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Born-Approximation Foririulation of Neutron-Deuteron Scattering
with Tensor Interaction*
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The Born approximation for n-d scattering is calculated for a nucleon-nucleon interaction which includes
a tensor term. The 1=0 parts of the resulting scattering amplitude are adjusted to obtain a 6t to the n-d
elastic angular distributions. Spin-polarization phenomena are then calculated, with good agreement with
experiment.

I. INTRODUCTION

'HE theory of elastic nucleon-deuteron scattering
with central potentials is well known. ' Recent

polarization measurements, ' however, require a descrip-
tion of m-d scattering which takes into account non-

central forces. This problem has been discussed briefly

by Wu and Ashkin' and Verde. ' Horie et aL.' considered
the question in some detail but ignored the deuteron D
state. Qransden, Smith, and Tate gave a thorough
dynamical treatment of elastic e-d scattering with
tensor forces, but polarization phenomena were not
discussed and numerical results have not been forth-
coming. Budianskii and Goldberg' have described
phase-shift analyses of nucleon-deuteron scattering and
have discussed certain polarization measurements in
detail. Goldberg, in fact, deduced a set of phase shifts
which gave an excellent fit to his 40-MeV p-d scattering
data. This has been to date the only significant numeri-
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cal work on the problem, and its usefulness is limited by
the fact that it ignores doublet-quartet transitions and
treats only the polarization of the scattered nucleon.
The present work is a Born-approximation description
of all neutron-deuteron polarization phenomena, in the
presence of a tensor force. The deuteron D state is
included.

e 'a's&p*(r)LV„(q —-',r)+ V„(q+-',r))

&(Lq(r)e' 's —q(q+sr)e '~'t&«'&Pter]drdq. (1)

The notation is that of Fig. 1.P~3' is the spin-exchange
operator for the two neutrons and appears as a result
of antisymmetrization.

tP(r) is the deuteron wave function and will be
written'

where
y(r) =v(r)+ Ltv(r)/+8)s», etc. ,

A ASI2=3&i ' t'O'2 ' f—+i. '0'g.

If we assume the same radial form for the S- and
D-state contributions to the deuteron ground-state
wave function, then we may write

y(r) =v(r)t'1+(Pn't /+8)Sts] v(r) re dr=Pe,

vo(r')r' dr =Pg),

in which P8 and PD are the fractional contributions of
the 1.=0 and 1.=2 parts of the wave function. Then,
writing g'=PD, we have

M. Verde, Helv. Phys. Acta 22, 339 (1949); J. L. Gammel,
Ph.D. thesis, Cornell University, 1950 (unpublished).
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II. THEORY

As is well known, ' the application of the Born
approximation to n-d scattering leads to a scattering
matrix of the form
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The radial form v(r) is taken to be the Hulthen wave
function'o

- trP(tr+p) -1/2 e ar —e //r—

v(r) =
22r(n —P)'

(4)

The potentials V„and Vv are, if we write w=q+-,'r
and z=g——,'r,

U-(z) ='U (z)3(3+or.o3)[2(1—P»*))+'V +(z)

&4(1—ot'o3)[2(1+P»')] ~

V,(w) = 'V,+(w) 4 (3+o2 o3)[-', (1+P23*))
+'U;( )-:(3+ ' .)L-:(1—P. *))+'V ( )
X-,'(1—o2 o3)[-,'(1+P23*)]+'V„—(w)

X-,'(1—o2 o3)[-', (1—P23*)]. (5)

Here 'U.+(w) = U.c+(I w I )+'Vvr+(I wl)52„etc. , with
$~3=3a2 fbe3 6—e2-e3. We use for the radial part of the
interactions a Vukawa well

&e introduce the following notation: f=f(3), f"=f(1),
and f'=P2pf=e'"'&&&+i'&. Then, using the fact that
E23*r=—z, E~a*r=vv, I'23*m= —w, and E~3*w=r, we
obtain

1 4M -".(*)«. ( ).()f
Sx 3h'

~V. (w).(zu+V. ().(r)f~V- (z).(w)f

+[2V +(w) 3 (w) f"+U.+(z) 3 (w)f"
~U +(z) i/(r) f)P,3 }drdq. (7)

