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Stepan and Niske® found the plutonium-241 g half-
life to be 13.63+0.36 yr by neutron absorption measure-
ments, which were independent on the half-life of
amercium-241. However, the value of 14.03 yr was
preferred here since it was determined from three in-
vestigations® by observing the americium growth rate.

The difference in the average 8 energy as determined
from the B spectrum of Shlyagin? and the calorimetric
measurements of this work is surprisingly large. It is

¢I. E. Stepan and R. G. Niske, Trans. Am. Nucl. Soc. 9, 451
(1966).
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difficult to explain the magnitude of the error in the
integrated value for the average 8 energy. In the absence
of an accurate and precise 8 spectrum for plutonium-241,
we may, by using a half-life value of 14.03 yr, take the

average 8 energy of plutonium-241 to be 5.784-0.31 keV.
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The negative-parity 37, 57, 67, and 7~ states of the even isotopes of tin are studied with the quasiparticle
second Tamm-Dancoff (QSTD) theory which treats the two- and four-quasiparticle excitations on the same
footing. The static magnetic moments and the EX transition probabilities are calculated. The QSTD eigen-
values, and particularly the QSTD eigenvectors, obtained with phenomenological residual nuclear forces
are found to be more sensitive to the residual nuclear force and to the unperturbed single-particle energy
levels assumed than are the corresponding results for the even-parity states of the same isotopes. It is shown,
however, that a semiquantitative agreement of the QSTD predictions with experiment can be achieved. In
particular, rather good agreement is obtained in one of our cases with the observed values of the static
magnetic moments of the 5, states of Sn!1¢ and Sn!?. Corresponding calculations with a realistic nucleon-

nucleon potential are most desirable.

1. INTRODUCTION

HE quasiparticle second Tamm-Dancoff (QSTD)
theory gives a microscopic description of the
low-lying states of even-even nuclei in terms of zero-,
two-, and four-quasiparticle (qp) excitations.’~* This
theory has enjoyed a considerable amount of success
in describing the even-parity states (0%, 2+, and 4%) of
the even tin isotopes.!'? The Sn nuclei are believed to
belong to the so-called vibrational region, and are con-

* Supported in part by Istituto Nazionale de Fisica Nucleare.
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sidered to be essentially spherical. In fact, even the
large observed values® of the quadrupole moments of
the first excited 2;+ states seem to be understood in
terms of collective contributions of four-qp excitation
alone, without being forced to assume a stable deform-
ation for the average nuclear (Hartree-Fock) field.*
Unfortunately, all the results of Refs. 1-4 and the
ones reported below are not based on Hartree-Fock-
Bogolubov (HFB) self-consistency. In fact, the HFB
is a formidable task in itself, almost prohibitive in our
case, and we are forced to choose a more or less “reason-
able” phenomenological single-particle (s.p.) basis (the
unperturbed s.p. energies E,.° and the corresponding s.p.
wave functions). In fact, we have based our calculations
on sets of {E,°} taken from the literature and limited

5 J. de Boer, in Proceedings of the International Conference on
Nuclear Structure, Tokyo, 1967 (to be published).
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ourselves to the use of harmonic-oscillator radial wave
functions. Unfortunately, our results can, in many
cases, be rather sensitive to the choice of {£,°}. Never-
theless, many important qualitative and semiquantita-
tive conclusions can be drawn from our results. Actually,
we are mainly interested in investigating various dif-
ferent aspects and characteristics of the theory itself
rather than in simply attempting to fit particular ex-
perimental data. In particular, we are studying the
implications of our more complete approximation to the
exact solution of our many-body problem for the use-
fulness of the much simpler but widely used microscopic
or semimicroscopic models.

We should point out that in the pure two-qp QTD
theory the odd-parity states of the tin isotopes involve
only two, three, or at most four configurations. This is
in contrast to the even-parity states, where there are
many more pure two-qp excitation modes involved.
In this situation the QTD theory takes into account
only a few of the possible excited configurations, i.e.,
of the effects of the residual interactions. In particular,
it cannot be expected to properly account for the col-
lective character of some of the odd-parity states. For
this reason we think the application of the QTD
method to these states rather uninteresting.

In the present paper, we report on some of our
results for the odd-parity low-lying states 37, 57, 67,
and 7— (and some 17) for the tin isotopes, with 4 =116
and 120. Our method, techniques, and notations are all
those of Refs. 1 and 2. Most of the FORTRAN computer
codes used in the work of Refs. 1 and 2 and due to P. L.
Ottaviani have been employed for our present compu-
tations with only slight modifications in some of them.

