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In the calculation of the scattering of low-energy charged particles by atoms, corrections must be made to
the usual polarization potential. The most important of these is a distortion potential, arising from the
action of the kinetic-energy operator for the scattered particle on the perturbed wave function for the atom.
A formal expression for this potential is obtained for any atom. It is evaluated approximately for hydrogen
and helium. The combination of the distortion potential and the ordinary polarization potential is called
the extended polarization potential; it is much weaker than either separately. Calculations of the scattering
of low-energy positrons and electrons by hydrogen and helium atoms are performed in which the extended
polarization potential is employed. Computed phase shifts and cross sections are compared with experiment

and with other theoretical calculations.

I. INTRODUCTION

ET us consider the scattering of a low-energy
charged particle by an isolated atom. Initially, the
particleis at alarge distance R from the atom. The atom
distorts slightly in the electric field of the particle. The
field produced by the induced multipoles alters the
potential energy of the incident particle. This change is
called the polarization potential. It is easy to see that
the polarization potential must be proportional to
—a/R*when R is sufficiently large, where a is the atomic
dipole polarizability. When R is small, that is, when
the incident particle penetrates the atom, a more
complicated expression can be obtained for the polariza-
tion potential which is not singular at the origin.~7
There are other related effects which also must be
considered. The wave function of the atom comes to
depend on the coordinates of the incident particle.
This means there will be a contribution to the kinetic
energy of the system from the action of the kinetic-
energy operator of the external particle on the atomic
wave function. Since this contribution depends on R,
it contributes to the effective potential experienced by
the external particle. This effect is repulsive: that is,
it tends to counterbalance the attractive polarization
potential. At large R, it falls off asymptotically as R~6,
and thus is less important than the polarization poten-
tial; however, for small R it is of the same order as the
polarization potential. Since the corrections to the
particle-atom interaction from third-order effects
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usually neglected in polarization potential calculations
are of order R~ at large R,® the term we are discussing is
the leading correction to the polarization. We shall refer
to this term as the distortion potential ; the combination
of it and the ordinary polarization potential will be
called the extended polarization potential.

A reasonable approximation to the extended polariza-
tion potential may be readily computed. We have used
this potential in calculations of the scattering of low-
energy electrons and positrons by hydrogen and helium
atoms. Use of the extended polarization potential
corrects much of the error resulting from too large
polarization effects found in the adiabatic exchange
approximation, particularly when monopole compo-
nents of the polarization potential are included. In this
respect, the results are similar to those of the so-called
dynamic exchange approximation,® which this work
supersedes.

The plan of this paper is as follows. In Sec. II, the
distortion potential is defined and a formal expression
given which is applicable to any atom. Section III
contains a brief discussion of the relation between the
present work and some other treatments of low-energy
scattering. In Sec. IV, the distortion potential and
extended polarization potential are constructed approx-
imately for hydrogen and helium. The calculation of
the cross section for the scattering of low-energy
electrons and positrons by hydrogen and helium atoms
using the extended polarization potential is described
in Sec. V. The results are compared with experiments
and other calculations. Our conclusions are summarized
in Sec. VI.

II. THEORY

We wish to investigate the scattering of a charged
particle by an atom using a form of the polarized orbital

8 A. Dalgarno and J. T. Lewis, Proc. Phys. Soc. (London)
A69, 67 (1956).
?R. W. LaBahn and J. Callaway, Phys. Rev. 147, 28 (1966).
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method.? Because severe problems arise in connection
with the proper selection of a certain projection operator
in the case that the incident particle is identical with
those in the atom, we will have to restrict our considera-
tions formally to that in which the incident particle is
distinguishable from those in the atom. However, if the
corrections to the exchange interaction due to polariza-
tion and distortion effects may be neglected, the
extension to include identical scattering and target
particles appear to be straightforward.

Our approach is an extension of the optical potential
method of Feshbach.® Central to this work is the
introduction of a projection operator P which has the
property that, operating on an arbitrary wave function
for the system, it produces a function which, when the
coordinates of the scattering particle become arbitrarily
large, approaches the product of the wave function for
the undisturbed atom in its ground state and a
function of the scattering particle coordinates only.
Let us suppose that the target atom contains N
electrons. We will denote their coordinates (and spins
where necessary) by .. The coordinates of the scatter-
ing particle are labeled x,. Then P has the property that

213; PV (%,%5) = ()0 (%a) . 1)

Yo is the ground-state wave function for the atom. P
must also be Hermitian and satisfy

Pi=P. 2)
Now let Q be the complement of P
Q=1-P. 3)

Feshbach shows that an exact equation which gives rise
to the correct elastic scattering is

Hop(PY)=E(PY), @
where the “optical” Hamiltonian H, is given by
Hop=PHP—PHQ[1/(E—QHQ)JQHP.  (5)

When the wave function of the undistorted atom is
known, the conventional choice of projection operator is

P=vo(xa)o* (2a") . (6)

Then the second term in Eq. (5) contains the effects of
virtual excitation of the core levels, and in particular
contains the core polarization effects. There is, however,
no compelling reason for the particular choice of P
specified by Eq. (6). Any operator P which satisfies
Egs. (1) and (2) will do. The polarized orbital method
results if the projection operator P is constructed from
the wave function of the atom as distorted by the
external particle.

