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Two-Nucleon Phase-Shift-Set Discrimination by Means of the
Binary Optical Potential*f
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(Received 4 December 1967)

The scattering of nucleons from light nuclei at energies of 142, 210, and 310 MeV is calculated using the
multiple-scattering optical potential obtained by retaining all terms which are binary or less in the two-
nucleon amplitudes. The binary potential includes the impulse-approximation correction as well as the
double-scattering correction. Nucleon-nucleus scattering observables are computed, using optical potentials
calculated with some of the Yale and Livermore phase-parameter sets and the Fermi and Brueckner-Gammel
nuclear-correlation functions. The observables are compared with data in an effort to ascertain the dif-
ferences caused by changing off %scat-tering phase parameters and/or nuclear-correlation functions and
to see whether it is feasible to use such changes in attempts to pin down E-E and nuclear parameters.

I. INTRODUCTION

'HERE have been many attempts' ' to make a
selection among proposed models of the two-

nucleon force by means of nucleon-nuclear data. Using
the very small-angle scattering data at 300 MeV, Bethe'
showed that the nucleon-nucleus differential cross
section and polarization could not distinguish between
the diferent sets of E-E scattering phase parameters
then current. This result was to be expected since the
forward S-X amplitude is mostly imagina. ry a.nd hence
determined by the total cross section, a quantity which
is presumably well fit by all acceptable phase-shift sets.
With the failure of the forward-scattering data to
discriminate between phase-shift sets, interest arose in
the possibility that 6nite-scattering angle data would
allow such a differentiation. We' have recently made
such a comparison, computing an optical potential from
single scattering of the incident nucleon with nucleons
in the nucleus. Using the Vale' and Livermore' two-
nucleon phase-shift sets, we found significant differences
between the nucleon-nucleus scattering observables at
6nite angles as computed with different phase-shift sets.
In fact, we found the Yale set to give a superior Gt to
the data at incident lab energies of 142, 210, and 310
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MeV. However, when computing large-angle nucleon-
nucleus scattering, we expect that multiple scattering
should add important terms to the optical potential,
especially at the lower energies. It thus becomes
important to see what the multiple-scattering effects
are, and whether or not they will obscure the differences
previously found between different sets of phase shifts.
Speci6cally, in order to compute the double-scattering
contribution to the optical potential, we must know the
S-S correlation function within the nucleus. Does the
lack of knowledge of this nuclear-structure function
hinder the attempt to use elastic nucleon-nucleus scat-
tering experiments to differentiate between different
S-S parameters or can such experiments contribute
both to the desired parameter discrimination aed some
knowledge of nuclear correlations' We explore this
question in this paper.

Watson~ has given a formalism in which the optical
potential is expressed in terms of two-nucleon scattering
amplitudes as an expansion representing contributions
from single, double, and higher-order scatterings of the
incident nucleon by the nuclear nucleons. The double-
scattering term of this expansion was evaluated in an
approximate form by Johnston and Watson, s and used
by McDonald and Hull' to calculate the double-scatter-
ing correction to the optical potential in terms of the
Vale phase-shift set. McDonald and Hull found that
the addition of the double-scattering term to the single-
scattering potential signi6cantly affected the nucleon-
nuclear observables at 142 MeV, and decreasingly so at
higher energies.

In the present work, we evaluate all terms in the
optical potential which are binary or less in the two-
nucleon scattering amplitudes. This vill require the
evaluation of both the double-scattering correction,
previously used in an approximate form by McDonald
and Hull, ' and the impulse-approximation correction.
The binary-optical potential will be evaluated in terms
of the Yale and Livermore phase-parameter sets and

' K. M. Watson, Phys. Rev. 105, 1388 (1957).
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used to calculate the nucleon-nuclear observables. An
attempt will then be made to choose between these sets
on the basis of the nucleon-nuclear data.

Since the evaluation of the binary-optical potential
requires knowledge of the nuclear-correlation function,
knowledge which is not readily available, we must also
investigate the eGect of using different forms for this
function. The integral over the correlation function,
which arises in the evaluation of the binary potential,
will be evaluated directly rather than being approxi-
mated by correlation lengths as was done in Refs. 8 and
9. In evaluating the binary potential, we will relax the
forward-scattering approximation which was made in
Refs. 8 and 9. As a further correction, we improve the
very-small-angle part of the nucleon-nuclear amplitudes
used in the single-scattering part of the optical potential
by induding contributions of the one-pion exchange tail.
The optical potential thus found will be used in its
Inomentum-space representation to solve the partial-
wave integral scattering equation for the scattering
of nucleons by He', C" 0"at energies of 142, 210, and
310 MeV. The method of solution and the manner in
which Coulomb effects are included are given in some
detail in Ref. 4.

