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Field-Correlation Effects in Two-Photon Processes
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The rate of two-photon absorption from an arbitrary state of the radiation Geld, and its dependence on
the statistical properties of the Geld, are studied. It is found that when the density operator of the field
factors into a product of single-mode density operators (in which case the modes are statistically inde-
pendent), the rate depends on the spectral composition of the 6eld. When the density operator is non-
factorable, the process depends on a photon doublet density. Therefore, the information obtained from
two-photon experiments in the Grst case can, in principle, also be obtained from single-photon counting,
while in the second case it would require coincidence counting.

l. INTRODUCTION

~ 'HE last two years have seen several' ' discussions
of the connection between radiation field statistics

and two-photon processes. The models employed by
various authors are not always identical, and often it is
difhcult to see the relation between the different treat-
ments. Of course, there are good reasons for this dis-
parity. To mention a few: The state of the radiation
field in a pulsed laser is not known; the atomic processes
involved are not always well understood; and un-
fortunately, the meaning that different authors attach
to the same term —such as coherencc -is not always
exactly the same.

One result about which all authors are in agreement' '
is that in the case of two-photon absorption from a single
mode of the radiation held, the rate of the process for
light in a chaotic state is twice the rate for light in a pure
coherent (in the Glauber' sense) state. There is no
doubt that in view of the conditions under which two-
photon experiments are performed at the present time,
the assumption of a single-mode excitation is rather
unrealistic. Perhaps this assumption is unrealistic under
most circumstances.

Thus it might be worthwhile to consider the general
case of multimode excitation of the radiation field, and
this has been done to a certain extent in some of the
above-mentioned references, especially Refs. 7 and 8.
These efforts have concentrated on assuming a model
for the state of the field in a pulsed laser, and then
comparing the results to the case of thermal light. There
is one question, however, that does not seem to have

* Present address: Argonne National Laboratory, Argonne, Ill.
' P. Lambropoulos, C. Kikuchi, and R. K. Osborn, Phys. Rev.

144, 1081 (1966).
'M. C. Teich and G. J. Wolga, Phys. Rev. Letters 16, 625

(1966).
e J. G. Meadors, lEEK J. Quantum Electron. (}E-2,638 (1966).
'P. Lambropoulos, Phys. Letters 21, 418 (1966).
5 P. Lambropoulos, Phys. Rev. 156, 286 (1967).

Y. R. Shen, Phys. Rev. 155, 921 (1967).
7 S. Carusotto, G. Fornaca, and E. Polacco, Phys. Rev. 157,

1207 (1967).
R. Guccione-Gush, H. P. Guch, and J. Van Kranendonk,

Can. J. Phys. 45, 2S13 (1967). The author wishes to thank
Professor Van Kranendok for a copy of the above paper prior to
publication.' R. J. Glauber, Phys. Rev. 131, 2766 (1966).

received attention: Given an arbitrary state of the
radiation field, how does a two-photon process depend
on the state One may then ask under what conditions
the results obtained in the literature can also be ob-
tained (as special cases) from this general approach.
Furthermore, one would like to know what informa-
tion about the field a two-photon experiment would

give.
It is to these questions that we wish to address our-

selves in this paper. To 6x matters, we consider the
case of two-photon absorption. It has already been
shown' that similar considerations —with minor modi-
fications —apply to two-photon stimulated emission.
We have also chosen a specific atomic system, namely a
hydrogenlike atom. We shall be concerned with two-
photon transitions from the ground (1s) to the 2s level
which is truly metastable and where the two-photon
transition is the lowest order allowed process. " The
reason for making this choice is threefold. First, the
theory of hydrogenlike atoms is well understood so that
we can minimize the number of arbitrary assumptions in
dealing with the problem. Second, this is a true two-
photon transition without real intermediate states,
provided that the incident radiation does not contain
photons of energy (Es„&tts&—Et,) (see also the dis-
cussion in Sec. 3). Third, it is quite likely that the
hydrogen atom will be one of the candidates for ex-
perimental study of the aspects discussed herein,
especially in view of recent advances in ultraviolet
laser technology.