It is evident that there are three distinct contributions
to (7):

A= e *2 '2ts(r) U(q&-'2r) q (r)e'" 2drdq,

Voe rj), J2= e
—'" &q(r)V(W)3 (W)e *' ti&-ir&drdq, (8)

The integrand is then of the form J3= e '2'&t/(r) V(q&'2r) t/(/7%2r)e *~'&i&+&r&drdq.

f(3)—e~k q

f(1)=P f(3)=

J= y*(r) Vv(w) 3&(r)f(3)+32*(r)V„(z)y(r) f(3)
+[r/2*(r)V„(w)q(w)f(1)+@*(r)V„(z)p(w)f(1)]p,3r Jt is the direct integral, peaked in the forward direc-

tion, and J2 and J3 are exchange integrals, peaked
backward. At low energies J~ is dominant, J~ is negli-

gible for I.&1, and J3 is unimportant. '
Putting in all factors, and neglecting inelastic terms,

we hand for the J~ and J2 contributions to 3f

1 4M~
3f 1——

~

e '"'2v(r)'([1+(2»/v'8)5»+-', »25»'][('V„c+(w)+'V c—(w))(3+o2 o3)
32m 3h')

+('U, c+(w)+'V, c (w))(1—o ))+[5 +(r//+8)5»5 +(2//+8)5„5»+-', »25 5 5 )
X[('V„+( )+'V ( ))(3+, ,)+('V +( )+'V —

( ))(1—o, ,))+[1+(2„/v 8)S,+(„/8)S
x[ Uac (&)(1 ot o3) Unc (3)(3+ol ' %3))+ [513+(r//48)51251 3+ (r//v 8)513512+3 r/ 51251351'2)

X['Var+(v)(1 —o1 o3)+'V~r (s)(3+131 o3)]+[1+(2»/+8)512+&ir/25122]['V„c+(z)(1—or o3)

Uac (&)(3+ol ' o3))P13 +[513+(r//"1/8)512513+ (&7/V 8)513512+ r/ 512513S12)

X['V r+(2)(1—ot o'3) —'V r (z)(3+a'1 o3)]P» }e' 'drdq, (9)
4M

M2 = — e '""v(r)v(w) ([1+(r//Q8) S12+(r//+8) 5„+3 &&'512523)
16m 3h'

+[ Vvc (w) (3+o2 o3)+ Vvc (w) (1 o2'o3))+ [$23+('g/+8)512523+ (&&/48)523512+&&r/ 512523512)

X[ V,v+(w)(3+o2 o3)+'V, r+(w)(1 —tr2 o3)]P13'}e '"'&i' 'l'&drdq. (10)
Then, using the fact that

(4 ) +&/
e '"'f(r) [5»(r))"dr= —

5~
—

~

[S12(k))" j2(kr) f(r)r'dr,
&5i

"L.Hulthen and M. Sugawara, in Hrswdblch der Physsh, edited by S. Flugge (Springer-Verlag, Berlin, 1937), VoL 39.
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where 512(k) is the Fourier transform of S12(r),
A A

S»(k)=3~1 kC2 k —~1 C2,

and de6ning

zz, (k) = jz,(k))o($)2p d$, pz(k) = jz(k))v($) p d$,

v.(k)= j.(k~) (~)e«, {.(k)= j.(k&) h)v(r)e«,
(12)

where $ may be r, w, or z, we obtain for Ml and M2

(4~)2 )4M
Ml ——

I {[np(kl)PO(k2) —(2'I/+8)n2(kl)PO(k2)5» ——0'g'(-;m)"'n2(kl)PO(k2)512'][('V„C++'V~C —)(3+e2 e8)
32m (3h2

+( v„,++ v„-)(1—~, o,)]+[—,(k,)p,(k,)s„+(&/v'8), (k,)p.,(k,)(s„s„+s„s„)+(-;) ~ —;„

XP2(k2)512523512][( VyT + UyT )( 3+C2'~ )8+( V0T + VyT )(1 &2'08)]+[~0(kl)PO(k2) (2'g/+8)