In Sec. II, we discuss the evaluation of the optical
potential. Section III describes the quantitative effects
of the various parts of the potential on the observables,
elastic nucleon-nucleus diGerential cross section and
polarization. In Sec. IV, the calculations are compared
with data, and the Yale and Livermore sets compared
on this basis. This section also includes an empirical
choice between two models of the nuclear-correlation
function. Section V considers the various factors in the
calculation which affect agreement with experiment,
and in Sec. VI our conclusions are drawn.

1
V=(ol 2 r;+ 2 r,~„,+""10).

g
=1

r is a modified-scattering operator defined by

r„=v+ pa Qpr'''

(2.1)

(2 2)

II. OPTICAL POTENTIAL

The Watson~ expansion for the optical potential is
given as an expectation value over the nuclear ground
state l0) by

a'= ep —1'pp+ip, (2.5)

and ho is the sum of the kinetic-energy operator of the
incident nucleon and those of the nucleons in the target,
and eo is the corresponding energy eigenvalue. One can
easily show that

ri 7 1r ) A

=(k', l ltll, k;)g 8(k, '-k;), (2.6)

where k;, k,' are initial and final momenta of the
struck nucleon, k and k' are the initial and final
momenta of the incident nucleon, and t is the scattering
operator for two free nucleons. Following Kerman,
McManus, and Thaler, 'P we eliminate e; from (2.2) and
(2.4) and find

'= ''+ ''l (1/a)Qo —1/a'3 ', (2 7)

which can be iterated to give r as an expansion in r'.
Keeping only the first term in this expansion, so that
r = r is called the impulse approximation. Since our
aim is to retain all terms in V which are binary or less
in t, we examine the second term in the iteration
of (2.7);

r'Pa 'Qp —1/ par'= r'a 'Ppr'—
+r'a '(a' a) (1/a')-r', —(2.8)

where I'p
l
0)(0——l. The difference (a' —a) can be written,

using (2.3) and (2.5), as

where I is the potential energy function of the nucleus
and e„is the shift in the nuclear ground-state energy due
to e. However, Srueckner" has shown that I can also
be expressed in terms of t, so that the second term on the
right of (2.8) is of third order in t. Therefore, the second-
order correction to the impulse approximation is simply
the first term on the right of (2.8). The terms which we
will retain in our analysis are therefore

v' &=(0IZ t'lo),

scattering of a particle by a nucleon bound in a nucleus.
It is convenient to introduce the operator for the
scattering of a particle by a member of a target of
independent nucleons,

(24)
where

where ~i is the potential between the incident and ith
nucleons, Qp=1 —l0)(0l is the nuclear excited-state
projector, and V .~'~=(ol P t;Q,t;lo), (2 9)

a=Ep Hp+z , p—(2.3)

where IIO is the sum of the incident kinetic-energy
operator and the nuclear Hamiltonian; Eo is the sum of
the incident kinetic energy and the nuclear ground-state
energy. The operator r is the scattering operator for the

1
Vr~&'&= —(Olg t,—Ept;l0).

' A. K. Kerman, H. McManus, and R. M. Thaler, Ann. Phys.
(N. Y.) 8, 551 (1959).

"K.A. Brueckner, Phys. Rev. 100, 36 (1955).
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The Schrodinger equation will be numerically solved
with a potential given by the sum of the three terms
given in (2.9). We expect the effect of the V&'& terms to
decrease relative to the V( ' term with increasing in-
cident nucleon energy due to the presence of the 1/a
term in U(').

For scattering on the two-nucleon energy shell, the
transition matrix t is related to the two-nucleon scatter-
ing matrix JIt/I by

t(q) = —(4a.h'/m) M (q), (2.10)

where q is the momentum transfer and m is the nucleon
mass. The elastic scattering of a nucleon by a nucleus,
however, is governed by A+1 body kinematics, rather
than the two-body kinematics of S-S scattering.
Throughout this work, we ignore this difference in
energy shells and treat the two-nucleon amplitudes as
if they were functions of momentum transfer only. This
approximation is exact for forward scattering, and for
nonforward scattering at 6xed momentum transfer is
expected to improve for decreasing target mass number.