In Sec. 2 we derive an expression for the rate of two-
photon absorption. We have considered only contribu-
tions due to the term p A. In the problem treated here
this contribution is by far the most dominant. The
possibility of contributions due to the term A' has been
discussed in the literature. " ' Its presence does not
change the 6eld-statistics aspects of the problem.
Broadening of the atomic levels is taken into considera-
tion. The derivation reveals that the rate of two-photon
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transitions depends on a correlation function of the
field.

Section 3 is devoted to the study of this correlation
function. Previous results are obtained as special cases.
Then it is shown that when the density operator of the
6eld is factorable in a product of single-mode density
operators, the rate depends on the spectral composition
of the field. Since the spectrum can be determined by
single-photon counting, it follows that in that case the
two-photon process does not give any information that
can not be obtained from single-photon. counting. When,
however, the density operator is not factorable, the
process gives information about a photon doublet
density, and this information can otherwise be ob-
tained from coincidence-counting experiments. Lastly,
in Sec. 4, the results are discussed and compared to the
results obtained by other authors.

It has been our intention to keep the essential parts of
this analysis free of any assumptions about the state of
the output of a pulsed laser. The spirit of this work is
not to calculate the rate of two-photon absorption
from a laser beam but rather to 6nd what information
such experiments can give about the properties of the
radiation 6eld.

The radiation 6eld is described in terms of plane
waves inside a cubic box. By letting the dimensions of
the box become in6nite we have plane waves with a
continuous distribution of frequencies. Almost any
state of the radiation field could be described by an
appropriate superposition of such plane waves. It is
these plane waves (Fourier components) that we mean
whenever we refer to modes in the text. This is to be
contrasted to laser-cavity modes. For example, in a
well stabilized laser operating in a single-cavity mode,
the output is described by a superposition of plane
waves because there will always be some broadening
and angular divergence.

Q ~k&kkt&kX y

h)k

(2.2)

where al, ),
~ and a~~ are the usual dimensionless creation

and annihilation operators for the kX mode. The vector

2. RATE OF TWO-PHOTON ABSORPTION

The nonrelativistic Hamiltonian of a single atom
interacting with the radiation 6eld can be written as

H=H"+H~+V, (2.1)

where II~ is the Hamiltonian of the free atom, H~ the
Hamiltonian of the radiation 6eld, and V the inter-
action between the two. All Hamiltonians are assumed
to have been divided by A throughout this paper. H"
is here understood as a hydrogen-atom Hamiltonian
and its eigenstates will be denoted by ~ a), j b), ~ c),
with energies co„cob, or„. , respectively. In terms of a
plane-wave expansion inside a cubic box of linear
dimension 1., the radiation Hamiltonian reads

where n is the fine structure constant, p is the mo-
mentum operator of the electron in the hydrogenlike
atom, ekk is the polarization vector of the kX mode, and
m is the electronic mass.

Let now p(t) be the density operator of the system
"atom plus field, "at time i)0. The operator p(t) is re-
lated to the operator p(0) through the equation

(2.5)
where

U(t) = e
—'"' (2.6)

is the time-evolution operator. At time 3=0 atom and
field are uncoupled, and therefore the density operator
can be written as p" (0)p~(0), the first factor being the
density operator of the atom and the second the density
operator of the 6eld. Since the atom is initially assumed
to be in its ground state which we shall denote hereafter
by ~n), we may write

p ~A(0) —b (2.7)

where 8, is the Kronecker 8. All off-diagonal matrix
elements obviously vanish. The density operator of the
radiation field will be left completely arbitrary. What
we wish to calculate is the rate at which the atom makes
transitions from the ground state to the 2s state via
two-photon absorption. We shall 6rst carry out the
calculation under the assumption that the levels of H~
are sharply defined, i.e., we shall neglect all broadening
effects. Then we shall modify the results so as to include
such effects.

