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A numerical calculation validates the correspondence between the soliton nonlinear asymptotic solutions
of the time-dependent Korteweg —deVries equation and the bound states of the one-dimensional time-
independent Schrodinger equation. Here the attractive potential of the Schrodinger equation is equal to
the initial condition of the Korteweg —deVries equation. A situation is examined where an oscillatory
state remains after solitons have emerged.

I. INTRODUCTION

HE solitoe, a nonlinear dispersive wave entity, has
been introduced" to describe the dynamics of a

class of wave interactions observed in solutions of the
Korteweg-deVries (KdV) equation

u, +nuu, +5'u„,=0.

For a large class of nondissipative physical systems,
Gardner and Su' and also Taniuti and %ei4 have shown
that the KdV equation describes the dynamics of small
but finite perturbations about homogeneous equilibria.
The simplification is obtained by applying uniform

asymptotic methods to a system of coupled Eulerian-

type mass and momentum conservation equations.
Earlier work applied asymptotic methods to specific

physical situations and recovered the KdV equation:
shallow water waves, ' magnetohydrodynamic waves in
a warm plasma, ' ion-acoustic waves, ~ and acoustic
waves in an anharmonic crystal. '

In Refs. 1 and 2 we demonstrated' numerically that
solitons are remarkably stable —that is, when many
solitons interact nonlinearly in a small spatial region,
each emerges after a Gnite time with its identity pre-
served. Recently Lax" showed by rigorous analytical
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'It is known and easily demonstrated that if u(a, t) is periodic
or localized in the region (LI,L2)

I2 L2
M = udh and E= —,„'u'dx

II lq

are time-invariant quantities. (In fact, we have shown that the
KdV equation has an infinity of independent invariant quantities).
By "demonstrated" we mean that when solitons interacted, not
only were their amplitudes preserved to high accuracy but also M
and E were constant to the accuracy of the numerical calculation.

'e P D. Lax (priva. te communication).

methods that two solitons are preserved through inter-
action, and it appears that his method of proof is valid
in the general case of an arbitrary finite number of
solitons. Berezin and Karpman" gave an heuristic
method for predicting the number and speed of solitons
that emerge from arbitrary initial conditions.

Miura" recently discovered a transformation (an in-
homogeneous Ricatti equation) between solutions of the
KdV equation and solutions of another equation ob-
tained from (I) by replacing nuu, by nu'u, . Following
this, Gardner, Greene, Kruskal, and Miura" (GGKM)
lieearised the problem and developed a rigorous method
for treating the KdV equation and can determine the
number and properties of emerging solitons. In this
paper a numerical algorithm for solving the KdV equa-
tion with periodic boundary conditions or with boundary
conditions approximating the infinite interval is given.
In the latter case, when the initial condition is chosen
to decompose into only two solitons, good agreement
between numerical and analytical solutions is obtained.
Furthermore, an initial condition is studied that leads
to one soliton and an oscillatory state, and properties
of the latter state are given.

II. ANALYTICAL PROPERTIES OF A sech'(x)
INITIAL CONDITION

In order to compare results with those of Gt KM we
rewrite the KdV equation as

u, —6uu. +u...=0.

For an initial condition of given spatial extent or width,
the single parameter that characterizes the solutions is
the amplitude. The larger the magnitude of the initial
amplitude, the more nonlinear and less dispersive is the
character of the solution. Vnlike the I965 paper' where

e& 0, solitons in this paper will have eegative amplitudes,
but will still travel to the right because the signs before
u& and u „are identical.

GGKM showed that if u(x, t) changes with time,
according to the KdV equation, then the eigenvalues X,

' Yu. A. Berezin and V. I. Karpman, Zh. Eksperim. i Teor. Fiz.
51, 1557 (1966) (English transl. : Soviet Phys. —JETP 24, 1049
(1967)j.