As in Refs. 1 and 2, we consider the 50-50 “magic”
core to be inert, and only the valence neutrons belonging
to the five subshells 2d5/2, 1g7/2, 351/2, 2d3/2, and 1;111/2 to
be active in the pairing and the configuration-mixing
interactions. This implies that we are working with
phenomenological “effective” residual interaction po-
tentials involving the core-polarization effects rather
than with any realistic nucleon-nucleon potentials.
In the same sense, we must introduce the neutron
effective charge for our electromagnetic transition
probabilities which takes into account implicitly the
effects of the excited core-proton configurations.

Finally, we compare critically our numerical results
with those of simple pure two-gp theories of Arvieu.®

The importance of the octupole collective character
of the first excited 3~ (3;7) states of even tin isotopes
was first revealed in the experiments by Cohen et al.” on
the so-called anomalous inelastic scattering [cf.,
however, the critical remarks by Schneid, Hamburger,

6R. Arvieu, Ann. Phys. (Paris) 8, 407 (1963); R. Arvieu, E.
Baranger, M. Barganer, M. Véneroni, and V. Gillet, Phys.
Letters 4, 119 (1963).

7B. L. Cohen and R. E. Price, Phys. Rev. 111, 1568 (1958);
118, 1582 (1960); 123, 283 (1961); E. J. Schneid, A. Prakash, and
B. L. Cohen, #bd. 156, 1316 (1967); E. J. Schneid, E. W. Ham-
burger, and B. L. Cohen, #bid. 161, 1208 (1967).
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and Cohen (Ref. 7, p. 1210)]. The states 3;~, 51—, and 7,
for A=116,118,120,122, and 124 have been reported by
several groups.”® The 6, state of 4 =116 has been
reported by Bodenstaedt ef al.l” Several experimental
groups® 3 have reported values of half-lives [or of
reduced transition probabilities B(E\, I;— I) for the
following transitions: E3: 5, — 2;* and 7, — 4,+ in
A=116, 118, 120; E2: 5;*—3; and 7,7 — 5 in
A=116, 120; and E1(?): 5. — 4,7]. We shall give
below some of our predictions for some of the above
B(EN)’s. Unfortunately, the operator E1 vanishes
identically in our Hilbert space, and we cannot calculate
the B(E1, 57~ — 44%) in our model. On the other hand,
the observed value of this quantity appears to be very
small indeed, as expected. Similarly, we have no direct
simple 1,~— 0T transitions in our model. On the
other hand, our low-lying 1, states are of little interest
for two reasons: (a) They lie rather far below the giant
dipole resonance; (b) because their eigenvalues lie
above 4 MeV, the six-qp excited configuration may be
important for them. Finally, no such 1~ levels have
as yet been identified experimentallv.

2. CALCULATIONS AND NUMERICAL RESULTS

In our numerical work we have kept all the parameter
values of Ref. 2. The harmonic-oscillator parameter is
Vv=(Mwo/#)''?=0.454 F~'. The s.p. unperturbed
energies { £,.°} of Ref. 2 are those of Kuo and Baranger
[Ref. 14, Table 5(a)]. The set {E.°} seems to give a
rather good fit of the spectra of the odd isotopes of tin.

The residual interaction potential V(1,2) is of the
Gaussian form?4

V(1,2)= —Voexp(—r?/re®) (P*+(P?), 1)

where V is fixed at 31.0 MeV, 70=2.0 F, r1p= | 11— 15/,
and P* and P* are the singlet-even and triplet-odd pro-
jection operators, respectively. We present below results
for the two extreme values of the parameter ¢: (a)
t=1 (a Wigner force) and (b) {=—0.555 (a Rosenfeld
mixture). The independent gp energies

Eu=[(ES=N™F4,2]2

are found first for each one of the cases (a) and (b)
by solving the appropriate usual BCS equations.
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The construction of our complete orthonormal basis
involving all the possible two- and four-qp excitations
is performed as in Ref. 1. (The fractional parentage
coefficients orthonormalizing the QSTD basis are found
directly by the computer.) The dimensions of the com-
plete QSTD secular matrices are, respectively: for