Let ¢ (x4,%5) be the wave function for the atom as

10 H. Feshbach; Ann. Phys. (N. Y.) 5,357 (1958);19, 287 (1962).
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distorted by an external particle at x,. We will choose

P=y@ (22,20 D* (' 5) . (M

In order that P satisfy Eq. (2), it is necessary that
(D (x,,%5) be normalized to unity for all values of x,.

[ o @ ran=1. ®

If YD (x,,2,) is obtained by Hartree-Fock perturba-
tion theory,*—12 the normalization requirement will be
satisfied. It is also apparent that, since

im g () =Vo() ©)
our projection operator satisfies Eq. (1).

We next make the approximation of neglecting the
second term in Eq. (5) altogether. The Hamiltonian H
may be expressed as

H=H (x,)+H (x5)+V (4,%5) (10)

in which H (x,) contains the kinetic energy, the potential
energy in the field of the nucleus, and the electron
interaction terms pertaining to the bound electrons;
H (xs) contains the kinetic energy and interaction with
the atomic nucleus of the incident particle, and V (x,,%5)
contains the interaction between the bound electrons
the the external particle. We define

¢ ()= / x@* (xa,xs)‘l’ (%ay%s)da ’ (11)

where ¥ (x,,%5) is the complete wave function for the
entire system. A short calculation shows that the
reduced form of Eq. (5)

[E—PH]P¥=0
now becomes

[E—Hp(xs) Jp(xs)=0 (12)
in which
Hp(x.)= f VD" (0,00 CH (%) + H (£:)+V (%a,%5) ]
XD (x5,2,)dx,.  (13)
Now we express ¥ (® (#,,%;) in the form
YD (%0,05) = Yo (%a) +X (%, %) . (14)

The unperturbed atomic wave function y(%,) is normal-
ized. Then Eq. (8) implies that X (x,,%,) satisfies

f [¥0* (oa)X (a,%0) FX* (0,2, W0 (%) Jd20a
- —/ lx(xa;xs) lzdx“' (15)

11 A, Dalgarno, Proc. Roy. Soc. (London) 2514, 282 (1959).
21, C. Allen, Phys. Rev. 118, 167 (1960).
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Let us now consider the terms in Eq. (12) which result from the action of H(x,). Using the normalization

condition, Eq. (15), we obtain

[H (xs)+H (xs) [ Yo* (xa)x(xa;xS)dxa+ / X* (xa;xS)‘pU (xa)dxaH (xo)+ / x* (xa;xs)H (wa)x (xayxs)dxu]d’ (xs)

1
=|:H () —3H (%) / Xz(xa,xs)dxa——-i / X2 (%a, %) daH (2)+ / X* (way00) H (xs)x(xu;xS)dxa:l¢(xs)- (16)

In the last step of Eq. (16) we have used the fact that
both ¥ and X may be chosen to be real. Evidently, only
the kinetic-energy part of H(x,) will contribute in the
evaluation of the last three terms of (16), and a straight-
forward calculation shows that Eq. (16) may be written

N [H(x)+Va(xs) Jo(xs) 1

where

Valxs)= / | V sX (%0,%5) | 2d%a (18)

The function Va(xs) is the distortion potential.
The remaining terms in Eq. (13) may conveniently
be separated into three parts:

EotVo(xs)+ V(%) (19)
in which E, is the energy of the undistorted atom
E,= / Vo* () H () (%a)d2a (20)
V.(xs) is the average potential
Vo(xs)= / Yo" (4a) V (%o, %0 (4a)da,  (21)

and V, is the polarization potential, containing all the
terms not included above.

For further analysis, we will asuppose that X (x4,%,) is
computed using Hartree-Fock perturbation theory.!-13
In this approach, we regard ¢® as a determinant of
perturbed one-electron wave functions which are
conveniently expressed as

(22)

in which 4 designates one of the occupied states, x;
represents the coordinates of one of the atomic electrons,
%, is as before the coordinate of the external particle,
and #; is a one-electron wave function satisfying the
Hartree-Fock equations for the undistorted atom. The
interaction term in Eq. (10) is

V(@) =2 V(23%:) =eq 2 |aj—x| 7. (23)

(%) +wi(2j,%5)

The quantity ¢ is the charge of the incident particle.

» S. Kaneko, J. Phys. Soc, Japan 14, 1600 (1959).

This interaction is treated as a perturbation. The
functions w;(x;,%,) then satisfy the perturbed Hartree-
Fock equations which are given in Refs. 10-12. The
individual one-electron wave functions of Eq. (23)
must remain orthogonal and normalized for all values
of #.. Then we can express Eq. (13) as

V=X [1Vantedn

in which the sum includes all atomic states (including
spin). A fourth-order term has been neglected.

