —1-
4x dk

s —k Goy

ei (k ez) L 1 e c(k+—ez)L-
lim +

k—
GOD k+co„

s(k' —co,')

sink(s+b)+sink(s —b) —2 sinks- e'&" "z)L—1 e '(k+"z»—1~
»m

k—COz k+COz, )

2is(k' —co,')2iz(k' —co ')

az eik(z+b)+eik(z b) -2eik—z e—ik(z+b)+e ik(z b) 2e——ikz-

dk
e—c(k+~z) —1)

lim
(

k—co k+co

Here, there are simple poles at &co, as well as &co„, giving

(e c""'4(cosco b —1) cosco,b 1) 4(o, cosco,s — (ec("z—""&L e—'("z+" &L-

e(CO„'—CO, ') COOS ) COz COO

which vanishes since cosa'„b= cosco,b= 1.
For the corresponding scalar potential,

@(x,t) =
eieerb(t —t') ~ d3k

dt' a(t') ke—'" *

VENT = —~ p —k Goy

coskb —1 ei(~—~~) L—g e i(I+"~)L
llm

k —co„k+co„
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Again the terms in the square brackets amount to

& (I— )L y &
—(I+ „)L

lim
k—Mz k+M

k coskb coskz —k cosks sinks coskb —sinks
dk27riz

z'(O' —M,2)z(k' —M,2)

k(cosk(z+b)+cosk(z —b) —2 coskz) sink(z+b)
dk

2'-'(O' —M,2)
= 27ris

2(k' —M, ') z

(ei (k—&oz) L 1 e i (k+—ooz) L

lim
/ +

k —Mz k+ Moo )
sink(z+b) —2 sinks-

22'(k' —M,2)

-k eik(z+b)+eik(z b) 2—eikz eik(z+b)+eik(z b) —2eikz

dk
-s

= 27riz
4(k' —M,2) 4iz'(O' —M,2)

k e ik(z+—b)+ e ik(z —b) 2—e ikz e i—k (z+b)+—e-ik (z b) 2—e i kz— i &&+oe2b) L j
lim

k —o)„ k+M„4iz'(O' —M,2)4(k' —M, 2)

(cosM b 1) — (cosM,b —1) M, cosM, p
=4 2i(z~ e '""' (—iM„—z ')+ —sinM2z+M2M2M2M2zz2

q ~ qcosid . sinM z e'" e—(cosM, b —1)i~ + lim e—'" L

2z M,z'
which is zero for the conditions used above.

The spinning distribution leads to the following form for the vector potential:

d'k (ei(k ooz) L —1 e i (k+~z—) L

dt' ei& ('—')Q&& k((2(coskb 1)+kb—sinkb]e '"'* llm
~

+
k' k —M„k+M

00

A(x, t) =
7rT +=

The terms in the square bracket become

"dk 2k coskz(coskb 1) bk'—coskz sinkb 2 sinks

k4 s s S2
4vriz

'

ai(&—&~)L—y g
—i(&+&~)L—y

lim +
k—co„ k+M„

kb sinks sinkb
&& (coskb —1)—

2

" dk kLcosk(z+b)+cosk(z —b) —2 coskz] bk'
+ Lsink(z+b) —sink(z —b)]

„k4 s 2
= 27riz

eik(z+b)+eik(z b) 2eikz —
b eik(z+b) eik(z —b) eik(z+b)+eik(z b) 2eikz-

+—
2k's 4i k's

= 27riz

e—ik(z+b)+e —ik(z b) 2e—ikz—g
—'k (z+b) g

—ik (z—b) g
—i7c (z+b)

1b
ik2s 2ik's'

~jk (z+ b) haik
(z—b)

&i(a—~„)L y &
—i(I+~~) L

lim
k —M~ k+ Moo

&
—iS (z+b) &

—'I (z+b)2&
—ikz

+bb
2k3s22ik4s'

= —4z'ice "' "'((COSM„b—1)(iM„—'Z—'+M„—'Z—')+ (—b) SinM b(iM 'Z—'+.M
—'Z—'))

Referring again to I, we 6nd that this expression is zero.

2 bk gi(k—a)2b) L g g
—i(k+o)2b) L

——Lsink(z+b)+sink(z —b) —2 sinkz]+ —Lcosk(z+b) —cosk(z —b)] lim +
s2 s' k —(d& k+Mz
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Finally, the asymmetric spinning current distribution gives for the vector potential

A(x, t) =—
ÃT+ 0

d)~ ~ia fb(t—t') g y
d'k t' 4)2(coskb —1)+kb sinkb7 kb sinkb —k'b' coskb)

! kk -+
k & k'

(2(coskb —1)+kb sinkb) q
e'(k ""&L—1 e '(k+""& —1)—I lim — + ! g(t),

k4 k —(e k+co„)
where I is the unit dyadic and g&(t)=cosot, g2(t) =sinQt, and gb(t) =0 T.he portion of the expression in square
brackets is

/8(coskb —1)+5kb sinkb —k'b' coskbc& ( k' sinks 3k coskz 3 sinks)
dk !

zz!—
l b' i l z zk

t'(coskz) k sinks~ — (2(coskb —1) kb sinkb~ sinks
+&I —

I +I — +
z' z' i l k4 k' i z

e
i(k cccc)I —

1 e—c(k+ccz) L

lim — +
k—(0„k+ar„ i

Substituting in terms of the expressions sink(z+b), sink(z —b), cosk(z+b), and cosk(z b),—and writing out these
functions in terms of exponentials, we get

)(2 6 6
(eik (z+ b)+ eck

(z b& —2 eikz)! + + (ec7c(z+ b) eck(z b))—
lik4z kbz2 .Vbzb

3/2
!+(eik(z+b)+eik(z b)l .

—+, !+C.C. + I! (eik(z+b)+eik(z b) 2e—ikz)
«kbz 4bk4z2 4kbzbi «ikkz 4kbz2 4ik4zb i

(+ + !+(eck(z+b) eik(»—b))! + !+(eik(z+b)+eck(z—b))
k'z' ik z' 2ik'zi l4ik'z 4k'z' 4k'zi

( b' b'yq
X! — —

! [+c.c.
l4ik4z' 4k'z'i i

ei (k ccz) L 1 -e i(k+cccc)L—
lim +

k—(o„k+40„ i

where c.c. denotes complex conjugate. Evaluating the above expression at k= +co„and using the values for sino&„b

and cosco„b as above yields

4z'b'e '""'$az(b)„'z ' 3i~» 'z—' 3(d» 4z —')+ l(i(ew 'z '
&e 'z ')7—

This is, of course, nonzero by itself, but as was shown in I, it may be made zero by adding another concentric
distribution.