Following Stapp, " the M matrix may be written as

[a+&(o1+&rs) ' &1+ha I tt&r2 '@+ (g+h)&rl ™2"rN

+-,'(g —h)ot l&rs l]+[a'+ ]~t ~» (2.11)

where the second bracket is identical in structure to the
hrst, with all functions primed. The quantities a. e
are functions of the momentum transfer q, e and c are
the spin and isospin operators, respectively, and 8, m,
and l are unit vectors in the directions kX k', k+k', and
k—k', where k and k' are the initial and final relative
wave numbers of the two nucleons.

In momentum space, for A = 2Z nuclei, the first term
of (2.9), referred to as the "single-scattering" term, is

(k'l v&»lk)
= —(4n.h'/m)A[a(q)+c(q)&rs 8]F(q), (2.12)

where k and k' are, respectively, the initial and final
relative wave vectors of the nucleon-nucleus system,
and F (q) is the nuclear form factor. The approximations
made in obtaining (2.12) are the neglect of the momen-
tum distribution of the nuclear nucleons and the use
of synunetrized two-nucleon amplitudes rather than the
symxnetrization of the A+1 particle wave function. "

We will be concerned with the scattering of nucleons
by He4, C", and 0".The one-particle densities of these
nuclei are well represented by the modi6ed-Gaussian
shape of Ehrenberg et ul. ,'4

2p, 1 dk
(k'l V&'&11K)=-

h' (2~)' h' —It'+se
dr'dr"

p&q/. zf+sll. zlP& ( ) ( )

G'+G G' —G—
X A C D+A— — +B, (2.14)

where P is the reduced nucleon mass, &I'=k' —K,
&I"=K—k are the momentum transfers of the successive
scatterings, and G' are the correlation functions corre-
sponding to synonetric and antisymmetric spatial states
of two nuclear nucleons. We assume that the joint
distribution function can be written

p(r', r")= p(r') p(r")[1+G(Ir' —r" l)],
so that the correlation between two nucleons depends
only on their separation and is independent of the loca-
tion of the pair in the nucleus. The quantities A .D
are averages over the ground-state spin and isospin
function

l 0) of the nucleus:

A=p(olt, t, lo),
igj

B=p(olt, t,F,, lo),

c=p(olt, lo)(olt;lo),

D=p(olt, lo)(olt, lo).

The values of the parameters m and a are taken from
Khrenberg et al.' and from Fregeau. "

In the evaluation of the binary terms of (2.9), we
follow Johnston and Watsons and neglect the energy
differences between the nuclear ground and excited
states. This approximation leads to an error~ of T/3e(h),
where T—30 MeV is the average kinetic energy of a
nuclear nucleon and e(h) is the incident kinetic energy.
This approximation enables us to use the closure of the
nuclear states in evaluating the binary terms. We also
make the assumption of Lax and Feshbach" that there
are only two pair distribution functions for the nuclear
nucleons, corresponding to symmetric and antisym-
metric spatial states of two nuclear nucleons. We
combine the binary terms of (2.9), calling Vns&'&+ V&z&'&

= U('), and obtain

p(r) = ps[1+w(r/a)']e &"I &' (2.13)
These averages can be written for A =2Z nuclei as"

which yields the form factor

F(q) = [1—w(qa)'/(4+6w)]e —«&"4.

A. = (4rhs/m)s(Asn —AP),
B= (4rh'/m)'[4Act —(A'/4)P],

C+D = (4s.h'/m)'A'a,

(2.15)

~2 H. Stapp, Ann. Rev. Nucl. Sci. 10, 291 (1960)."G.Takeda and K. M. Watson, Phys. Rev. 97, 1339 (1955).
'4H. F. Ehrenberg, R. Hofstadter, U. Meyer-Berkout, D. G.

Ravenhall, and S. E. Sobottka, Phys. Rev. 113, 666 (1959).

» H. H. Fregeau, Phys. Rev. 104, 225 (1956).
's M. Lax and H. Feshbach, Phys. Rev. 81, 189 (1951).
"T.K. Fowler and K. M. Watson, Nucl. Phys. 13, 549 (1959).
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where

n= a +c + 2ac&re "/&,

p= [a'+2C'+b'+ '(-g'+k')+2c(a+b)&re 6]
+3(a"+2c"+ ),

and where the typical quantity

(2.16)

The normalization condition for large nuclei,

Ge(r)dr=0,

implies 8= -„and requiring

—,'3 —1
G'=

4A+1
G/

(2.17)

2ac= a(q'—)c(q")+ a (q")c(q') .