Now let us suppose that the external particle is at
large distances from the atom so that the interaction
term is small. We may then use first-order perturbation
theory to determine the perturbed wave functions w;.
The leading term in the polarization potential V,(ws)
which was defined implicitly in Eq. (19) then has the
well-known form:

Vp (xs) = Z /u,-(xl) V (xl,xs)wi (xl,xs)dxl . (25)

From the form of the perturbed Hartree-Fock equa-
tions, it is easy to see that the dipole component of the
interaction dominates at large distances. The =0
component of w; gives rise to potentials which decay
exponentially at large distances. If R=|x,|, then we
find that

wz’(xlyxﬁ) < _"R:f(xl) ) (26)

where 6 is the angle between «, and x;. From this we
conclude immediately that V4(R) < R~ for sufficiently
large R, as was stated in the Introduction. A similar
analysis applied to Eq. (25) leads to the usual R—*
dependence of V, for large R.

If the incident particle is an electron, it is necessary
to antisymmetrize the total wave function of the system
with respect to exchange between the incident electron
and electrons in the target atom. This poses severe
problems, and it has not been possible to obtain a
satisfactory generalization of our projection operator
P, Eq. (7), which satisfies all the requirements. In
lowest order, however, the result is clear from a physical
argument. If the distortion of the atom by the external
electron is neglected, and the Hartree-Fock approxima-
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tion is used for the atomic wave function, the projection
operator given by Feshbach must result. This is

P'= (N+1)2 Ao (wa)o* (1) A (N+1)712 - (27)

in which 4 antisymmetrizes with respect to coordinates
%s and x,:

N
A=1— Z st

=1

(28)

and P,; permutes x; and #;.

The usual exchange interaction between an electron
and an atom decays exponentially with distance and
becomes negligible in comparison with the direct terms
at large distances. For this reason, it should be a
reasonable approximation to neglect the distortion of
the atom insofar as the exchange terms are concerned;
that is, we use for this purpose P’ as given in Eq. (27),
combining the result with Hp of Eq. (13). The resulting
approximate wave equation is (with k= E—E, and
¢; the energy of atomic state j)

[H (xs) +Ve (xa) +V, (xs) +Va (xs) - k2]¢ (xs)
=2 [ / u* (w)[e— k24 V (21,%,) ]
XbGdn(w)| . (29

We will call this the extended polarization approxi-
mation.

III. COMPARISON WITH PREVIOUS WORK

The distortion potential V4 of Eq. (18) has not
appeared in previous applications of the polarized
orbital method. Temkin? has employed instead of our
Hp, Eq. (13), the expression

Hp(xs)= / Yo* (o) [H (xa)+H (x5)

AV (%ay25) WD (%a,%5)dxa  (30)
in which the undistorted atomic wave function ¥,
appears on the left of the bracket in the integrand.
Although this approach yields the usual polarization
potential of Eq. (25), it will not contain V4. Temkin’s
approach is apparently inconsistent with the projection
operator formalism we have employed.

In our previous calculations of the scattering of
electrons by helium atoms, the distortion potential
derived here was absent, and in its place two other terms
appeared.® These calculations employed the equation

[V 4 Ve(x)—4/R+V (%) — D, (%) - Vo— V()

_k2]¢(xs)= /uls*(xl)[els—k2+ V(xl,xs)]

Xop(x1)dxy ure(x)  (31)
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in which

D,(x)=4 / w(x1,%,) V s (21,2 )dxy (32)

and

Vi(xs)=2 f w(%1,%) V 520 (%1,%,)d2x; . (33)

These equations were obtained by reducing Hp,
neglecting the normalization condition, and retaining
only the first-order perturbed atomic wave functions.
Although the approach used in Ref. 9 is inadequate in a
formal sense, it turns out, as will be placed in evidence
below, that the difference in phase shifts for electron-
helium scattering between those obtained from Eq.
(29) and from Eq. (31) are reasonably small. The reason
for this is the following: We define a new function ¢’ by

¢(xs)=¢' (xs)eXP[‘ / ‘wz(xl,xs)dxl] . (39
Since for large |xs| =R
w? (%1,%5) < R4,

the same phase shifts will be obtained from ¢’ as from
¢. We substitute Eq. (34) into Eq. (31). A straight-
forward calculation shows that ¢’ satisfies the equation

["‘ V2—4/R+-Vo(:)+V p(x:)+ 2/ ] V sw(#1,%5) l *day

2
—k2+4| / w (%1,2,) V 10 (21,25)d 2 :|¢'(xs)

= / w1s(21) { e1s— B2+ V(xl,xs)}exp[— / 'w2(xz,x1)dx2]

XqS’(xl)dxl[exp ] wz(xl,xs)dxl:luls(xs). (35)

This differs from Eq. (29) in two respects: A fourth-
order direct term

2

4 ' / w(%1,%5) V 0 (%1,%,) d;

is present, and the exchange terms are modified slightly.
Both these effects would be expected to be reasonably
small and this is confirmed by explicit calculations
for helium.

IV. CONSTRUCTION OF THE DISTORTION
POTENTIAL

We will consider the construction of the distortion
potential for hydrogen and helium. In these atoms,
there is a single one-electron wave function and, follow-
ing Schwartz,'* it is convenient to introduce a function

1 C. Schwartz, Ann. Phys. (N. Y.) 6, 156 (1959).
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F (x1,x5) by
w(%1,%5) = [F (w1,205) — (F) Juo (%1)

in which #o(x:) is the unperturbed one-electron wave
function for the atom, and

(36)

(F)= f ue® (@1)F (w1,%,)d2y . 37

The inclusion of (F) is a device to ensure that the
perturbed wave function is orthogonal to #,. It is then
easy to show that F(x,x,) satisfies the equation

[V 24 [2/m0(01) IV 1000 (21) - 7 1 F (w1,65)
= 2/]%1—:173] - Vc(xS) y

Ve(xs)=2 / o (21) | 21— x| ~1ds.