R. Mjui. a, J. ]gath. Phys. (to be published).
"C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M.

Miura, Phys. Rev. Letters 19, 1095 (1967).
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(rt =0, 1, 2, 3, , E 1—) defined by the one-dimensional
time-independent Schrodinger equation (3) are time
invariant:

—fu(x t) —X ]Ip&"&=0. (3)

LThe time t in (3) is a parameter and does not corre-
spond to the usual time in Schrodinger's equation. )
Thus, the eigenvalues of the discrete spectrum A,„(0
(the bound-state eigenvalues) are preserved and are
associated with the amplitudes of the solitons that
emerge from an arbitrary, smooth, square-integrable
initial state tt(x, O). In particular, the solitons will have

amplitudes, A „=2X„;
(4)

speeds, cn= go.An= —4~n, ~

Some consequences of this are:
(1) If J'„+"N(x, 0)dx(0 (corresponding to a one-

dimensional attractive potential) there will always be at
least one bound state and hence N(x, t) for t large has at
least one soliton.

(2) The strong potential or large amplitude initial
condition limit is characterized by a parameter propor-
tional to No/', where No and l are the depth and width of
the well, respectively. In any standard text in quantum
mechanics one finds that if ttpP is large (1) the number
of bound states or solitons is proportional to l(ttp)'";
and (2) a plot of ~X

~
versus I for the largest eigen-

values gives a straight line. Thus at a given time
v-))0, the minima of the strongest solitons will also lie
on a straight line, a fact observed in previous numerical
calculations with periodic boundary conditions (Ref. 1,
Fig. 1).

(3) The KdV equation conserves total momentum
and energy. Thus the momentum and energy that
anally do not reside in solitons will reside in another
state —the oscillatory "tail" that spreads to the left. It
has been observed in numerical calculations and is
related to the continuous spectrum of (3).

To compare with GGKM and to validate our ideas,
let us solve (2) with the specific initial condition

tt(x, 0) = —p(p+1) sech'x, (5)

where p) 0. The bound-state eigenvalues in ascending
order are given byi4

) „=-(P-~)'=-(e IyjV -~)',
(m=0, 1, "., 1V—1) (6)

where E is the total number of bound states, i.e., it is
the largest ilteger satisfying the inequality 1V&p+1,
and e is defined in the range 0&m(1 by

If p is an integer, then e=O and the initial state of the
KdV equation will decompose only into solitons. If pi

4 See, for example, L. Landau and E. Lifschitz, Quantum
Mechaptics, Nortrelatipistic Theory (Pergamon Press, Inc. , New
York, j.958), p. 69.

and ps (pt) ps) are nonintegers, then the /V s solitons of
smallest magnitude that emerge from both initial condi-
tions are identical in size, namely, they have the ampli-
tudes —2c', —2(e+1)', —2(e+2)', , 2—(e+&s 1)'.

Table I gives the total momentum, J'„+"Ndx, and
total energy, st J'„+"I'dx, corresponding to the initial
condition (S) and also the component in the oscillatory
tail (that is, after the momentum and energy in the
solitons has been subtracted from column 1).

Note that the momentum of the tail is positive and
the momentum and energy are independent of Ã. That
is, for given e and digerertt ft/ the tail solutions are
probably identical.

Karpman" (see notation in Ref. 15) gives the distri-
bution function of soliton amplitude for a large ampli-
tude initial condition defined by tt(x, 0) =No sech'(x/I).
The distribution function agrees with the exact result
obtained from (6) with A = 2X, namely,

f(A)= ~dA/«~-'= I4(p —~) I-'=(8~A ~)-'".