The Vns&'& term of Johnston and Watson' can be
obtained from (2.14) by deletion of D.

The correlation functions of a nucleus are essentially
unknown and must be obtained by assuming a nuclear
model. Johnston and Watsons find the correlation func-
tions of a Fermi-gas nucleus to be

Ge(r)dr= —0.84 F

implies b= 1.42 F. It is worth noting that the Fermi-gas
correlation is due to the Pauli principle and hence the
correlation functions for the symmetric and anti-
symmetric states are quite different. In the BG model,
however, the correlation is mainly due to the hard core
of the interaction so that the symmetric and anti-
symmetric states have essentially the same correlation
function.

where

G = —G',

G'=[-,'A(-,'A —1)] ' Q e '&"' "&"

Using the correlation functions for a Fermi gas as
given by Eqs. (2.17) and (2.18) the bracket of (2.14)
becomes

(4rk'/m)'( ——,'A'PG p)

with r the separation vector of the two nucleons and k,
an allowed momentum in a Fermi gas. The function G'

may readily be evaluated to give

where

G'= (~AG p —1)/(-,'A —1),

GP(r) = [3ji(kyar)/klr]'

(2.18)

and k p is the Fermi momentum for a nucleus, 1.27 F '.
The form of (2.18) differs from that of Johnston and
Watson, who take O'—G~, which is accurate for smallr
or large A. The correlation function is usually character-
ized by the correlation length deined by

gs, a drG' (r).

It can be seen from (2.17) and (2.18) that the correla-
tion lengths for a Fermi gas are infinite, which is
reasonable since the correlation is due to the Pauli
principle, which implies a long-range correlation.

We have also investigated a Brueckner-Gammel
(BG)" type correlation, which is due primarily to the
hard core of the two-nucleon interaction. Fowler and
Watson'~ deduced a correlation function from the work
of BG and obtained the correlation lengths

E'—E = —0.84F.

while for the BG-type correlation functions of Eq.
(2.19), the bracket becomes

(4gpks/m)s[ —AP+ (Asn —AP)Ge 1.
The evaluation of (2.14) is complicated by the fact

that n and p are functions of the integration variable K.
The usual practice' ' is to use the forward-scattering
values of the two-nucleon amplitudes in calculating
n and p. n and p are then taken outside the integral
(2.14). This procedure over estimates V&'& because n
and p are products of two amplitudes, both of which
decrease with increasing momentum transfer. The
forward-scattering approximation in fact replaces a and
P by their maximum values. To reduce this overestima-
tion of V&s&, we set n and P equal to their maximum
values subject to the constraint that the initial and
final momenta are given by k and k'. As can be seen
from Eq. (2.16), n and 8 are symmetric in q' and q".
Therefore, if n and P have maximum values, they occur
when q'=q". Further, because the two-nucleon ampli-
tudes decrease with increasing momentum transfer, this
common value must be as sma11 as possible. It is easily
seen that these conditions are met when K= s (k+k'),
so that n =n(srqP&q). (n,P) are then taken outside
the integrals in (2.14) and the integrals completed.

The integrals to be evaluated are of the form

We have assumed the correlation functions

O'=G =G~
(2m)' k' E'+ie—/d // S(ql ~ Zl+qll ~ Z//)

where
Ge ———e "'&"(1—Br'/b') .

(2.19) XP(r')~(l")G(I r' —r"
I ) . (2 2o)

'4 K. Brueckner and J. Gammel, Phys. Rev. 109, 1O23 (1958).
The spatial integrals in (2.18) can be simplified if,
instead of the modified Gaussian density of Eq. (2.11),
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we take for p(r) a simple Gaussian

p (r) =e-"'~"/vrsl'a', (2.21)

103

with u chosen to give the same rms radius as the corre-
sponding modified Gaussian. (The effect on the observ-
ables of using this Gaussian density in V&" as well is
negligible for small momentum transfers. The Gaussian
density does, however, produce a less pronounced
diGraction minimum than does the corresponding
modified Gaussian. )

If we make the change in variables

r=r' —r", R=-,'(r'+r")
and note that

dK e'K'

(2s.)' k' —E'+ ie

Eq. (2.20) becomes

~
—(qa) 2/8

103—

E

z0 10&—
I-
LU
O

(I)

0
K
U

10'
I-
LU
K
LU
U
LL

Q

102

10

100

I=- X,
(2~)3/sgsg

where Q=sr(k'+k) and

(2.22)