For a hydrogenic atom we have, with r=|xi|, uo
= (Z3/7)"2¢%". This is, of course, exact for hydrogen
with Z=1, and we shall use this form for %, also in
the case of helium as an approximation. In that case Z
is a parameter which can be determined by fitting the
observed atomic polarizability (Z=1.594), or from a
variational calculation for the ground state (Z=1.6875).

Dalgarno and Lynn have solved Eq. (38) with the
hydrogenic #o, and have used this solution to determine
the polarization potential V,. We will use this polariza-
tion potential (referred to as the ‘“‘complete” polariza-
tion potential) occasionally in the following. However,
a distortion potential ¥, has not yet been constructed
from their solution. Instead, we will use the simpler
approach in which a partial-wave expansion of F is
made, and Eq. (38) is replaced by a set of ordinary
differential equations for the components of F. Let
R=|x;|, and let 6 be the angle between x; and x,. We
write

F(x1,25)=2_ Fi(r,R)P;(cosh). (39)
7
We then have
@Fy 1 NdF L0+ 2
——+2(——z Fim— V.(R)ors (40)
dr? 7 / dr 72 rstl

in which 7« (r5) is the lesser (greater) of » and R. The
polarization and distortion potentials in the case of a
single bound electron may then be expressed as

VoR)=2 VP (R); VaR)=2 Va®P(R), (41a)

with
1

8 r<
Vo (R)=—- / “02(")< )F 1(r,R)r*dr,
21“{— 1 1’>l

+1

(41b)

168

Vi (R)=

2:: / “"2(7)[(%>2

1(04-1)

F zz]rzdr . (410

In the case of helium, these results are to be multiplied
by a factor of 2.

The /=1 component of the perturbed wave function
was first obtained by Bethe,! who constructed from
it the now well-known dipole polarization potential.
Solutions for /=0 and 2 were obtained by Reeh,® who
also obtained their contributions to the polarization
potential. The /=0, 1, and 2 components of the polariza-
tion potential are also given by Kestner ef al.*> Compo-
nents of the distortion potential have not been published
previously, and we believe that it is of interest to give
the largest one, the dipole (/=1) distortion potential :

Va® (R)=y9{129/4+3 (3412 2y*+ 49"+ Ty 65+ 3)
X e[ Ei(2y)—21In2y— 2y +Ei(—2y)
X [2e72¥(9+ 18y 1292— 3yt — 295 —245)
— 2984495 — 3944692 — 9 |4 2[57/4—(15/2)y
— (127/2)y*— 1Ty’ —45y*— (46/3)y*— (4/3)y"]
—e4[93/2+4150y+ 22692+ 216y°4- (305/2) *
+86y°+39y5+12y7]}  (42)
in which y=ZR, and «y is Euler’s constant.
It is also possible to obtain limiting forms of these
potentials for all 7 both when R is very large, and when

it is close to zero. The large R result for />0 is given in
Ref. 2 for V,:

V0 ®)=

—4(+1)! (ﬁf) (43)

(2ZR)2+2 \ |

while we find in the case of V;:

- 8(21+2)!
@ )_lz(QZR)ztﬂ
2(42) (2143
X[2l2+4l+1+—(iuil° (44)
2(141)

Thus, the /th component of ¥, in the asymptotic region
depends on the same power of R as the /41 component
of V,. The =0 forms decrease exponentially to zero
in both cases.

For small R, it can be shown by expansion of Eq. (42),
or directly, that V4@ (0)=1 Ry. This is equal in magni-
tude but opposite in sign to the value of V,©(0).
Further it can be shown that all other contributions to
V pand V4 vanish for R=0. Thus we have an interesting
result : For a hydrogenic bound-electron wave function,

15 N. R. Kestner, J. Jortner, M. H. Cohen, and S. A. Rice,
Phys. Rev. 140, A56 (1965).
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the sum of the polarization and distortion potentials
vanishes for R=0.

In Fig. 1 we show the distortion and polarization
potentials and their sum for a single bound hydrogenic
electron. The /=0, 1, and 2 components of the polariza-
tion potential and the /=0, 1 components of the
distortion potential have been included. The sum is
correct to order R~% at large R and also has the approp-
riate behavior at small R. If we had included the
‘“complete” polarization potential of Dalgarno and
Lynn, the result would have shown a slight decrease in
the effective repulsion for small R and a small increase
in the attractive at intermediate R. The result would
not, however, be noticeably different on the scale of
Fig. 1. Inclusion of the neglected components of V4
would give an effect in the opposite direction.

V. APPLICATIONS TO HYDROGEN
AND HELIUM

The elastic scattering of low-energy electrons and
positrons by hydrogen and helium atoms has been
calculated to illustrate the effectiveness of the new
distortion potential. The calculations for helium parallel
closely our previous work® and we shall consider these
first.