=17, 57X37; for 3=, 132X132; for 5—, 179X 179;
for 6=, 179X 179; for 7—, 165X 165. As we see, the dimen-
sions here are comparable to those for the QSTD even-
parity states of Ref. 2. Because of very long matrix-
computation times, we have had to apply important
truncations of our original Hilbert spaces. The criterion
for each such truncation was a very large separation in
energy (diagonal elements) of the four-qp configurations
to be left out (usually diagonal elements 27 MeV) and
rather weak couplings of such four-qp modes to the
two-qp modes. (A special computer program has been
applied for this purpose.) In addition, we have verified
a posteriori the numerical stability of a truncation
against the inclusion of a number of additional basis
vectors associated with larger diagonal elements. For
example, for the Gaussian Wigner (¢=1) force, we have
finally obtained the following dimensions of our secular
problems:

17: 57XS57 (no truncation necessary here),
37: 61X61, 57: 33X33,
6~: 50X350, 77: 39X%X39.

The spurious kets due to the nucleon-number noncon-
servation of the type described in Ref. 1, and which are
entirely contained within the respective two- and
four-qp Hilbert spaces for each value of J*, have been
constructed explicitly and projected out of our secular
matrices before their diagonalizations. In the case

=1~ there are no two-qp modes, and thus also no
spurions of the kind described above in our basis.

In Table I, we give our QTD and QSTD energies of
the lowest three levels for /=3, 5, 67, and 7~ for
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A=116 and 120, and for the Wigner (t=1) and the
Rosenfeld (¢=-—0.555) V(1,2) of Eq. (1). The first
excited level energies observed are indicated for each
case J7, A for comparison. The total percentage of all
four-gp components (%5 of Refs. 1 and 2) is indicated
in parentheses for each QSTD level. As for J™=1-,
we find, e.g., for 4=120 and ¢=1, the following three
lowest eigenenergies: 4.161, 4.354, and 4.921 MeV
(1009, four-qp). We realize that some of the odd-parity
states are extremely sensitive to the residual nuclear
force employed. Particularly in the 3~ case for 4 =116,
not only the four-qp percentages of the QSTD eigen-
vectors, but also the corresponding eigenvalues, change
dramatically in passing from our Wigner force (f=1) to
the Rosenfeld mixture (¢=-—0.555). In this case the
differences between the two eigensolutions for the state
3;~ are due to the most important diagonal matrix
elements of the residual nuclear force. In the 3~ case
the dramatic difference between the (¢=1) and
(¢=—0.555) eigenvalues is due mainly to the absence
of the two-qp mode (3s1/2, 1%11/2), in contrast to all the
other cases J™. For example, in the 6™ case the difference
between the four-gp percentage of the (¢=1) and the
(¢=—0.555) eigenvector |6,7) is large, but the corre-
sponding eigenvalues are comparable. In the case (t=1)
the four-qp percentages are so large as to invalidate
completely the pure two-gp QTD theory (cf. Ref. 6).
On the other hand, this effect depends very much on the
choice of the residual nuclear force (cf., e.g., our corre-
sponding results for /= —0.555), and thus no general
conclusion can be drawn on this point. Calculations
with a realistic nuclear force will be most interesting
in this respect.

As for the BCS solutions, the single-qp state which
is most important is the state 1%11/2 because it appears
once or thrice in all the configurations involved. It is
therefore the single-qp energy of 14312 which is most
important in determining the unperturbed excitation

TaBLE I. Energy levels (in MeV) calculated for tin isotopes 4 =116, 120, and for two spin-dependent Gaussian potentials of Kuo
et al. (Ref. 14). The numbers in parentheses in the QSTD columns are the four-gp percentages. The columns labelled ‘Expt’ give the ex-

perimental values.

116 120
A t=1 t=—0.555 -1

}N Expt QTD QSTD QTD QSTD Expt QTD QSDT
2267 4299  2.348 (~100) 3.568 3464  (4) 2.391 (?) 4.38¢ 3077  (99)
3 4433 2.996 (~100) 4044 3956  (4) 4620 3.644 (95
e 3456 (~100) ce. 4308 (98) S 3975 (69)
2.364 2560 2416 (1) 2335 2211 (2 2.285 2520 2432 (4)
5= o 2831 2682  (46) 2762 2671 (3) o 2831 2758 (4
.o 3972 2661  (77) 3658 3614  (2) 4224 3310  (98)
2.774 2750 2344  (98) 2723 2585 (4 2501 2477 (5)
6 o 2852 2564  (19) 2923 288  (3) 2920 2841  (6)
3990 2644  (16) 3603 3509  (3) 4270 3063  (97)
2.909 2498 2267  (14) 2268 2180  (3) 2.483 2487 2371 (5)
7- 3972 2745 (97) 3446 339  (2) 4237 3495 (~100)
4364 3029  (99) 4031 3.635 (~100) 4737 3729 (89)
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energies (in the diagonal elements of our secular
matrices).