X&2(kl)PO(k2)512 's'g (8&) &2(kl)PO(k2)512][ VnC (1 &1'~3)+ VnC (3+~'&8)]+[ ~0(kl)P2(k2)513

+(~/V'8)~2(kl)P2(k)(5»5»+5185»)+89'(8&)'"&2(kl)P2(k2)5»5185»]['V T+(1—&1 &8)+'V T (3+~1 ~8)]

+[~0(kl)PO(k2) (2'~/V 8)&2(kl)PO(k2)512 'g'~ (8&) ~2(kl)PO(k2)5» ][VnC+(1 el ep)—

VnC (3+&1'~3)]~18 +[ &0(kl)P2(k2)518+('g/V 8) 2(kl)P2(k2)(5»513+518512)

+0g2(px)1~2n2(kl)P2(k2)51&185»][1V„T+(1—el ep) —8V„T (3+a2 e3)]P»'}, (13)

where kl ——-', (k' —k), and k2= k' —k;

(4~)2(4M)
I{[~,(k,)g.(k,)—(~/486, (k,)g.(k,)5„—(~ /v' 8b,( k)h(k,)5„+:~2~,(k,){,(k,)5„5„]

322r (3k2)

X[ VyC (3+&2'&8)]+[ (~/V 8)70('kl){2(k2)523+( g/V8)+'2(kl){2(k2)(512523+528512)

—-'~'(-' )'"7 (k)& (k)5 5 5 ]X['V. (3+ )3' }, (14)

in which kl ——-,'k'+k and k2 ——k'+-'2k The indicated
integrations can be performed in a straightforward
way. The task of evaluating the matrix elements of
M= Ml+M2 (neglecting the 13 contributions) is a much
more dificult one.

r-~
/

1
I
I
I

y I

I

I

I
I

I

I
I

TERON

Some typical terms which appear are as follows:

X*(12,3)5,2X(23,1),

X*(12,3)S23X(23,1),

X*(12,3)S12523S12X(23,1),

3+O2 a8)
x*(123) I lx(12,3),

E1—0'2'0'8)

t'3+olep)'
X*(12,3)512518512I IX(23,1),

&1—el O3J

FIG. 1. Coordinates used in the text. etc.
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Using the fact that

S;;X,'(ij,k) = (322r) '12 p p p C(Sm, 1msm, —m)
m m, ' a"

XC(im2m' 1m—g)C(s"m,"1m—m'-,'m, —m)

XF''(k)X „,"'(ij,k), with m'= m, m."—
, (15)

we obtain, for example,

I„,,"*(ij,k)S@x . (ij,k)

= (322r) "2Q C(Sm, 1m-', m. —m)C(1m2g 1 m g)—
XC(s'm, ' 1m —g-', m.—m) I' '

with g=m. —m, '. More complicated terms may be
handled in the same manner, upon introducing ap-
propriate complete sets of states, e.g. ,

X*(12,3)St2S22Stsx(23, 1)
=Q Q Q Q Q X*(12,3)StsX(12,3)X*(12,3)X(23,1)

XX*(23,1)S22X(23,1)X*(23,1)X(12,3)&*(12,3)
XStsx(12,3)&*(12)3)X(23,1). (16)

Then we require terms like

&*(12,3)X(23,1).
Explicitly,

X„,.e"(12,3)X,'(23,1)

where, as usual,

kxk' k'+k
p=-

[kxk'[ fk'+kf

k' —k

ik' —k/

From the fact that M contains j.2 terms, we conclude
that for e-d scattering there are only 12 independent
amplitudes. The reduction from 18 to 12 is a result of
time-reversal invariance, and the Born approximation
does not possess this property. "

Using the density-matrix formalism (see Sec. III)
we write the diBerential cross section as

o(8)=xs TrMMt, (20)

in which M is a 6X6 matrix (Hermitian in the Born
approximation). We do not expect to obtain sensible
angular distributions from (20) if M is given by the
Born approximation, since we know that the "s-wave"
eigenphases are large at the energies under considera-
tion and cannot be accurately treated in the Born
approximation. Thus we adopt the procedure used by
Christian and Gammel' and treat the S-matrix ele-
ments Sos ass (the notation is Sr,.s.rss) as parameters
to be used to Gt the experimental angular distribution
and polarization measurements. " In practice, the
following states are coupled:

S=-', : J=L+ '„J=L -', and——S=—', : X=I—
~

XC(s'm, '; s'"m"'22m" —g), (17)

or

S=-' J=L+'J=L, -
where m, =m, ', s"'=s"=1,and m, =m"'+m" g-

Thus we obtain the 36 matrix elements M.. ., , of
M in the Born approximation. Only 18 of these are
distinct, as may be seen by considering apartial-wave
expansion of M:

That is,

(S21 oh~
S~=/

~S2$ Qh

So) pg~

Ssg 21

Ssg 2

Spy gg Seg 2)

[(2L+1)42r]'12
M. ....=ZZZ tL 8 LSJ

J I L' 2ik

This result may be compared with the general case,
in which the form of M is obtained by invoking rota-
tional, reQection, and time-reversal invariance:

M =a(8)+b(8)oN+ c(8)S&+d(8) (SpSp+ SKSK)
+c(8)(SpSp SKSK)+f(8)(~NS's)+g(8)
X (opSp+o zSz)+k(8) (AS p ozSK)+—m(8)

XoN(SpSP+SKSK)+N(8)o~(S PSP SKSK)+P(8)—
X (oPCSp+o KS~SK)+r(8)

X (opSKSp OKSNSK. ), (19)'

XC(Jm. ; LOsm, )
XC(Jm„L'm, —m, 's'm, ') I', , ~'. (18)

Then, from the properties of the Clebsch-Gordan coef-
6cients, we 6nd that

S~= Ss) sy~ S2)2)~ S212;&+ . (21)

S2) pg~ S2) yg~ S2$ g$~

Thus we actually have 5 complex parameters (since S
is symmetric) of the form Sz, s sas. If we parametrize the
S matrix by writing S= U 'e"'U, where 8 is a diagonal
matrix whose elements are the eigenphases and U is a
unitary matrix containing the mixing parameters, then
we 6nd that the two matrices depend on a total of 9
real parameters (5 phase shifts and 4 mixing parame-
ters) in which L=0 and L= 2 are coupled. If, however,
the coupling is weak, we can consider the eigenphases
to belong to deinite values of I. and S. I abeling the
eigenphases by ' +'X», we have 4S3, 4D3 D3 Sg and
'Dj, We may then approximately consider the mixing
parameters to mix the states as follows: ('Ss, 'Ds),

» M. L. Goldberger and K. Watson, Collisioe Theory (John
Wiley R Sons, Inc. , New York, 1964).

"The elements of the S matrix and the T matrix, as here
denned, are related by tl, s i,s~=Sr, s z,s~—bl.i, &ss"
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50

standing of the purely three-body aspects of this
problem. The investigations of deuteron breakup in
the m-d problem have been especially fruitful. At the
same time virtually all of this work has employed a
purely central interaction, with tensor effects accomo-
dated in only a phenomenological way. Mitra, Schrenk,
and Bhasin" discussed the inclusion of the tensor
interaction into the separable approximation, but it is
not at all clear how these noncentral forces can con-
veniently be introduced into the formalism of Aaron
et al. ,"or that of Lovelace. "In this work. we are con-
cerned with phenomena which are sensitive to the
details of the two-body interaction and are forced to
forego the pleasure of a sophisticated treatment of the
purely three-body aspects of the problem.

30 60 80 I20 l50 l80

FIG. 2. Elastic scattering angular distribution for n-d scattering
at 9.0 MeV before (dashed) and after (solid) adjusting 1=0 parts
of scattering amplitude.

('Ss, 'Ds), ('Ds, 'Ds), and ('S1,'D1). The parameters
varied in the calculations will be the 4S3 and 'S~ eigen-
phases and the three appropriate mixing parameters.

It should be pointed out that the calculation of the
J2 contribution to M can be greatly simplified by
making use of the fact that

L'V, o+(w)+'V, 2+(w) S22]22(w)

= —(F22/M) (k22+n2) 22(w),

where e'=0.05364 F '. Making use of this procedure,
we find

r'k22+n2)
l(4 )'Lvo(& )v (& )—(n/&g) v (& )i

XV2(~2)S22(~2) (r)/V g)V2(r11)VO(4)S12(~1)

+ sr) vs(~1)v2(4)S12(~1)S22(~2)]I 12 ~

This use of the deuteron equation is, in fact, an approxi-
mation since the wave function we are using is not an
exact solution to the equation.