Helium
The scattering equation (29) is first reduced for

solutions by expanding the scattering function in
partial waves

o (xs)= Zz: R (R)YL(Q). (45)

Substituting this into Eq. (29) and integrating out the

1.LOP= ~Q -
— N
s 0.8 \\\ -
G Vv
- d

0.6} AN 4
»n N
I 0.4t N -
5 o2k Va4 tVp RN .
& s
2 00 % ———
= -0.2 //—”— B
o —
E -0.4}f /// -

7V
2 -0.6F 7P -
@ ,/
o .08+ E
rd
-rof” -
1 L
0 ! 2 3
ZR/a,

F

=
@

. 1. Single-electron distortion potential, partial polarization
potential, and their sum.
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angular dependence yields the radial equation

a2 Il(l-l—l) 2Z
[_dkz' R

Y o(R)+ Vo (R)
+Vd(R)—k2}ul<R>

T2 [ B1.0(e1s—#?) / w1, () o (r)dr

© i
[ w0 i e ®), - a0

where Ze is the charge of the nucleus.!® The coordinates
R and r are as defined in Sec. IV. For positron scattering,
all terms on the right-hand side of Eq. (46) are set to
zero.

We have performed one new calculation for electron-
helium scattering and four for positron-helium scatter-
ing. The electron-helium calculations will be discussed
first.

The distortion interaction used for the electron-
helium calculation consisted of the sum of the first
three multipole components (}=0, 1, 2) of the polariza-
tion potential (dashed curve labeled V, in Fig. 1)17
plus the first two components (!=0, 1) of the distortion
potential (dashed curve labeled V4 in Fig. 1) as dis-
played by the solid curve in Fig. 1. Using this distortion
interaction, the scattering equation (46) was solved
numerically using a noniterative method and the
resulting phase shifts corrected for the long-range
interactions as discussed in Ref. 9. The resulting phase
shifts are tabulated in Table I. These phase shifts were
then used to calculate the total scattering cross section
which is displayed by the heavy solid curve in Fig. 2 in
comparison with some of our earlier calculations and
experiments. The adiabatic-exchange-dipole (AED)
curve employs only the dipole (/=1) component of the
polarization potential.® The adiabatic-exchange-total
(AET) curve represents using the sum of the first 3
multipole components of the polarization potential.’ The
crosses represent the most recent experimental data of
Golden and Bandel.!®

The scattering lengths resulting from these calcula-

16 In the helium calculations, we have used the Hartree-Fock
SCF functions of C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss
[Rev. Mod. Phys. 32, 186 (1960)7], for both the u;, in the exchange
terms and in determining the screening potential V+(R). The value
of €1; appropriate to these functions is —1.835912 a.u. In Eq. (46),
u1s(r) is 7 times the function called # in Sec. IV, while % is now
the /=0 component of ¢.

17 The /=1 and 2 components of V', were identical to those used
in Ref. 9 but the /=0 component used here was the analytic form
given by Reeh (Ref. 5) instead of that used in Ref. 9. The reason
for this change was that at the origin, the potential used in
Ref. 9 went to —2.258 a.u. while the analytic form goes to —2.0
a.u. and thus gives the exact cancellation as discussed in Sec. IV.
The calculated cross sections for electron-helium scattering differed
negligibly between use of these two forms of the /=0 potential
while the positron-helium cross section differed by at most 6.5%,.

18D, E. Golden and H. W. Bandel, Phys. Rev. 138, A14 (1965).
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Tasie 1. Electron-helium partial-wave phase shifts in radians.

Energy
k (eV) 70 m 72

0.01 0.00136 3.12995 0.000029 0.000004
0.05 0.034 3.0812 0.00075 0.00010
0.10 0.136 3.0170 0.00306 0.00035
0.1917 0.50 2.8945 0.0118 0.00134
0.25 0.85 2.8156 0.0204 0.00245
0.2712 1.00 2.7869 0.0242 0.0029
0.3835 2.00 2.6371 0.0497 0.0060
0.4287 2.50 2.5783 0.0625 0.0076
0.50 3.40 2.4878 0.0845 0.0104
0.6063 5.00 2.3590 0.1213 0.0154
0.75 7.65 2.1979 0.1729 0.0239
0.8575 10.00 2.0877 0.2094 0.0312
1.00 13.60 1.9550 0.2508 0.0419
1.25 21.25 17560 0.3014 0.0620
1.50 30.60 1.5932 0.3277 0.0813
1.75 41.65 1.4584 0.3383 0.0980
2.00 54.40 1.3450 0.3399 0.1118

tions and from experiment are: 1.132 ao, for the
adiabatic-exchange-dipole polarization potential; 1.097
a for the adiabatic-exchange-total polarization poten-
tial; 1.151 ao for the extended polarization potential.
The most recent experimental value is 1.15 @o as
determined by Golden and Bandel.

The phase shifts of Table I were also used to calculate
the momentum transfer cross section which is displayed
by the heavy solid curve in Fig. 3. This is also compared
with the corresponding results from our previous two
calculations as outlined above and the recent experi-
mental based data of Crompton, Elford, and Jory.!
The scattering length appropriate to the Crompton,
Elford, and Jory data is 1.18 a,.