10o—

dr e ""'+""singr G (r) . (2.23)

30Using the Fermi-correlation functions, we find 0 10 20
LAB SCATTERING ANGLE (Degrees)

FIG. i. p-carbon di8erentia1 cross section at lab energies of
(k

~

I
~
k)=— ———P,„Jp (2.24) (a) i42 MeV, (b) 310 MeV, calculated from the optical potential

fi (2s)s asQ ~ 4 in the stages SS, DS, IA, AC(B-G), and AC(F), using the Yale
phase-shift set.

and the form obtained with the BG correlation functions
can be found in a similar way.

In comparing the two-nucleon amplitude with two-
nucleon data, partial waves up to some I. are in-
cluded. The indnite number of partial waves beyond—which are, presumably, accurately represented
by the one-pion exchange (OPE) Born approximation-
are neglected since they contribute only to the very
small momentum-transfer region which is not observable
and where, for charged particles, they are completely
obscured by the Coulomb interaction. However,
Bjorklund ef al." have suggested that the nucleon-
nucleus optical potential could be thought of as the
result of repeated small momentum-transfer collisions.
We therefore have investigated the eGect of including
the OPE tail of the two-nucleon amplitudes in the
calculation of V&" following the method of Ref. 19.

The optical potential as obtained in this section is
used to solve the partial-wave integral-scattering equa-
tion in momentum space. The method of solution and
the method of treating Coulomb e6ects are given in
Ref. 4.

19F. E. Sjorklund, 3. A. Lippmann, and M. J. Moravcsik,
Nucl. Phys. 29, 582 (1962).

III. EFFECTS OF THE CORRECTIONS

In this section we examine the eGect of the diferent
terms of the optical potential, discussed in Sec. II, on
the nucleon-nuclear observables. The complexity of the
potential was increased in the following sequence: (i)
single scattering (SS); (ii) the addition to SS of the
double-scattering correction with the forward-scatter-
ing approximation (DS); (iii) the addition to DS of
the impulse approximation with the forward-scattering
approximation (IA); (iv) elimination of the forward-
scattering approximation (EFS); (v) the addition of
the OPE tail to EFS (AC). Stages (ii)—(iv) were
calculated with the Fermi-correlation function only.
The complete potential (v) was calculated for both the
Fermi and BG correlation functions.

In Fig. 1, we plot the diGerential cross section and in
Fig. 2 the polarization obtained with the optical
potential in the stages SS, DS, IA, AC (Fermi) LAC(F))
and AC (BG).The calculations are made with the Yale'
phase-shift set for protons incident on carbon at incident
energies of 142 and 310 MeV. The qualitative behavior
of the curves for the Livermore' set is similar. The
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minimum. There is a large difference between the scat-
tering of nucleons whose spin is perpendicular to the
scattering plane in a left-handed Ioanner and those
whose spin is right-handed. The double-scattering con-
tribution is opposite in sign to the single-scattering
amplitude; if the correlation is spin-independent, it will
subtract roughly equally from the left-handed and
right-handed spin amplitudes, thus leaving the differ-
ence and hence the polarization unchanged. This latter
situation is characteristic of the BG correlation func-
tions which are the same for spatially symmetric and
spatially antisymmetric nuclear pairs in the nucleus,
i.e., for singlet and triplet target pairs. The Fermi-
correlation functions, being opposite in sign for singlet
and triplet target states, can lead to a diminution of the
spin-amplitude difference and hence to a dip in the
polarization. This situation would be most marked at
the diffraction minimum, where the single-scattering
amplitudes become small enough to be comparable with
the double-scattering amplitudes, as is observed.

Also apparent is the pronounced effect on the polari-
zation at large angles due to the removal of the forward-
scattering approximation; this is correlated with the
expected reduction in the large-angle cross section as
seen in Fig. 1(a).

A comparison of Figs. 1(a) and 1(b) indicates that all
of the corrections decrease with increasing energy of the
incident particle, as expected. At 310 MeV, the cross
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FIG. 5. Calculated differential cross section versus data for p-C
elastic scattering at an incident lab energy of 210 MeV. Data
marked by circles are from T.
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Fxc. 4. Calculated differential cross section versus data at an
incident lab energy of 142 MeV. (a) P-0 elastic-scattering data,
marked by circles from TW. (b) I Celastic scat-tering, data
marked by circles from Hr, and by triangles from VVW,

section is well represented by the SS curve. The same
trend can also be seen in the polarization curves, Figs.
2(a) and 2(b).