Let us reserve the symbol ~b) for the 2s state here-
after. In order to calculate the rate of the transitions
~a) ~ ~b) we first calculate the probability for the
atom to be in state

~
b) at time t)0.

Clearly this probability is given by

Ptk (t)—= Q Pi,„,i,„(t), (2.8)

which is the appropriate matrix element of the reduced
density operator obtained by taking the trace of the
total operator with respect to radiation states. Using

k represents the photon wave vector and X is the
polarization index assuming the values 1 and 2. The
energy ao& is given by kc, where c is thes peed of light. It
will also be convenient to measure the energies of the
atomic states in wave numbers de6ned by

(2.3)

The eigenstates of H~ are
~

n(kX) ), where n(kX)
specifies the number of photons in the k'A mode. We
shall also use the notation ~(e(kX))), or simply ~e)
for short.

Confining ourselves to dipole contributions to two-
photon absorption, we can write V as

(2sa)'g p
(~ Xk'+ |ikk), (2.4)

ns jx
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Eq. (2.5) and the initial conditions we obtain

p»'(1) = Z ~s-,-(1)p-'(0) &- .2-'(1) (2 9)
yS c fS 2 fry I

Terms corresponding to mmmm' depend on the phases
of the modes in the initial state of the radiation field.

As we have discussed in a previous paper, ' these
terms make a negligible contribution. This is due to the
fact that, as a practical matter, the initial phases of the
modes at optical frequencies are uncontrollable and
hence individually random. With this understanding,
therefore, we shall neglect these terms thus obtaining

p»"(1)= 2 p-'(o) I vs. .-(&) I'.

We wish to emphasize that no other assumption, except
for the randomness of the initial phases, is made. The
density operator can be otherwise completely arbitrary,
but in calculating the rate of the two-photon absorption
it is only the diagonal matrix elements that contribute.
(See, also, the steps in going from Eq. (22) to Eq. (23)
in R,ef. 7.)

Now we observe that Eq. (2.10) contains all possible
contributions to the transition a ~ b. In order to single
out the contribution due to two-photon absorption,
one uses perturbation theory to calculate the appro-
priate contribution to the matrix element Ub„,, (t).
The initial state is

I a) I {m(k) ))). The final atomic state
is Ib), while the final Geld state is the initial one but
with two photons, say ki)11 and k2)2, removed. Since
similar calculations have appeared in the literature
repeatedly, ' '»' "we refrain from reproducing the steps
here and we only give the final result which is

1—cos(k s—k,—ki —ks)1
pss"(t)=P P P 2 p (0)

m ki 1 k212 (ks—k,—ki —k2)'

XL; (2~) ~ (k,k2)-'&(I 1) „12)2)

X{m(hier)m(k2X2) —m(iti) 1)8k k 81 k ) (2.11)

where p is de6ned by

(psC ' sk212) (p CC
' ekiki)

'g(~1)11 112~2)=
Cfg c bc —I ~

(12 bc skiki)(pcQ sk212)
(2.12)

CO&
—M It,

The summation over c extends over all atomic states.
The term linear in m(10) in Eq. (2.11) contributes only
when both photons are absorbed from the same mode.

Now to obtain the rate of transitions a~b, we
calculate the quantity

lim
x9

= ~&(*), (2.14)

we obtain

h s=g p Q (22r)'n'L 'b(ks, —ki —k2)(krk2) '
m kg) y kg'h2

Xp~~~(0) 21(k&1, k24) {m(kihi)m(k, 4)
—m(iriX1) bkrksbk, k2) . (2.15)