The agreement of the Crompton, Elford, and Jory
results with our previous dynamic-exchange calcula-
tions® is superior to our present calculations. The
scattering length we obtained before was 1.186 ao. As
mentioned in Sec. ITI, the two calculations would give
very nearly the same results provided the changes in
the exchange terms were negligible. It appears that these

30 T T T T T T T

ELECTRON - HELIUM

2
a/a,
T

TOTAL CROSS SECTION,

L 1 L 1
o 10 20 30 40

ENERGY (aV)

F1G. 2. Electron-helium total scattering cross sections: AED,
adiabatic exchange with dipole polarization potential; AET,
adiabatic exchange with three-component-sum (total) polarization
potential; EP, present calculation with extended polarization
potential.

19 R. W. Crompton, M. T. Elford, and R. L. Jory, Australian
J. Phys. (to be published).
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Fi16. 3. Electron-helium momentum transfer cross sections. (Curve
labeling identical to that of Fig. 2.)

changes are of some importance here since the difference
in the cross sections between using the previous explicit
velocity dependence and the present distortion potential
range up to a maximum of 6%,.

We next discuss the positron-helium calculations.

The four calculations performed for positron-helium
scattering are: (a) static atom approximation; (b)
adiabatic approximation using the dipole (!=1) polari-
zation potential only ; (c) adiabatic approximation using
the sum of the first 3 components (!=0, 1, 2) of the
polarization; and (d) extended polarization approxima-
tion using the same potential functions applied above
to electron scattering. The possibility of positronium
formation was neglected in all of these calculations.

The appropriate scattering equation is Eq. (46) with
all terms on the right-hand side set to zero. This was
iterated numerically for the phase shifts which were
then corrected as discussed in Ref. 9. The results are
tabulated in Table II. These phase shifts were then
used to compute the total scattering cross sections which
are displayed in Fig. 4.

The static atom approximation calculation was
performed to obtain a reference cross section and to
check our computer program by comparing the results
with the earlier calculations by Massey and Moussa.2
A scattering length of 0.426 @ was obtained in this

T T T T T
6| POSITRON - HELIUM o T T m

2
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o

L !
o 0.2 0.4 0.6
ENERGY (eV) T

TOTAL CROSS SECTION, o /g

AED
AET
L 1 !
15 20 25 30
ENERGY (eV)

F16. 4. Positron-helium total scattering cross sections. (Curve
labeling has same meaning as those of Fig. 2.)

W H. S. W. Massey and A. H. A. Moussa, Proc. Phys. Soc.
(London) 71, 38 (1958).
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TasiE IL Positron-helium partial-wave phase shifts in radians.

Adiabatic dipole Adiabatic total Extended polarization
k n0 m N2 70 m 72 70 m 72
0.1 0.0293 0.0026  0.00042 0.0539  0.0027  0.00042 0.0069 0.0025  0.00041
0.2 0.0342 0.0092  0.0016 0.0781 0.0100  0.0017 —0.0068 0.0084  0.0016
0.3 0.0223 0.0178  0.0037 0.0802  0.0203  0.0038 —0.0334 0.0154  0.0036
0.4 —0.00029  0.0268  0.0065 0.0675  0.0317  0.0068 —0.0676 0.0219  0.0062
0.5 —0.0292 0.0348  0.0098 0.0457  0.0430  0.0106 —0.1057 0.0264  0.0092
0.6 —0.0615 0.0409  0.0136 0.0185 . 0.0528  0.0150 —0.1454 0.0284  0.0123
0.7 —0.0953 0.0446  0.0175 —0.0114  0.0595  0.0198 —0.1852 0.0281 0.0154
0.8 —0.1292 0.0458  0.0213 —0.0422  0.0656  0.0247 —0.2241 0.0238  0.0182
0.9 —0.1624 0.0444  0.0249 —0.0729  0.0670  0.0295 —0.2614 0.0184  0.0205
1.0 —0.1944 0.0408  0.0280 —0.1027  0.0655  0.0339 —0.2968 0.0110  0.0221
1.25 —0.2671 0.0243  0.0330 —0.1710  0.0604  0.0425 —0.3756 —0.0185  0.0226
1.5 —0.3284 0.0012  0.0335 —0.2288  0.0344  0.0465 —0.4402 —0.0441  0.0179

approximation which agrees with a similar calculation
by Kestner ef al.t®

The adiabatic approximation with dipole polarization
potential only yielded a scattering length of —0.437 a.
Our results in this approximation appear to be in
reasonably good agreement with those obtained under
similar conditions by Massey, Lawson, and Thompson.

The adiabatic approximation with the three-compo-
nent-sum polarization potential yielded a scattering
length of —0.697 ao which is in rough agreement with
the value —0.575 a, obtained by Kestner et al.,'5 in a
similar calculation. The most complete calculation
performed under a similar approximation is that of
Drachman.”? He used the full Dalgarno-Lynn? polariza-
tion potential with partial suppression of the monopole
component. This monopole suppression was empirically
imposed to reduce the large attractive polarization
potential near the origin. The use of the present
formalism accomplishes this in a less empirical manner,
with the distortion potential exactly canceling the
polarization potential at the origin. The results from
Drachman’s calculations were no monopole suppression
was imposed are very nearly equal to our adiabatic
total results. This is in accord with the conclusions
reached by Bransden and Jundi® that the multipole
components of the polarization potential above /=2
are relatively unimportant in scattering calculations.

