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The energy of nuclear matter is determined for n = (tv —Z)/(ty+Z) in the range of 0 to 0.60. The results
are applicable to superheavy nuclei and to problems of astrophysical interest.

I. INTRODUCTION

'HE properties of nuclear matter with equal neu-
tron and proton densities have been determined

in a variety of ways by several research groups. ' The
symmetry energy for small neutron excess was estimated
erst by Brueckner and Gammel' and later was more
accurately determined by Brueckner and Dabrowski. '
The properties of the neutron gas have been determined

by Srueckner, Gammel, and Kubis. 4 The symmetry
energy for large neutron excess is of interest in heavy
nuclei which may exist well beyond the region of nor-
mal nuclei presently known and also in astrophysical
problems. In this paper we determine the energy as
a function of density for a range of neutron-proton
densities. The result gives the equilibrium energy and
density and nuclear compressibility. The interaction
used is the Gammel-Thaler phenomenological potential'
which gives excellent values for equilibrium density,
energy, and symmetry energy of nuclear matter. The
more recently studied potentials due to Hamada and
Johnsone and the Yale group" are not used, since they
fail to bind nuclear matter at the observed density and
energy. The use of the Gammel-Thaler potential there-
fore provides a semiphenomenological procedure for
extending the prediction of nuclear properties beyond
those presently determinable from known nuclei.

No explicit correction is made in the following calcu-
lation for the three-body sects analyzed in detail by
Bethe' since his recent results show that a correct treat-
ment of all effects gives a correction of approximately
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1 MeV per particle, which is probably less important
than other uncertainties in the method.

where
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The Fermi momentum of Eq. (3) is deined by the
relation

-'sr—'ks'= A/0= (-'srro') —'. (4)

II. EQUATIONS OF REACTION MATRIX THEORY
FOR NUCLEAR MATTER WITH A

NEUTRON EXCESS

The equations to be solved are very similar to those
in Brueckner and GammeP (referred to hereafi. er as BG)
with the added complication of two different Fermi
momenta: k„ for neutrons and k„ for protons. These
equations are obtained by summation of all particle-
particle ladder diagrams and by an approximation to
the insertion of self-energy diagrams (of 6rst order in
the reaction matrix) into particle and hole lines. For
the single-particle energies for states below the Fermi
level, the on-the-energy-shell reaction matrix has been
used. For the excited states we have made the assump-
tion of an average excitation 6, which is set equal to the
di6erence in energies of particles at the top and the
bottom of the Fermi sea. The equations are familiar and
will only be sketched here (compare with BG and
Ref. 3).

We assume that there is no spin excess, i.e., every
momentum state is occupied by two neutrons with spin
up and down, and/or by two protons with spin up and

down, or otherwise the momentum state is empty. In
this section we neglect spins to simplify the presentation.

For the total energy E of the system we have



NUCLEAR SYM METRY ENERGY

The Fermi momentum of protons and of neutrons is
related to kg and the neutron excess parameter
n=(X—Z)/A as follows:

k~=kp(1+n)'" k =kg(i —n)'" (5)

V„(qi) = P L(qiq2(E»(qiq~) —exchangej

+ P (mgqi(E „(m2qi). (7)

V (mi)= P L(m]m2(E„„(mim2) —exchangej

—P (miqg(E„, (miqg), (6)

The single-particle potentials for neutrons V and
protons V„ for states below the respective Fermi levels
are

We have temporarily used the notation of I for the
unexcited states of the neutrons, n for neutron excited
states, q for proton unexcited states, and p for proton
excited states.

The single-particle potentials are derived from the
diagonal elements of the E matrices for neutron-neutron
scattering, proton-proton scattering, and neutron-
proton scattering. These satisfy the equations

(mlm2 I
i

I
»'n2') Q.~(»'n2') (ni'nm'
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1 e vs~ —e„e~' —e e2'

(qiqm I
~

I
»'p~') Q-(»' »') (»'»'

I E» I qiq2)
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on the energy shell.
The exclusion-principle operators Q „, Q», and Q ~

are defined by

Q~„(ninm) = 1,
=0,

Q-(uip2) =1,
=0

Q-.(ni») =1,
=0

7

for e~& k„and e2& k~

otherwise;

for pi) k, and pg) k„
otherwise;

for Ni) k„and p2) k~

otherwise. (13)

III. SOLVING THE EQUATIONS

To solve the E'-matrix equations (8)—(10) we use the
procedure of BG with the additional approximation of
Brueckner and Masterson' (in the following referred to
as BM). From now on we use k to denote all momenta.
We introduce the total and relative momenta

K=ki+k~ and k= —,'(ki —k2) (15)