At the SS and DS stages we were able to compare
our work with that of McDonald and Hull, ' who
calculated the small-angle cross section and polarization
for p-C scattering at 142 and 310 MeV using the Yale
set. %e found4 that our SS cross sections and polariza-
tions at both energies are essentially identical to theirs.
At i42 MeV, our DS cross section is again identical to
theirs; however, our DS polarization lies above, and
closer to the data, than does our SS polarization,
whereas McDonald and Hull 6nd the SS and DS
polarizations to be the same at small angles for this
energy. At 3i0 MeV, our DS cross section lies below our
SS, while in Ref. 9 the DS cross section lies slightly
above the SS.The 310-MeV polarizations are difficult to
compare because of the closeness of the curves. Of the
several details in which our calculation differs from that
of McDonald and Hull, it is difficult to single out one as
giving rise to the differences in calculated observables
just noted. However, it should be noted that McDonald
and Hull make the approximation of using a correlation
length, whereas we stick to the more fundamental
correlation function. Furthermore, we use the exact
relation (2.18), whereas they assume O'=Gr which is
likely to be a quite erroneous representation of (2.18)
for the values of A of interest here.
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for multiple Coulomb scattering in the target and are
believed to have a systematic error of 3%%uz or less; they
are, by far, the best data we have found. As can be seen,
the Y-F curve 6ts the data quite well, especially the
SPC data. The L-F curve is 50'Po high in the small-
angle region and Y-BG and L-BG are 100% high in
this region.

Figure 4(a) shows the p-0 differential cross section.
The data are those of Taylor and Wood" (TW). Again,
it is the Y-F curve which best its the data; with the
L-F curve high by a factor of almost 2.

Figure 4(b) shows the n Cdiffere-ntial cross section,
with data from Harding""' (Hr) and Voss, Vanzyl, and
Wilson" (VVW). Here, also, the Y-F fits the data very
well to 20', while the L-F curve is 25% high at 0'.

1.0

10'
0 10 20 30

LAB SCATTERING ANGLE (Degrees)

.5—
(a)

FIG. 6. Calculated difFerential cross section versus data at an
incident lab energy of 310 MeV. (a) p-He elastic scattering.
(b) p-C elastic scattering. Data marked by triangles in (a) and (b)
are from CST%'V.

IV. COMPARISON WITH DATA

In this section, we compare our calculations with
nucleon-nuclear elastic-scattering data. Our primary
purpose here is to attempt to choose between the Yale'
(Y) and Livermore' (L) phase-parameter sets on the
basis of this comparison. Before this can be done, how-

ever, we must decide whether the Fermi (F) or BG
correlation functions more closely resemble the actual
correlation functions. The calculations used for com-
parison with data in this section include all of the correc-
tions discussed in Sec. II; they are designated AC in
Sec. III.

R0
l~
N
~ 10—

Y-F——L-F—--—Y- BG
~"" - L-BG

(b)

CPRWooo p$

r/
~ ~ ~ ~ ~ ~ + g

~
~

~

Differential Cross Section

ZgZ 3IIeV. Figure 3(a) shows the p-He differential
cross section. The data are from Cormack et al."
(CPRW). The Y-F curve gives a reasonable fit to the
data to 10', while the L-F curve is almost a factor of
two too high in this range. The Y-86 and L-BG curves
lie even higher.

Figure 3(b) shows the p-C differential cross section.
The data are those Steinberg et a1." (SPC), and of
Dickson and Salter" (DS). The SPC data are corrected

20 A. M. Cormack, J.N. Palmieri, N, F. Ramsey, and R. W'ilson,
Phys. Rev. 115, 599 (1955)."D.Steinberg, J. N. Palmieri, and A. M. Cormack, Nucl. Phys.
56, 46 (1964)."J.M. Dickson and D. C. Salter, Nuovo Cimento 6, 235 (1957).

I I

10 20 30
LAB SCATTERING ANGLE (Degrees)

40

"A. E. Taylor and E. Wood, Nucl. Phys. 25, 642 (1961).
'4 R. S. Harding, Phys. Rev. 111, 1164 (1958)."C. P. VanZyl, R. G. P. Voss, and R, wilson, Phil. Mag. 1, 1003

(1956).

FIG. 7. Calculated polarization versus data at an incident energy
of 142 MeV. (a) P-He elastic scattering, data marked by triangles
from CPRW. (b), p-C elastic scattering, data marked by circles
from DS.