If we define rt= (A)/ttp Lwhere (ttp) =p(p+1)], then

f(rt) = (Np/8rt)'t', which is Karpman's equation (8)
when P=t=1 and (ttp/6) —+ ttp (since we take ~n~ =6
and he uses cr = 1 and f'is= P)

III. NUMERICAL ALGORITHM AND
ANALYTICAL/NUMERICAL

COMPARISONS

A. Numerical Integration Algorithm

To solve (1), we used the four point, left-sweeping,
two-time-level numerical algorithm"

0= (P//ts) $s(i+2, j+1) 3s(i+—1, j)
+3s(i, j+1)—s(i—1, j)]
+(cs/8h)[s(i+2, j+1)+s(i—1, j)]
&& )s(i+2, j+.1)ys(i+I, j)

—s(i, j+1)—s(i—1, j)], (8)
where

s(i,j) p tt(x/h, t//t),

"V. I. Karpman, Phys. Letters 25, 708 (1967). In this paper,
use is made of the Korteweg-deVries conservation laws (Ref. 2) to
obtain the asymPtotic distribution of soliton amplitudes f(n) and
total number of solitons 37 emerging from a given large amplitude
initial condition. Here n=soliton amplitude/Np. Karpman writes
his KdV equation as u&+uu, +Isu =0 and his initial condition as
tt(x,0) = Np sech'(x/l) and obtains

(Eq g) f(n) =t(Np/4gPn)"',
and

(Eq. 9) E=1(stp/6P) "'
To compare his results with ours, set $ =p = I and set his u0j6 to
our u0."The algorithm actually used was obtained by rearranging (8)
and setting 5'= 1, ~ = —6, namely,

s(i,j+1) s(i+1, j) =[s{i+2,j+—1) s(i 1, j)j[{—1+e—)/(3 —e)j,
where

e —(3h'/4)[s= (i+2,j+1)+s(i 1, j)g, —
and

s(t,j)= (1/4h) N(x/h, t/h).

Both runs described in this paper were made with h = 1/25.
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TABLE I. Momentum and energy for the initial condition
u(x,0) = —p(p+1) sech2(x).

Momentum

Energy

Total

—2P(P+ &l

+(-')p'(p+1) 2

Tail

+2&(1—e)

+(-') ~2(1—~)'

and h and k are the spatial and temporal intervals
between lattice positions that must satisfy

These boundary conditions approximate the infinite
interval for short times. The left boundary condition is
the poorer approximation, since the linear terms of the
KdV equation (2) cause perturbations expi(~t —xx) to
propagate to the left with a group velocity da&/da = —3a'.
To represent u(x, t) accurately in the box 0&t(Ã,h,
xl.&x&xz, one should have a left boundary condition
u(xi, ,t) =0 where xr, translates to the right and begins
at xL,——xl,—E,h when t=0.

h =h'/48'. (10) B. Analytical/Numerical Comparisons

Condition (10) is obtained if one makes a Taylor-series
expansion of (8), namely,

u, +nuu, +i'i2u. .= —(h'/8)(3u& +8'u. ..
+nL(7/3)uu. „+9u,u..])+0(h') . (1l)

The right side of (11) contains lowest-order continuum
limit terms of the discretization error. Locally, these
errors are of order (h'/6') and nA(h'/6') where A and 6
are the amplitude and half-width of a soliton
LA= h(12/nA)' ']. Thus, only in the neighborhood of
the largest solitons, namely, the ones having the smallest
half-width 6, will we have a sizeable discretization error.
One can show that the linear operator given in the erst
bracket of (8) is marginally stable. With properly
chosen h and k our computations were never unstable.

The two right boundary conditions are

u (xi', t) =u.(xi(,t) =0, (12)

where xi' xa(t) is translat——ed so as to keep the leading
minimum of u (the smallest emerging soliton) a fixed,
large distance from the right boundary. The lef t
boundary condition is evaluated at a fixed location xl.

Two runs were made. For p=2.0, an exact solution
has been obtained and we can compare and validate the
algorithm; for p= 0.8 only some properties of the exact
solution are known and we can compare with these and
predict other properties.