This equation gives the rate of two-photon transi-
tions between two atomic levels with sharply defined
energies. In actuality the levels will be broadened be-
cause of radiation damping, collisions, and perhaps
other causes. One could have calculated the transition
rate in a more sophisticated way so as to include these
effects (see, for example, Refs. 16-18).The result, which
we give here without proof, is that the 8 function is
replaced by the line-shape function g(ki, ks) which is a
nonsingular function of ki and k2, peaked at ki+k2= ksc.
Thus, the rate of transitions between two broadened
levels is

h= (22r) sn'I p p (kiks)-'g(ki, k2)21(kiter, k2) 2)
ky'hy k2X2

Xp p„„(0){m(ki)ki)m(k24)

—m(hier) bkiksbkrk2) . (2.16)

Note that in this equation we have rearranged the
summations somewhat. This is possible because the
summation over m is actually an average over states
of the radiation field, and therefore all factors except
m(ki)~1) and m(k2) 2) can be taken out of the summation.
In fact, as we shall see subsequently, it is through this
summation that correlation effects enter in the process,
To compress notation, we introduce the symbol

G(itl)klI it2)12)=Q ptcm (0){m(it1)11)m(ir2~2)

—m(krkr) bk, k,bk, k,), (2.17)

in terms of which the transition rate reads

h= (22r)2 'I.—' p p (kiks)-'g(kr, ks)
kyh1 kg) g

X21(kr)ki) k2) 2)G(kr&1) k2)k2). (2.1&)

where, as we have discussed in an earlier paper, ' the
limit t —+~ means that this time interval is large com-
parted to the interaction time, that is, the time it takes
for the two photons to be absorbed. For optical fre-
quencies this time is of the order of 10 " sec. Noting
that

1—cosxt

h. s=—hm —pss~(t),
t

"M. Goppert-Mayer, Auu. Physi)2 9, 273 (1931).
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Clearly, G is a correlation function of the radiation
field and we now turn to the study of this function.

3. CORRELATION EFFECTS

As pointed out earlier, it is the correlation function
G that determines the dependence of the process on the
Geld properties. This function depends on the density
operator of the Geld at time t =0 which has been denoted
by p"(0).Recalling that a state of the Geld is of the form

~
{m(kX)}),we shall hereafter denote this operator by

R=R({m(kX)}) in order to exhibit explicitly the fact
that it depends on all modes. It is now obvious that G
can also be written as

G= »{&(~2,1,'~l, lln2212'll2212

1121)E1 +ifl)E141224112)}~ (3 l )

Using the commutation relations between creation and
annihilation operators, G can also be written in the form

G(kl4i k2~2) =Tr{«2,1,'~~212'~~, 1@221,}, (3 2)

which is sometimes more convenient, especially when
one uses a representation in terms of coherent states."

Note that the first term in (3.1) is equal to

(m(k14)m(k2X2) ),

R({m(klan) })=g R2)(m(kh)), (3.5)

where 821(m(kX)) is the density operator of the kX
mode. When this is the case the various modes are
statistically independent, as in thermal light sources
for example. Then, for kl/k2 and/or Xl/4, we shall
have

(m(k14)m(k2l%2))= (m(k14))(m(k2X2)), (3.6)
where

(m(k)) —= g (821) m.
m~P

(3 &)

For k14=k2X2 the doublet density reduces to the
second moment of the photon distribution in the mode.
Separating these terms in Eq. (3.4) it becomes

(22r) n + Q Q (~1~2) g(~1)~2)'Q(k14 j k2~2)
~1}I1 ~2~2~1~1

X(m(k14))(m(k2), 2))+ (22r)'n'L-' p kl—'g(4, 4)

A. Factorable Density Operator

The form of the boublet density as a function of k14
and k2X2 depends on the density operator. Let us con-
sider 6rst the case in which the density operator factors
in a product as follows:

which is the expected value of a doublet photon density.
The second term is equal to (m(k14)), which is the
expected value of a singlet-photon density. For kl ——k2
and 4=X& the doublet density becomes (m2(k14)),
which is the second moment of the photon distribution
in the k14 mode. It should be emphasized that the
above averages are not simple quantum expectation
values but quantum statistical averages. In this
notation, the correlation function reads