The single-particle energies appearing in the de-
nominators are

e.(mi) =mi'/2M+ V„(mi),
(14)

e(Vi) =qi'/2~+ V.(Vi) .
The set of equations connecting the single-particle
energies and K-matrix elements off the energy shell has
exactly the same structure. The only difference is the
replacement of e„(m&)+e„(m2) by e„(m&)+e (m&) —A~
in the denominator of Eq. (8) and similar substitutions
in Kqs. (9) and (10).

and get
(k,k, (E.,(ki'4') = axx. (k(E., I

k'), (16)

for example.
The approximation of BM is the assumption that the

difference of energies in the denominators of Kqs. (8)—
(10) is independent of the total momentum. This
approximation is good if e„(ki) has a quadratic depend-
ence on k~ or if the relative momentum is large com-
pared with the total momentum. We shouM. examine
this approximation for the more complex case of
neutron-proton scattering. Assume that e„(ki)=a„ki'
and e~(ki) =alki . Then the denominator

e„(ki)+e,(4)—e„(ki')—e„(4')
becomes

a (k'+k K+xiE')+a, (k'—k.K+-',E')
—a„(k"+k' K+-',E')—a,(k"—k' K+-,'E')

=a„(k'—k")+a~(k' —k")
+k K(a —a„)—k' K(a„—a,). (17)

For en scattering and pp scattering, a =a~, so that the
denominator is independent of E and the approximation
is exact. If 1V=Z, a„=a~ for Np scattering also and the
approximation is exact (always assuming a single-
particle energy quadratic in the momentum). For a
neutron excess, the approximation is equivalent to
dropping the last two terms in Eq. (17).

The total momentum appears in the exclusion-
principle operators. We replace the total momentum by
its average value compatible with a given value of
relative momentum 0 for the three types of E matrix.
For the cases of ee scattering and pp scattering, the
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arne as that used in BM and will befor u a,.s tbes
for ee scattering. To use e

o l th F i o tfor pp scattering, change on y t e

By de6nition

(E'(k) ),

E =0. For Np scattering, theFor k&k, we have set
de6nition is

(E-n'(k))-

dki dk, E2~(k—,'(k, -k2()

(18)

dki dk, E2~(k—,'~ ki-k2()

dk, b(k ——,
'

i
ki —k, i)

(20)

dk, ~(k——', [ki—k2~)

(1+-',k/k )

dki
r,&r

&e get Eq. (2.2) of BM:

(-,'E'(k) ..),
k i (1+-,k/k. +-',k'/p. ')

=-;k. i1—
~

k.i

e ral is a little long and requiresThe value of this integra is a i ires

w notation. Let s = (k —k,

the range of neutron excess discusse in

we get

(E~ '(k))~~= (12/5)k„'+4k',

32 (/y+sx)' 4(ty'+ms' 8

k 3k5

0&k &-,'(k.—k„)

'
~ ~

'"'*'-""'*"', ,), —;(k.-k„) k —;(k.+k„)-(s'+y')+ — —y'
3

—',(k +k„)&k

If 0,)0.8, then k„)3k~ and we get

(E '(k)) = (12/5)ks, '+4k',

(32s y4 P 4sxt4 4ssx 8 s' 168)

k, &k&-,'(k.—k,)

32 (ty+sr) ' 4(ty'+ vs' 8—(s'+y')+
3k k 3k

+,), —;(k.-k„).k.—,(k.+, .
1

k . (22)s8 y-( ' ')+ (Iy'+ms')+- y s--
2k k k3

i le o erator Q(k, k).k k of the exclusion principle pmentum in the angle-average, o eWe insert the average total momentum in
For ne scattering the result is

Q (E,k) =0, for k&(k '——,'E')'i'

'—-'E') '~'&k &-'E+k.for (k„——, 2

for k) ~E+k, (23)
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and for 22p scattering,

Q„~(K,k) =0,
2K2+k2 k 2 k 2

for k((1(k 2+k 2) 1K2) 1/2

(1(k 2+k 2) 2K2)1/2(k(1K+k

1 —'K'+k' —k~2)=— 1+ ~, for
2 kK

for

',K+k„—&k&,'K+k—

',K+k-(k, (24)

IV. COMPUTATIONAL PROCEDURE

In our calculation the nucleon-nucleon potential e of
Gammel and Thaler' has been used. This potential has
a hard core of radius r=0.4 F with central, tensor, and
spin-orbit parts of Yukawa shape for r& r, .The strength
and range parameters of this potential are listed in
Table III of BG.