The extended polarization approximation calculation
yielded a scattering length of —0.202 ao. The total
cross section from this calculation displays a Ramsauer
minimum at low energies as exemplified in the low-
energy insert in Fig. 4. The large differences in the cross
sections at low energy between the static, adiabatic, and
special dynamic approximations should be resolvable
by experiment. The possibility of positronium formation
would modify these results somewhat but since the
threshold in helium is rather high (17.8 eV) we would

H. S. W. Massey, J. Lawson, and D. G. Thompson, in
Quantum Theory of Atoms, Molecules, and the Solid State, edited by
P. O. Lowdin (Academic Press Inc., New York, 1966), p. 203.

2 R, J. Drachman, Phys. Rev. 144, 25 (1966).

. 231 566? Bransden and Z. Jundi, Proc. Phys. Soc. (London) 89,

not expect large changes to occur in the low-energy
region.
We next discuss the calculations for atomic hydrogen.

Hydrogen

The scattering equation for electron-hydrogen scat-
tering is obtained from Eq. (46) by setting Z=1,
€1:=—1 and appending a - sign to the right-hand side
to account for the two spin symmetries possible in this
case (4 for triplet, — for singlet). For positron scat-
tering, all terms on the right-hand side are again set
to zero. The resulting equations were solved numerically
for the phase shifts in the exact analogy to the helium
case.

We have performed two slightly different sets of
calculations for electron- and positron-hydrogen scatter-
ing. The difference involves the choice of the polariza-
tion potential used, the distortion potential being the
same in both cases and of the form of the two-compo-
nent sum (/=0, 1) displayed in Fig. 1 and discussed
above in connection with the helium calculations. The
two polarization potentials were the three-component
sum displayed in Fig. 1 (and denoted here as the
partial polarization potential) and the completed
potential determined by Dalgarno and Lynn.?

The phase shifts resulting from these two calculations
were nearly the same in all cases and so we display in
Table ITI, IV, V and VI only those from the calculation

Tasre III. Electron-hydrogen s-wave phase shifts in radians.

Singlet Triplet
Extended  Varia- Extended  Varia-
k polarization tional® polarization tional®
ob 7.419 5.965 1.676 1.769
0.01 3.0671 3.1244
0.05 2.7724 3.0494
0.1 2.4357 2.553 2.9477 2.9388
0.2 1.9099 2.0673 2.7351 27171
0.3 1.5371 1.6964 2.5254 2.4996
0.4 1.2586 1.4146 2.3275 2.2938
0.5 1.0423 1.202 2.1454 2.1046
0.75 0.6891 1.7667
1.0 0.5258 1.4854

a Reference 24.
b The %k =0 entries are scattering lengths.
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Taere IV. Electron-hydrogen p-wave phase shifts in radians.

Singlet Triplet

Extended  Varia- Extended  Varia-

k polarization tional® polarization  tional®
0.01 0.0001 0.0001
0.05 0.0019 0.0024

0.1 0.0063 0.007 0.0102 0.0114

0.2 0.0150 0.0147 0.0448 0.0450

0.3 0.0160 0.0170 0.1047 0.1063

0.4 0.0076 0.0100 0.1820 0.1872

0.5 —0.0068  —0.0007 0.2607 0.2699
0.75 —0.0404 0.3871
1.0 —0.0424 0.4119

a Reference 25.

TaBre V. Electron-hydrogen d-wave phase shifts in radians.

Singlet Triplet
Extended Extended
k polarization polarization

0.05 0.0003 0.0003
0.1 0.0013 0.0013
0.2 0.0050 0.0052
0.3 0.0105 0.0119
0.4 0.0163 0.0212
0.5 0.0215 0.0334
0.75 0.0290 0.0713
1.0 0.0316 0.1074

TaBLE VI. Positron-hydrogen phase shifts in radians.

s wave » wave d wave
Extended Varia- Extended Varia- Extended
k polarization tionala polarization tionald  polarization

Qc —0.783 —2.10
0.01 0.0074 0.0001
0.05 0.0277 0.0020 0.0003
0.1 0.0360 0.151 0.0072 0.009 0.0013
0.2 0.0137 0.188 0.0226 0.033 0.0050
0.3 —0.0352 0.168 0.0370 0.065 0.0109
0.4 —0.0939 0.120 0.0458 0.102 0.0175
0.5 —0.1539 0.062 0.0468 0.132 0.0242
0.6 —0.2112 0.007 0.0408 0.156 0.0299
0.7 —0.2638 —0.054 0.0290 0.178 0.0337
0.8 —0.3036 0.0132 0.0354
0.9 —0.3520 —0.0050 0.0348
1.0 —0.3875 —0.0244 0.0321

a Reference 24.
b Reference 25. 3
¢ The k =0 entries are scattering lengths.

using the three component sum polarization potential.
We have also reproduced in these tables the results from
the rigorous variational calculations for s-wave phase
shifts by Schwartz? and for p-wave by Armstead.?s

The largest differences obtained from using the com-
plete Dalgarno-Lynn polarization potential were in the
scattering lengths. The scattering lengths calculated
using the Dalgarno-Lynn form of the polarization po-
tential were; 7.262 a, for singlet and 1.643 a, for triplet
electron-hydrogen scattering and —0.901 g, for posi-
tron-hydrogen scattering.