G(k14 k2~2)
= (m(k14)m(k24))- (m(k14))&2,224,12. (3.3)

It is well known that two-photon processes are ob-
servable only when the average number of photons in
the light beam is much larger than one. In that case,
the linear term can be neglected as compared to the
quadratic term (m2(klhl)), which is of the order of
(m(klX1))'. For those modes for which (m) is not larger
than one, this approximation is not valid but their
contribution to the two-photon process is negligible
anyway. In calculating the rate of two-photon absorp-
tion, therefoxe, we can neglect the linear term. This
approximation is not really necessary but it simpliGes
writing and it is a sound one. We then take the transi-
tion rate to be

Il= (22r)'n'I=' p g (klk2)-'g(kl, k2)
R1X1 h2XP

Xg(k14 k2l12)(m(kl4)m(k2~2)) (3 4)

(22r) n ~ Z Z (~1~2) g(~14)'g(kl~lj k2~2)
k1X1 &2&S

X (m(kl'Al))(m(k2l%, 2))+ (22r) 2n'l. ' g kl 2g(pl, k2)

Xg(k14, klhl)((m'(klhl)) —(m(k14))'), (3.9)

whexe the restriction on the summation in the Grst
term has now been removed.

The single-mode case can be obtained from either
Eq. (3.8) or (3.9) by taking (m(k14))(m(k24))=0 for
kl/k2 and/or 4WX2. It turns out then that the rate is
proportional to (m2(kX)) as has already been discussed
in the literature, ' ' ' ' and we shall not elaborate on
this any further.

Continuing with the multimode case, we now pass to
the continuum by replacing the summations by integra-
tions according to the well-known formula"

k2dkd Q,
1 (22r)2

(3.10)

where dQ=sin8dbdy is the differential of the solid
angle in a system of spherical polar coordinates. Now,
(m(kX)) represents the number of photons of polariza-

Xg(k14; k14)(m'(k14)). (3.8)

By adding and subtracting the quantity (m(klhl))2, we
can also write (3.8) as
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1Ekldk2(klk2)g(klyk2)
(22r)2 11,12 p

X

ri(kiril,

k.A2) (m(k14))(m(ky„) )

dQqdQ2

tion X in d'k about k in k space. Thus we have generalized autocorrelation function (in k space) of the
spectral density of the incident radiation. The auto-
correlation function of the spectral density is

(k —k') 'S(k —k') k"S(k')dk'.

+n I. P dklg(ki, kl) dQlr/(kiril, kl'zl)

X((m'(kl7~1)) —(m(kiril))'). (3.11)

The second term is of the order of L ' as compared to
the first and we may neglect it in the case of multimode
excitation. This is a consequence of the fact that as
L —+~, the density of modes increases and the prob-
ability for two photons of the same mode to be absorbed
simultaneously decreases. It is worth noting at this
point that when the light beam consists of a super-
position of pure coherent states, i.e., when each mode is
in a pure coherent state, then the probability distribu-
tion (R21) is a Poisson distribution. In that case,
(m2) —(m)'= (m) and, since terms linear in (m(kX)) can
be neglected as discussed earlier, the second term in

(3.11) is negligible even if only a few modes are excited.
The quantity (m(kA)) is the frequency and angular

spectrum of the incident radiation. To put Eq. (3.11)
in a form that is closer to actual experimental situations,
let us consider a beam con6ned in a narrow solid angle
and linearly polarized. This means that the propagation
vectors of essentially all photons lie within a small angle
around a central unit vector ko. If, in addition, the beam
is linearly polarized, we can replace s&,z, and s&,&, by
ep in ri(k14; k24), where ep is the polarization vector of
the beam. Then g ceases to depend on the angle and can
be taken out of the integrals with respect to Q~, and
Q2. We shall denote this angle-independent quantity
by gp(kl, k2) because it still depends on kl and k2. The
angle integrations now reduce to J'(m(kM)dQ, which is
essentially the frequency spectrum of the incident
radiation. We introduce the symbol

5(k) =— (m(ln))Z~ (3.12)

for this quantity. The number of photons per unit wave
number is given by k'5(k), and this is what one might
properly call the spectrum. Substituting now in Eq.
(3.11) and neglecting the second term, we obtain

dk11fk2(klk2)g(kl k2)
(2~)' p

Xnp(kl, k2)5(kl)S(k, ), (3.13)

where the summations over X~ and X~ do not appear any
longer since the beam is assumed to be linearly polarized.