To compute the Green's functions, we used the
method of Coon and Dabrowski' (in the following
referred to as CD):

&fnt

«,- '(, ')=
2' p

dk" k"'j1(k"r)j1(k"r')

X (q..(K.,(k),k")/

LE.(k)+E„(k)—E (k")-E„(k")]
—1/LE (k)+E (k) —k"'/Mj}

+G .. '( '). , (25)

where nxd stands for "no exclusion principle and no
dispersion sects." For the last part of G~, we use the
analytical expression

G/, „„(r,r') ~„g dk"
27r2 0 j (k"r)j (k"r')

Xk"'
E„(k)+E~(k)—2k"'/2M

where
= (M/4 )ah[ ' (zar )j1(zar ),

a= (——,'M(E, (k)+E (k))}'".

(26)

(27)

'Sidney A. Coon and Janusz Dabrowski, Phys. Rev. 140,
S282 (&96S).

for k„&3k„.
Having made the approximations of an average total

momentum and the angle-average of the exclusion
principle operators, we may now transform the K-
matrix equations into coordinate space and make a
partial-wave expansion. The resulting equations are
obvious generalizations of those given in BG and BM
and will not be given here.

The 6rst approximation for the energies appearing in
the denominators was simply the kinetic energies. As
was done in BG and BM but not in CD we used kinetic
energies for E(k") when k")3.0 in units of the appro-
priate Fermi momentum. On subsequent iterations we
used E(k) and E(k") from previous iterations.

We used the same meshes for the calculation as those
given in Eqs. (36)—(40) of CD. Because of our treatment
of the last part of the Green's functions, it was only
necessary to integrate numerically up to three units of
the appropriate Fermi momentum in the calculation of
the Green's function. For neutron-proton Green's
function we integrated up to 3k .

We calculated single-particle energies for

i
=0.0(0.2S)1.

/k. q

k,i
(2g)

All integrations have been performed by means of
Simpson's rule. The E matrix and single-particle
energies have been interpolated linearly when necessary.

A major iteration consists of a calculation of Green's
functions, plane-wave basis functions, wave functions,
and elements of the K matrix for neutron-neutron,
proton-proton, and neutron-proton scattering and the
determination of single-particle energies for neutrons
and for protons from the diagonal elements of the E
matrix. These single-particle energies are then used in
the next major iteration and the iterations continue
until self-consistency of the single-particle energies is
achieved. Then the total energy of the system is
calculated.

In the Grst iteration, single-particle energies con-
sisting of kinetic energies only were used. The calcula-
tion was then iterated until self-consistency occurred
for the value of kg= 1.49 F ' and 0,=0 to compare with
the results of BG and BM. A binding energy of —14.97
MeV was obtained, which compares favorably with
BG's result, of —15.2 MeV and BM's result of —16.9
MeV. At this density, the neutron excess parameter
was then varied up to 0,=0.8, in steps of n=0.2. We
found that if we used the single-particle energies calcu-
lated for the previous value of n as an input spectrum
we achieved self-consistency of about 1%, with only
two major iterations. 'Ihis procedure was followed for
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all later calculations. Having established the nature of
the dependence of binding energy on neutron excess at
this 6xed density we then varied the density and kept
0, 6xed for each value of e previously calculated at
kg= 1.49 F '. Again we used as an input spectrum the
single-particle energies obtained for the values of k~
and n nearest the new values of kg and n for which we
desired a binding energy.

O'

LaJ
I

5es

UJ

Fjo. 1. Energy versus spacing parameter for several values
of n= (E Z)/(E+—Z). The solid dots represent the computed
points.

All of the numerical calculations were performed on
the CDC 3600 computer of the Computer Center of the
University of California at San Diego.

with
E(tr) —E(0)= s e»~n'(1 —Xa')

~.~ =56.0 MeV,

&=0.6'70. (30)

The curve cannot be extended to values of rz approach-
ing unity, since the neutron gas is unbound4 and no
energy minimum exists. The variation of equilibrium
density with n is only approximately determined by
these results, which show that the equilibrium spacing
is a slowly increasing function of e, corresponding to a
drop in density of roughly 30% for +=0.6. A similar
result has been found for small values of n by
Dworzecka "The. above value for the symmetry energy
may be compared with the theoretical analysis by
Brueckner and Dabrowski, who found e,~ =64 MeV.
For a pure volume symmetry energy, Green" found
empirically e» =47 MeV. By assuming that there is
also a surface part of the symmetry energy, Green"
found e.~~=61 MeV and Cameron" 63 MeV. The
value given by Eq. (30) falls in the range of these
results; the difference probably can be resolved only by
a more careful a priori analysis of the symmetry energy
using, for example, the Hartree-Fock method appro-
priately modi6ed" for the strong correlations present
in the nucleus.

V. RESULTS

The computed value of self-consistent energy versus
particle spacing parameter is given in Fig. i for several
values of e. Figure 2 gives the variation of energy with 0.
at the saturation density.

The variation of energy with 0, can be accurately
represented for the range of n from zero to 0.4 by

l

0.4 0.6

FIG. 2. Energy minimum as a function of a. The solid dots
represent the computed points.
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