Some mention of the extremely interesting recent
work on the three-body problem using separable po-
tentials" may be appropriate at this point. This
work, motivated or justi6ed, as the case may be, by the
contributions of Faddeev, '4 is directed toward an under-

"R. Aaron, R. D. Amado, and Y. Y. Yam, Phys. Rev. 140,
81291 (1965);C. Lovelace, ibid. 135, 81225 (1964);A. C. Phillips,
ibid'. 142, 984 (1966); A. N. Mitra, G. L. Schrenk, and V. S.
Shasin, Ann. Phys. (N, Y.) 40, 357 (1966);V. F. Kharchenko and
N. M. Petrov, Nucl. Phys. A93, 289 (1967).

'4 L. D. Faddeev, 3fathematical Problems of the Quaetlm Theory
of Scattering for a Three-Particle System (Publications of the Steklov
Mathematical Institute, Leningrad, 1963), No. 69 (English
transl. : H. M. Stationary OfFice, Harwell, England, 1964$.

Ip= Tlpr/Tl p

If there is no initial polarization,

p, =-', Trp;.~Mt,

(25)

(26)

which is just (20). Similarly, for zero initial polariza-
tion, the final nucleon polarization is

Then if
( ) =-'»p /Tr

k;X kg

)k;Xkr(

(27)

is the normal to the scattering plane,

I.( 8,),= ;TrMo P,Mt-
Isps. —

"L.Wolfenstein and J. Ashkin, Phys. Rev. S5, 947 (1952).
H. P. Stapp, University of California Radiation Laboratory

Report No. UCRL-309S, 1955 (unpublished).

III. POLARIZATION

In the density-matrix formalism, " the (average) ex-
pectation value of the operator A in the Qnal state t f)
is given by

(2)r ——Trpb/Trpb, (22)

where the density matrix for the Gnal state is, for
nucleon-deuteron scattering,

pf ———', Trp;„g MSsMt(S~);.„(23)
the S& being the 36 linearly independent 6X6 matrices
I,o,, S,, S;;,o,S;,o;S,2, whereS, ,= ', (S;S,+-S;S;) 2&;;—
M can be expressed in terms of the SI":

M=A+8;o, +C;S,+D@S;,+Imago;S;+G;12o, S;2. (24)

Jn the general case, this is equivalent to (19) so that A,
8;, etc. , could be expressed in terms of 12(8), b(8), etc. ,
and functions of the momenta. In fact, (24) is diferent
from (19) if we employ the Born approximation to ob-
tain the coefBcients.

The differential cross section is given by
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For an initially polarized beam,

»= ,' T-rp;, )iVMt+M t,Mt-( k;).;.,+M N~t
X(e.N 2)i n+cMa PM (e P)inc/, (29)

in which

k;X¹I'=
)k;XN, [

200.

l50

Then the differential cross section is

If Ip(1+——P2(rr ¹);„,) . (3o)

E l00

Defining Pi by (e);nc=—Pi¹,where Ni is the normal
to the 6rst scattering plane, then

b
50.

If=Ip(1+P1P2N1 ¹). (31)

P2 can clearly be measured in a left-right asymmetry
scattering experiment in which the two scatterings take
place in the same plane (Ni Ns ——+1).Then

0
c

30 60 90 I 20 I 50 l 80

or,=Ip(1+PiP2),
o fi

——Ip(1—P1P2),

FIG. 3. Fit to the 9.0-MeV scattering data. Data from B.Bonner,
Rice University thesis, 1965 (unpublishedl.

and Ps= e/Pi, With

&L &8

or.+rrf1

we find that

If Ip (1+P1P2N1' Ns+Pi P2 Ni ' Ns

+Z (T2.)'-(Ts.)p) (»)

In the most general case, we must also consider
initially polarized deuterons. Then

pf ——s Trp;„fMMt+Mo, Mt(o;);„,+MS;Mt(S;);„,
+M T2PIt(T2„);,g, (32)