~ ~

0, '
~

o

~ ~
rr 0

r

1.0
0

0

y68

ws the P d g ential erosZl0 ~ '

f m Thwaj. tes
~,y. Figu« ~ 'h

~s T). We can swith the data ro~
excessive destruc-

section wi
L-BG curves s ow exc

'
ruc-t h L-F nd L- exc

otive 0
G hotlow in this region, while

310 MeV. Figures 6(a) shows the — e on

ll

hamberlain e u.6ts, wit
the small-angle a a

h
o

d BGthe ua a po 'g
s t e -C cross-section() p

f CSTWY. This is the on ydata o
closer to the data aw ic B fl ai

an see that the LF dLBeca
e thando t eCoulomb interference

.5—
X0
I-
N
K

0
Q.

ooo Hf
Y-F—L-F---- Y-BG

~-" "~ L-BG

1

30 40
TTERING ANGLE (Degrees)

0
C.M. .SCATTERING

r -C elasticsus data fo p-
'd OMV Dtnt lab nergy at 21 escattering at an incident a e

circles from Hf.

T-SF T DI NATjoNpHASE SH IF

1.0

.5—

I

N
R LO—

5

(a)

~ ~ AJT
Y-F——L-F——- YBG

~ " - L-BG
ooaHr r

/ ~.~ ''
~ ~

r,. 'g.
,.7

~ /
~ /

~ /
~ /

'o
~ ~,//

' ~
II r/

~ Q
'/

II

)Ir ."

7 a, (7b), 8(a) show thepolanza-

y
s thethat neither of the

following Jarvis andownwar, o owi

-C pola, rization atZ10 MeU. Figure 9 shows the p- po .
'

Hafner" (Hf). The10 MeV; the data are from a n' The L-F and L-B0 Gtsy

curves o no
which seems to ebe require yminimum, w

'

rves.which is show cuown by the F cu

32'0 MeV. Figuress 10 a) and 10 b s o
V It is difIicult to

h 11- 1

an - n
a compariso

og "
h diG tio

'l t th d tcurves and ai e t us more simiar o
at larger angles.

uestioned the normaliza-mentioned tha " uestioneat Batty" has questio
tion of the small-angle C
data to 7'.

Polarization

1 I

20 3p10

NG ANGLE (Degrees)LAB SCATTERING
4p Correlation Functions

a at 142 MeV. {a)p-0larization versus data at
db lsfo AJ

d kdb '
l foattering, data mar e

y. . . 56 (1961).
W" and and

. T. Thwaites, Ann. y .
"O. Chamberlain, E. Segrh, , W gI', Ypsilantis, Phys. Rev,

correlati

A o an, G. Tibell, Nucl. Phys.
562 (1962).

ohans on and G i e s.'sR. Alphonce, A. o an, G. & e,
» O. N. Jarvis and B. ose, . ters 1~,

1957).

» F, N, fafner, Phys. Rev.

avor the Fermi-
eV

The fits at 142 and 210 e
'on functions and the po ariza



&.0 In our comparison of the Yale and Li p

Fermi-correlation fun t
e wi proceed on the remis
ion unctions are the best available.

I s. cHALMERs A. M. SgpE R STE

.5—

x0
I-
N

1.0=
0
O.

5—

~ ~ ~ ~ ro ~ ~ r L BG

I
I
I
I
I
I
I ~

I
I~ ~g

~

\
'\

\

I
\
I
I

I
I
I

Comparison of Phase-Parameter Sets

At 142 MeMeV, we found that the Yale
decidedly better fit t h

V, the Yale set gave a ver ood
p-C polarization and gave the

'
n an gave the qualitative behavior of

erentia cross section as well.
th oth h der an, gave rise to excessive

bo th obo o servables. We conclude t
culation favors the Yale set ov

At 310MeVV, the Yale set gives a sli htl be
th d th L'

cross s ction the Y l

an oes t e Livermore se

below the data. The Li
e ae 6t is good to 5' , where it falls

a a. e Livermore p-C fit shows
Coulomb interference than do the data an
th Yl htto bo t6'A

1
' t fit

ou . s can be seen fr

that our 1 1

s are inconclusive.
r ca cu ation favors the Yale set

e therefore conclude

ough not as strongly ae as well alth

I

100
l

20 30
LAB SCATTERING ANGLE (Degrees)