The electron-hydrogen s-wave phase shifts are also
displayed in Fig. 5 (EP) in comparison with Schwartz’s

24 C, Schwartz, Phys. Rev. 124, 1468 (1961).
% R. L. Armstead, Lawrence Radiation Laboratory Report No.
UCRL-11628, 1964 (unpublished).
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variational values (VAR) and the exchange-adiabatic
(AED) and polarized-orbital (PO) phase shifts of
Temkin and Lamkin.* The Temkin and Lamkin ex-
change-adiabatic calculations correspond to using only
the dipole polarization potential to represent the dis-
tortion interaction. In their polarized-orbital calcula-
tion, they include some distortion effects in the exchange
interaction in addition to the dipole polarization
potential.

The positron-hydrogen s-wave phase shifts are dis-
played in Fig. 6 (EP) in comparison with Schwartz’s*
variational values (VAR) and the adiabatic (AC) phase
shifts of Drachman.?® The Drachman adiabatic phase
shifts correspond to using the complete Dalgarno and
Lynn? polarization potential to represent the distortion
interaction.
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T16. 5. Electron-hydrogen s-wave phase shifts: AED, adiabatic
exchange with dipole polarization potential; PO, polarized orbital
(Temkin and Lamkin, Ref. 4); VAR, variational (Schwartz,
Ref. 24); EP, present calculation with extended polarization
potential.
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F16. 6. Positron-hydrogen s-wave phase shifts: AC, adiabatic
with complete polarization potential ?Drachman, Ref. 26); VAR,
variational (Schwartz, Ref. 24); EP, present calculation with
extended polarization potential.

26 R. J. Drachman, Phys. Rev. 138, A1582 (1965).

%" Further discussion of electron- and positron-hydrogen scatter-
ing including experimental data can be found in the review by
P. G. Burke and K. Smith [Rev. Mod. Phys. 34, 458 (1962)].
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Fi1c. 7. Electron- and positron-hydrogen total scattering cross
sections computed with the extended polarization potential.

Finally, in Fig. 7 we display the total cross sections
for scattering of electrons and positrons by hydrogen
using the extended polarization method.?

VI. CONCLUSIONS

An extended polarization potential for atomic scatter-
ing has been derived and applied to the scattering of
electrons and positrons by hydrogen and helium. This
work stems from earlier studies of electron scattering
from helium® wherein it was found that significant
improvements scattering calculations including distortion
interaction effects were obtained when some of the
nonadiabatic interaction effects were included. The
present work has extended the formalism to the point
where the previous nonadiabatic, or specifically veloc-
ity-dependent, interactions are replaced by an addi-
tional central distortion potential.

A general conclusion which had been reached in
numerous other atomic scattering calculations is that
it is reasonable to include only the dipole polarization
potential to describe the distortion interactions in
calculations of the type described above. The major
reason for this conclusion was two fold; first, the
monopole component which has a comparatively large
value at the origin produces too much attraction, and
second, the higher multipoles are relatively small and
hence unimportant. The results of the present work
supports the conclusion that the monopole polarization
potential is too attractive near the origin but corrects
this by the addition of a distortion potential, the
dipole component of which exactly cancels the monopole
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polarization potential at the origin. The resulting
combination of polarization potential plus distortion
potential thus vanishes at the origin and also presents
a slight repulsion for small R to account for the non-
adiabatic effects. (The velocity dependence of this effect
is only implicit in that the higher the velocity of the
scattering particle, the deeper it can penetrate into the
atom and hence “see” more of the repulsive distortion
interaction.)

The applications of this formalism to electron scatter-

- ing by helium has produced results closely resembling

our previous calculations® using the explicit velocity-
dependent interaction. The application to positron-
helium scattering has no direct parallel and awaits
experimental comparison.

The application of this formalism to electron- and
positron-hydrogen scattering has not produced en-
couraging results. The effect of adding the new distor-
tion potential seriously lowers the phase shifts for
positron scattering and singlet electron scattering. The
combination of polarization and distortion potentials
now apparently contains too much repulsion. This diffi-
culty might be corrected if the effects of distortion on
the exchange interaction in electron scattering and
virtual positronium formation in the positron case were
included. These ideas are supported by the previous
calculation of Temkin and Lamkin* and Sloan?® using
the method of polarized orbitals which indicated that the
exchange distortion interaction has an over-all attrac-
tive effect in the singlet state. The calculations by
Cody, Lawson, Massey, and Smith?*® and Bransden®
indicate that the inclusion of positronium formation
also has an over-all attractive effect. Thus it is possible
that a proper inclusion of distortion in the electron-
exchange interaction and including positronium forma-
tion will yield better results.

Note added in proof. A numerical calculation of the
distortion potential using the full Dalgarno-Lynn? per-
turbed orbital has recently been completed.® The re-
sulting “complete” form of V4 is found to be only
slightly different from the two component sum displayed
in Fig. 1.
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