Our failure to reproduce the observed level energy of
the 7— state in Sn!!® (provided that the experimental
value of 2.909 MeV refers actually to the first 7— state
7:7) is probably due mainly to our inappropriate choice
of the original unperturbed single-neutron energies
{E,%}, resulting, in particular, in inappropriate values
of the single-qp energy of 14112 In fact, our E(1/11/2)
are too low to be able to account for the rather high
experimental energy of 2.909 MeV.

The impressive difference between our results for
A=116 and those for 4=120 is again probably due
mainly to the fact that the true Hartree-Fock single-
neutron energies {£,°} should vary from one isotope to
another, while we have, instead, kept for 4=120 the
values of 4=116. Our {£,°} are actually more appro-
priate to Sn''®. Unfortunately, a search for a better
set of {E£,°} for Sn'® should require a great amount of
expensive extra computer time, which does not seem
warranted at the present stage. Rather one should ap-
proach the problem either via an HFB self-consistent
solution or at least by a search for better { £,°}, but in
the case of a realistic nuclear force. One such project is
now in preparation. [ Nofe added in proof. M. Gmitro
and J. Sawicki, Phys. Letters (to be published); M.
Gmitro, A. Rimini, J. Sawicki, and T. Weber (to be
published). ]

We have also calculated the static magnetic moment
u(5:7) of the 5; state of 4=116 and 4=120 and
several of the characteristic 2*-pole electric transition
probabilities.

For the magnetic moment u(5:7), Bodenstaedt et al.!?
give the following respective experimental value of the
g factors:

g5,- (4=116) = —0.065=-0.005,
g5,- (4=120) =—0.068:0.007.

Lombard?®® has attempted to fit these values with the
pure two-qp QTD theory of Arvieu.® The eigenvectors
|5:7) of Ref. 6 have rather strong admixtures of the
(14112, 2d3/2)5- configuration. Lombard does not intro-
duce any neutron effective charge and includes only the
pure-spin part of the M1 operator. His predictions are
in a rather sharp disagreement!” with experiment.!2

16 R, J. Lombard, Nucl. Phys. 71, 348 (1965).

17 However, we should point out that in the case of the g factor,
in contrast to the case of the quadrupole moment of the first
excited 2% state 2;*, and of typical B(E2)’s, the contributions of
the two-qp-four-qp mixed terms are rather small here. Essentially,
the g factor is determined by the two-qp components alone of the
vector |5:7). For example, for g5~ (4 =116) calculated with the
Gaussian (¢=1) force, we find the contribution of the two-qp
components alone to be Asqpgs,~ (4 =116) =—0.046. When the
corresponding calculation is done for the same quantity with the
pure two-gp QTD theory, we find g5~ QTP (4 =116) = —0.042.
This shows that, after all, the disagreement with experiment of
Ref. 16 is due to the particular structure of the vector |5,7) of
Arvieu (Ref. 6) rather than to the importance of the specific
QSTD effects (four-qp contributions).
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The g factor is defined as
gr={ I+ QI+ D}y |awlI), )

in the usual notation, where the magnetic dipole oper-
ator is

Poy=gwstgwl. 3)

When calculated with QSTD eigenvectors |7M), the
reduced matrix element (I|[a||7) is calculated from the
formula given in the Appendix, with Ox=f ).

Assuming a vanishing neutron M1 effective charge
e, MV =0, we find for Sn''® with our |5,7) eigenvector
of the Gaussian ¢=1 force the value

g5~ (A=116) = —0.0545,

which is extremely close to the observed value. (e, ™D
=~—0.04 would reproduce exactly the experimental
value.) The corresponding quantity for 4=120 is
found to be

g5~ (4=120) =—0.0962,

again very close to observation. These results are not
very reliable quantitatively, because the element
{I||a||I) is rather sensitive to the details of our eigen-
vectors. For example, the above agreement with ex-
periment for e, V=20 is lost when we employ the
Gaussian force with = —0.555 instead of that with = 1.

As for the reduced transition probabilities, B(EN),
we find them extremely sensitive to all the details of the
eigenvectors involved. In view of this fact and of the
crudeness of our assumptions for the s.p. basis and of
our approximations, no quantitatively reliable fit would
be warranted at this stage, although it would be possible.
Therefore, only some general characteristics could be
of some interest.