The tensor polarization term may be reexpressed in
the following manner:

in which we have introduced the second-rank tensor
T(" whose components are"

T22 ——-'%32(S,+iS„) ',
T21—— 2%3/(S,jiS„—)S-,+S,(S,+iS,)],
Tsp ',V2(3S '—2), ———

With Ts „=(—1)sT2„~.Then

where the T» are referred to a coordinate system in
which the polar axis is taken along k; and the y axis

(33) along the normal (in the conventional sense) to the
prsf, scattering plane and the Ts„are referred to a
system in which the polar axis is along kf and the y
axis along k;Xkf

Then, if the deuterons initially have only vector
polarization, and if the nucleons are unpolarized,

where (o;)p is the polarization which would result from
scattering of unpolarized particles, etc. Then, if
(o)inc=P1N1 and (S);,=Pp¹,and we note thatsince
M =A+Boy+CSy+

Ip(e)p= p TrMeMt= s TrMoNMt¹=P2N2, (35)

Ip(S)p=-', TrMSMt= p TrMS~Mt= P2DN2, (36)—
'7 W. Lakin, Phys. Rev. 98, 139 (1955).

If=Ip(1+P1DPpN1 N2) (39)

and P2~ can be determined from a simple asymmetry
experiment. If the deuterons initially have only tensor
polarization, then given (Tsp);„„(Tsi);n., and (T22);n.,
measurements at &p=O, &7r/2, and 2r will yield (Tsp)p,
(T21)p and (T22)p. The tensor polarization parameters
may also be measured by scattering nucleons from
polarized deuteron targets, or by scattering unpolarized
particles and using the recoil deuterons to initiate an
analyzing reaction. Specifically, the He'(d, p)He' re-
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FIG. 4. Calculated neutron polarization in n-d scattering at
9.0 MeV. The experimental data are those of %alter and Kelsey
(Ref. 2) (g) for 10.0-MeV I-d scattering, Griibler et al. (Ref. 2)
(&) for 10.Q-MeV P-d scattering, and McKee et al (Ref. 2) .(e) for
11.0-Mev P-d scattering.

action has been used"; the angular distribution of the
protons is then a function of (Tss), (Tst), and (Tss)."

' P. Young, M. Ivanovich, and G. G. Ohlsen, Phys. Rev,
Letters 14, 831 (1965).

's L. G. Pondrum and J. W. Daughtry, Phys. Rev. 121, 1192
(1961).

IV. PRELIMINARY CALCULATIONS

Preliminary calculations neglecting J3 have been
performed for a neutron laboratory energy of 9.0 MeV.
The calculations consist of a five-parameter fit to the
experimental angular distributions and polarizations.

The parameters are those enumerated in Sec. II. All
other eigenphases and mixing parameters are obtained
from the Born approximation. The deuteron D-state
admixture was also varied in the calculations. Some of
the numerical results are shown in Figs. 2—4. The
agreement between the experimental and theoretical
angular distributions is good, as expected, but in
addition there is substantial agreement between the
measured and calculated polarizations. Both e-d and
P-d polarization measurements are shown. It is to be
expected that there will be little difference between the
polarization distributions for the two cases except,
perhaps, at small angles. The recent p-d asymmetry
measurements by McKee et uL show clearly that the
polarization goes negative forward of 30 in the vicinity
of 10 MeV. The calculations presented here for 9.0
MeV do not show this feature although an earlier cal-
culation at 10 MeV with J& simulated by a variation of
the I'-wave parameters does go negative at small
angles. This behavior is quite sensitive to small changes
in the phase shifts and mixing parameters and can be
obtained with a X.' only slightly greater than the best
fit. Further calculations based on additional data will
be required to clarify this point.

In view of the preliminary nature of the calculations
and the need for more small-angle measurements, it
does not seem appropriate to present here the phase
shifts and mixing parameters derived from the best
fits. These will appear in a future paper, along with
deuteron-polarization predictions.

The calculations were performed on the IBM 2094
machine at the Texas A8cM University Data Processing
Center and on the IBM 2044 of the Tulane University
Computer Center.