This equation shows that in the case of a narrow,
linearly polarized beam, the transition rate depends on a

In (3.13) we have a generalized form of this because
of the presence of the functions g(kl, k2) and rip(kl', k2),
and the factors k~ and k~, which weigh each value of the
integrand differently. In the limiting case of narrow
spectrum S(k) and slowly varying function g(kl, k2) and
'gp(kl k2) ) one would have the usual autocorrelation
function.

The functions 5(k) and g(kl, k2) will generally be more
or less peaked but nonsingular functions, for most
practical cases. The function rip(kl, k2) requires closer
examination. From Eq. (2.12) we see that we have the
resonance denominators k b

—k.—k~ and k b
—k,—k~,

where kb is the energy of the 2s level and k. stands for
energies of all virtual intermediate levels. For all such
intermediate levels in a hydrogenlike atom Lexcept
the 2p(-,') level) we shall have k p(k, , and therefore no
singularities will occur over the range of integration in
(3.13). For the level 2p(-', ) we have k p)k„and rip is
singular for k~ or k2=kb —k.. Note, however, that be-
cause of energy conservation between initial and final
state, the appreciable contribution to the integral in
(3.13) comes from pairs of kl and k2 such that kl+k2
=kb &linewidth. And the linewidth is usually much
smaller than kb, . This implies that only if the product
5(kl)5(kp, —kl) goes to zero slower than (kl —kp, ) '
goes to infinity (as kl ~ kb.) shall we have a difhculty
from the singularity. This, of course, depends on the
spectrum of the incident radiation. For this to happen,
the incident radiation must contain an appreciable
number of photons having energy equal to k»(&~2) —k&,.
In that case we shall have transitions from 1s to 2s via
the real intermediate level 2p(-', ).This is not a true two-
photon absorption but two successive single-photon
absorptions. Of course, when the lifetime of the real
intermediate state is shorter than the coherence time
the incident radiation, the distinction between the two
processes is essentially lost."Nevertheless, the second
process is basically different and its mathematical
description should be formulated somewhat differently.
If the spectrum of the incident radiation falls off
rapidly enough as k —+ k»(&~&) —k&„we shall have no
singularities in (3.13). This would, for example, be the
case with light sources such as lasers which have ex-
tremely narrow spectra.

B. Nonfactorable Density Operator

The foregoing discussion has shown that when the
density operator is factorable, it is the spectral com-

"J.Shapiro and G. Breit& Phys. Rev. 113, 179 (1959).
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position of the Geld that determines the rate of two-
photon absorption. In general, the density operator is
not factorable, and in that case we have

(nt(krXr)nt(k2Xe) )~ (nt(krXr) )(nt(k2X, )) . (3.14)

The left side contains more information than simply the
spectral co~position of the beam. It is a correlation
function whose value depends on the degree to which
the modes of the field are statistically correlated. The
special case examined in Sec. 3A corresponds to com-
pletely uncorrelated' (statistically independent) modes.
The right side in (3.14) is a quantity that can be deter-
mined by simply measuring the energy (or power) of
the Geld as a function of frequency, direction of prop-
agation and polarization. The left side would require
coincidence experiments as discussed further in the
following section. It should be pointed out that the ratio

(trt(k, 4)rn(k, 4))/(nt(kyar) )(trt(kA))

can in principle have any value between 0 and ~. Its
value of course depends on the state of the field.