To give an idea of the numerical situation, we mention
a few numbers obtained. For the transition 5;~— 3;~ in
Sn!6 we find B(E2, 5,7 — 3,7, 116)="7.7(e,E?)? ¢ F*
for our Gaussian (¢=1) force and 14.9 (e, F?)?2 ¢2 F* for
the Gaussian (¢=—0.555) force, where e, is the
neutron effective charge for the E2 operator. The corre-
sponding experimental value appears to be 2240 ¢? F*.
For the transition 77— 5~ in Sn!?* we find B(Z2,
71— 517, 120)=0.008 (e, E?)2 ¢2 F* for the Gaussian
(t=1) force and 2.94 (e, F2)2 % F* for the Gaussian
(#=—0.555) force. The corresponding experimental
value seems to be =20.17 e? F4,

3. CONCLUSION

We have shown that a semiquantitative description
of the general characteristics of the negative-parity
states of the even tin isotopes in terms of QSTD eigen-
states is possible. On the other hand, we find these
states much more sensitive to the numerical details of
the assumptions for the s.p. basis and of the residual
nuclear force than the corresponding even-parity states
of Refs. 2 and 4. For this reason both an HFB self-
consistent single-qp basis and a residual force based on
a realistic nucleon-nucleon potential would be most
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desirable. One such series of calculations is now in prepa-
ration. One of our most important general findings is
the great sensitivity of our QSTD eigenvectors, in
particular, of their four-qp percentages to the residual
nuclear force assumed. In some cases the pure two-qp
QTD theory is clearly invalidated.
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APPENDIX

The reduced matrix element between QSTD states of a tensor operator On, A>0, such that the corresponding

s.p. reduced matrix elements have the property

(sl10allry=(=)i=irl|OAlls)

is given by

(E'T'||ONETY=% (rl|OA|s)LU+s(N(Qp.a*(7,8)+Qan*(7,5)+ Q54 r5)+QasN(r,5))

+V 1N (Qaar(7,5)+088*7,5))], (A1)
where
U,s(N=U VA (=NUV,, Ves(N)=U,Us—(=)V,Vs. (A2)
The various contributions are given by
QpaMr,s)=—3sd50(—)*(E') X 8x(rs,ab)a(EJT; ab), (a3)
(ab)
QapM(r,s)=—16rs070d(E) X 8x(a'V,rs)a*(E'J’; a'd’), (A4)
(a’d’)
QpaMr,8)=—3(=)MT+I A1 S 3 bRET JVTY; '8¢ d)a(ET; ab)P gy ayyr on(@'b'c'd rsab) (AS)
(a’b'c’d") (ab)
Ji'Jo!
QAB)‘(r,s) = ——%(——)*ﬁ\—l Z Z a*(E’J’; a’b’)b(E]; J1]2; ade)P()\Jl)J(JIJZ)(YSG,b,,dde) N (A6)
(a’d’) (abcd)
JiJ2
QaaMrys)=—(—)"++irtie]J' 5 30 a*(E'T'; a'b')a(ET; ab)
(a’d’) (ab)
XA{[8ars W (I jurhja; T )0s(sb',ab)]— (=) 7"+ [a" > ']}, (AT)
QsMNr,s)=—(=)I+/+irkisJ ] 5 3 bHET; T TY; /b d)D(ET; J1Js; abed)
g G
X{[J16s6 X TW (JoT"TiN; IDW (J17aNjr; F6I)P v awn s aan(@d'c'd’; arcd) ]— (—) 7 Hetia <> b ]
T
+ (_)J1+JH-J[]1 PN ]2, a<>c, b« d:H_ (__)J+ja+ib+fc+jd[]1 > ]2’ a <> d, b c]} , (Ag)
where
87(abed)=8,:00a— (— ) Hictiag,484,
and
P yyrarry(abed,a’d'c’d’)= 0| [B sy 7u(abcd) B rysut(@’b'c'd’)]|0), (A9)

where the four-qp operators B* are defined in Eq. (10) of Ref. 1, Py sysar1+)(abed,a’d’c’d’) can be calculated
from Eq. (AS5) of Ref. 1, d is the coefficient fo the zero-qp mode (of the qp vacuum itself), and the symbols a and
b are the coefficients of expansion of the QSTD eigenvectors on the nonorthonormalized two-qp (A*) and four-qp
(B+) basic operators of Ref. 1, respectively. The summations in 3 p) and 2 sca) are restricted in order to avoid

any repetition of equivalent configurations.