Pie. 10.. Calculated olarization versu

mtt i . Dt kdbr e y circles in (a) and (b) are from

is certainly consistent with h h
of the function J fE . (2.21

' '
a

suc a c oice. From the

f-.--G pp-. -- h
q. . in which the correla
e can t at it is the value of G

intermediate separatio
optical potential th

ionsw ic most stron 1g y affects the
e integrand of J is dam ed b a

exyonential at large r and by a sine at sm
cu e at t e Fermi-correlation fun

closely resemble the truee e true correlation functions in

an o two-nucleon correlation fun
Donald and Hull' b 1

functions. Mc-

the BG functions but h
u e ieve that their calcula

'
ation favors

ns, ut t eir calculation is not ext
to angles large enou h t k
apparent. Furtherm

g orna e the opolarization hole
ur ermore, as discussed in Sec. II

calcu].ation differs from theirs inrom eirs in the inclusion of the

e correlation functions rather
correlation lengths.

her than simply the

V. FACTORS WHICH AFFECT AGREEMENT
WITH DATA

In this section we explore the uesti
wi ata does not ex

ecreases with increasin ener . It s
ri e most o the decrease in accurac

d bt
'

V~'& Th
~ ~ ~

e to the a rox'

atio f the Ae particle wave function ii ne
of target nucleon mo tn momentum, and iii

pp oximations have been

310 MeV.
r e large-angle discrepancies at

The energy-shell a roximat
scatterin an

ximation is exact for forward

xe ang e o scatterin wi

a in the lab frame, corres ondin t
momentum transfer of 14 F ',
section gets poor at ~5' h

', while the

t f of-04F i
in the lab for a

A similar comparison at 142 Mea MeV cannot be made
use e inary potential is significant with respect



168 PHASE —SH IF T-SET D ISC R I M I NAT ION ii55

to the single-scattering potential. In addition to the
approximations made for the first-order potential,
additional approximations have been made in the
evaluation of the second-order potential, which makes
it de.cult to isolate the cause of the poor large-angle
fits at 142 MeV.

The results at 310 MeV, however, strongly indicate
that the off-energy shell behavior of the two-nucleon
amplitudes must be taken into account if a better fit to
the data over a larger angular region is to be obtained.

VI. CONCLUSION

In this work, we have calculated the optical potential
to second order in the two-nucleon scattering ampli-
tudes. This required the evaluation of double scattering
and impulse-approximation corrections. Corrections to
the impulse approximation had not been included in
previous efforts in this area. In addition, we have
partially removed the forward-scattering approximation
in evaluating the binary potential. We have also
evaluated the integrals over the correlation functions
rather than approximating them by correlation lengths,
as is usually done.

By comparing the resultant calculated observables
with experiment for several nuclei at incident energies of
142, 210, and 310 MeV, we concluded that, except for
the proton-carbon cross section at 3IO MeV, the Fermi-
correlation functions were de6nitely superior to the BG
correlation functions insofar as they appear in the calcu-
lation of the binary potential. Since this superiority
holds for both sets of phase shifts, we infer that some
information is obtainable from elastic scattering data
about nucleon correlations without conclusive a priori

information about the S-X interaction, Taking the
Fermi- correlation functions as the better representation
of the actual correlation at intermediate E-X distances
in the nucleus, we find that a reasonably clear distinc-
tion is possible between different S-S phase-shift sets
and that the Yale set gives a better fit to the data than
the Livermore set at all three of the energies
investigated.

In order to obtain high-quality fits to the data at the
larger angles, it appears that a major program for
understanding off-energy shell effects will have to be
undertaken. However, there does seem to be an inter-
mediate range of scattering angles where energy-shell
uncertainties are not yet su%.ciently important and
~here it is possible to draw distinctions between the
diGerent available sets of Ã-E scattering phase shifts.
It is hoped that further improvements in the search
procedures for the E Eparam-eters (such as the newer
Yale 6ts 5) will lead to sets which allow precision 6tting
of the nucleon-nucleus data in the intermediate angle
range just mentioned. Such precision fits would be the
obvious starting point for investigations of off-energy-
shell effects, which should then lead to improvement in
the fits over the entire angular range considered in this
paper.

ACKNOWLEDGMENTS

We would like to express our appreciation to the
Computing and Data Processing Center, Wayne State
University, for making computing time available for
this work. Also, one of the authors (A.M.S.) wishes to
acknowledge the hospitality of the Aspen Institute for
Humanistic Studies, Physics Division.