4. DISCUSSION AND CONCLUSIONS

The analysis in this paper has shown that whenever
the modes of the field are statistically independent-
in the sense that the density operator factors in a prod-
uct of operators each describing one mode —the rate of
two-photon absorption depends on the spectral com-
position of the energy of the Geld. No other statistical
properties of the Geld enter into the picture then.

Suppose, for example, that we have two light sources;
one consisting of a direct product of pure coherent
states with random initial phases, and a second con-
sisting of a direct product of chaotic states. ' If the
average number of photons per mode is the same in both
sources, then the rate of two-photon absorption will be
the same (see also Ref. 8 where factorable density
operators are assumed and where the same conclusion
is reached).

The authors of Ref. 7 have calculated the rate of
two-photon absorption for the case of thermal light
and for the case of a model for pulsed laser light. The
latter is assumed to be a direct product of pure coherent
states with random phases. In both cases the density
operator is factorable and their results indicate that
there is a difference between the two cases. In view of
the results of the present paper, the above difference is
due to the fact that the spectral composition of the two
models is different. The different coherence (statistical)
properties of the two models do not affect the process.
In addition, when discussing the case of thermal light,
the authors assume that the atom interacts with the
Geld for a time longer than the coherence time of the
radiation. However, the time of interaction (per two-

20 W. B. Davenport and W. L. Root, An Introduction to the
Theory of Random Signals and Poise (McGraw-Hill Book Co.,
New York, 1958).

photon process) is determined by the lifetime of the
intermediate state. In our model, for example, this is of
the order of 10 "sec. Whether their assumption is valid
or not will depend on the light source. And it would take
a light source of an extremely large linewidth to justify
the assumption. It appears, therefore, that it is question-
able whether the quantity the authors calculate for the
case of thermal light does actually represent a two-
photon absorption rate (see also the discussion in
Ref. 8). The point to be made is that two-photon
absorption provides us with a coincidence counter of
intrinsically small resolution time, and it is only when
this time is smaller than the coherence time of the
light that correlation effects appear. "

Such e6ects appear either when only a single mode is
excited"'' or when many statistically correlated
modes participate. Under present experimental pos-
sibilities it is the latter case that is more interesting. It
suggests that two-photon processes may in principle be
used to determine whether the modes of a light source
are statistically independent or not.

Although we wish to keep this discussion free of any
assumptions about the Geld of a high-power laser, it
should be pointed out that it is not a priori obvious
that the modes in such lasers are uncorrelated. In fact,
Ducuing and Bloembergen22 have presented evidence
pointing to the opposite. Independently of what the
state of the laser field is, however, Glauber" has
emphasized that very unusual states of the field can
exist and it is relevant to know how two-photon pro-
cesses depend on, and what information they give
about the field.

The general conclusion, therefore, is: When the
density operator of the field is factorable, the informa-
tion obtained from two-photon processes can also be
obtained from single-photon counting experiments;
when the density operator is not factorable, two-photon
processes provide information that otherwise would
require coincidence counting experiments.

Strictly speaking, in the Grst case, the process de-
pends on a generalized autocorrelation function of the
spectrum and the direct measurement of that function
does require coincidence counting again. However, if
the spectrum is known (and this can be measured by
single-photon counting) the autocorrelation function
can be calculated. It is in this sense that two-photon
absorption and single-photon counting give equivalent
information. In the second case, knowledge of the
spectrum does not suKce to calculate the correlation
function G(krhr, k2X2). More information about the
state of the Geld is needed.

"See, for example, L. Mandel and K. Wolf, Rev. Mod. Phys.
31, 231 (&965)."J.Ducuing and N. Bloembergen, Phys. Rev. 133, A1493
(1964'."R. J. Glauber, in Proceedings of the Physics of Qscantgm
Electronic Conference, San Juan, Puerto Rico, 296$, edited by
by P. Kelley, B. Lax, and P. E. Tannenwald (McGraw-Hill
Book Qo., Inc., New York, 1966).