In Fig. I we give the space-time diagram for the loci
of minima of the numerical solution of (2) with p= 2.0.
For this case, analysis tells us that only two solitons
will emerge, i.e., the oscillatory state will have zero
amplitude. GGKM have found the exact solution for
this case:

us(x, t)

3+4 cosh(2x —8t)+cosh(4x —64t)
= —12 (14)

L3 cosh(x —28t)+cosh(3x —36t)]'

and in Table II we compare the numerical solution with
the exact solutions and And that they are in very good
agreement. The minima seen in Fig. 1 behind the two

TABLE II. Comparison of the numerical and exact solutions
of the KdV equation (2) with p=2.0.

u(xr„t) = u(x1„0)= —p(p+1) sech'xr, . (13)

Note that u(xl. ,t) is very small since xl.& —12.5.
First minimum

Ampli- Loca-
tude tion

Second mimmum

Ampli- Loca-
tude tion

0.5
0.480I6

4

04

I)~ j

/
—-o.o2sa%

lP l

]
I

r
/

/

/-+O. sli%

—-MAX
—-=MIN

u(numerical) 0.48016
N(exact) 0.48016
u(exact) OQ

—7.978 7.9563—8.000 7.9572—8 000

—1.995 1.3634—2.000 1.3713
000 ~ ~ ~

leading minima arise because of truncation errors and
round-off errors (that prevent any numerical com-
putation from interpreting p=2.0 to more than eight
significant figures). The boundary conditions (12) and

(13) that approximate the semi-infinite interval may
also contribute to these errors. These minima are in fact
very small, e.g. , at t=0.48016, x= —2.483, then

(100%)(uN„—u@)/
~

min u(x, 0)
~

= —0.027%.

-IO 0
SPACE

Fzc. 1. Space-time diagram for the trajectories
of the minima of N(x, t)(p=2.0), Eq. (2).

+ lO

Alternatively, at t=0.48016 the energy associated with
the oscillatory tail (in the range —10&x&—2.76) is
(6.5X10 ')% of the total energy. The maximum
difference between the numerical and exact solutions,
LEq. (14)] occurs at x= 7.506 and is 0.311%.

For p=0.8, Table III compares the analytical pre-
dictions with numerical computations, and. Fig. 2 shows
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or I x = — . . h'x. Entries are J„=P, ;,
'

(i/ii) I"(ih, t)
the first zero crossing o u(g,= '6= ii/25=0. 44,

'
th io

p o o y"
(n= 1 for momentum, 2 for en gy .
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behind the emerging soliton. g

Analytical
Numerical

Time

1.5321

Soliton
amplitude

—1.2800—1.2838

Soliton
momentum

—3.200—3.155'

Soliton
energy

—1.3653—1.3648'
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momentum

+0.3200
+0.7145b
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energy

—0.01707—0 01633b
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TABLE IV. Parameters for the asymptotic properties of the oscil-

latory state obtained by curve-6tting
~
p=0.8, Eq. {2)j.

0.1393
0.1393
1.5321

Near
minima

6,7
12,13
6,7

1.41
1.41
1.69

0.56
0.54
0.39

0.59
0.58
0.17

minimum 6 at two nearby times (see Fig. 2) we are able
to calculate P and ts.

IV. CONCLUSIONS

The theoretical work of Gardner, Greene, Kruskal,
and Miura rigorously relates solutions of the Korteweg-
deVries nonlinear partial differential equation to the
Gel'fand-Levitan linear integral equation. They show
that bound states of a one-dimensional potential well

correspond to the soliton solutions of the KdV equation
with the potential well used as an initial condition.
Using these facts, we have validated a numerical

integration algorithm for the KdV equation and have
also determined properties of the oscillatory state which
remain when the solitons propagate away. This vali-
dated algorithm can also be used for a situation having
periodic boundary conditions, a case where no solutions
have as yet been obtained.

Galvin and others'~ have observed soliton inter-
actions among "secondary" water waves produced in a
long tank by a sinusoidally moving piston. We intend
to apply the numerical algorithm to establish in detail
the physical regions where solutions of the KdV equa-
tion describe interactions among surface water waves.
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