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The scattering of nucleons from light nuclei at energies of 142, 210, and 310 MeV is calculated using the
multiple-scattering optical potential obtained by retaining all terms which are binary or less in the two-
nucleon amplitudes. The binary potential includes the impulse-approximation correction as well as the
double-scattering correction. Nucleon-nucleus scattering observables are computed, using optical potentials
calculated with some of the Yale and Livermore phase-parameter sets and the Fermi and Brueckner-Gammel
nuclear-correlation functions. The observables are compared with data in an effort to ascertain the dif-
ferences caused by changing N-N scattering phase parameters and/or nuclear-correlation functions and
to see whether it is feasible to use such changes in attempts to pin down N-N and nuclear parameters.

I. INTRODUCTION

HERE have been many attempts'™ to make a
selection among proposed models of the two-
nucleon force by means of nucleon-nuclear data. Using
the very small-angle scattering data at 300 MeV, Bethe!
showed that the nucleon-nucleus differential cross
section and polarization could not distinguish between
the different sets of N-IV scattering phase parameters
then current. This result was to be expected since the
forward N-N amplitude is mostly imaginary and hence
determined by the total cross section, a quantity which
is presumably well fit by all acceptable phase-shift sets.
With the failure of the forward-scattering data to
discriminate between phase-shift sets, interest arose® in
the possibility that finite-scattering angle data would
allow such a differentiation. We* have recently made
such a comparison, computing an optical potential from
single scattering of the incident nucleon with nucleons
in the nucleus. Using the Yale® and Livermore® two-
nucleon phase-shift sets, we found significant differences
between the nucleon-nucleus scattering observables at
finite angles as computed with different phase-shift sets.
In fact, we found the Yale set to give a superior fit to
the data at incident lab energies of 142, 210, and 310

* Work partly supported by the National Science Foundation
under Contract Nos. GP-5077 and GP-7853.

T Submitted to the Office for Graduate Studies, Graduate
Division of Wayne State University, Detroit, Mich. in partial
fulfillment of the requirements for the Ph.D. degree by J. S.
Chalmers.

i Present address: Department of Physics, University of
Louisville, Louisville, Ky.

1H. A. Bethe, Ann. Phys. (N. Y.) 3, 190 (1958).

2 A. H. Cromer, Phys. Rev. 113, 1607 (1959).

(1; g‘;)M Saperstein and D. Feldman Nuovo Cimento 14, 457
(1;6T7)S Chalmers and A. M. Saperstein, Phys. Rev. 156, 1099

5 G. Breit, M. H. Hull, Jr., K. E. Lassila, K. D. Pyatt, ]r and
H.M. Ru M[?pell Phys. Rev. 128 826 (1962); M. H. Hull, Jr., K
Lassila, H. Ruppell, F. A, McDonald and O. Brext ibid. 128
830 (1962) Sets YLAM and YLAN3M were used, and are hence-
forth referred to as the “Yale set.” The most recent Yale phase-
shift sets [ G. Breit, Rev. Mod. Phys. 39, 560 (1967)]werenotmade
available to us at the time this work was being done.

6R. A. Arndt and M. A. MacGregor, Phys. Rev. 141, 873
(1966). The energy-independent phases were used.

168

MeV. However, when computing large-angle nucleon-
nucleus scattering, we expect that multiple scattering
should add important terms to the optical potential,
especially at the lower energies. It thus becomes
important to see what the multiple-scattering effects
are, and whether or not they will obscure the differences
previously found between different sets of phase shifts.
Specifically, in order to compute the double-scattering
contribution to the optical potential, we must know the
N-N correlation function within the nucleus. Does the
lack of knowledge of this nuclear-structure function
hinder the attempt to use elastic nucleon-nucleus scat-
tering experiments to differentiate between different
N-N parameters or can such experiments contribute
both to the desired parameter discrimination and some
knowledge of nuclear correlations? We explore this
question in this paper.

Watson? has given a formalism in which the optical
potential is expressed in terms of two-nucleon scattering
amplitudes as an expansion representing contributions
from single, double, and higher-order scatterings of the
incident nucleon by the nuclear nucleons. The double-
scattering term of this expansion was evaluated in an
approximate form by Johnston and Watson,® and used
by McDonald and Hull® to calculate the double-scatter-
ing correction to the optical potential in terms of the
Yale phase-shift set. McDonald and Hull found that
the addition of the double-scattering term to the single-
scattering potential significantly affected the nucleon-
nuclear observables at 142 MeV, and decreasingly so at
higher energies.

In the present work, we evaluate all terms in the
optical potential which are binary or less in the two-
nucleon scattering amplitudes. This will require the
evaluation of both the double-scattering correction,
previously used in an approximate form by McDonald
and Hull,® and the impulse-approximation correction.
The binary-optical potential will be evaluated in terms
of the Yale and Livermore phase-parameter sets and
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used to calculate the nucleon-nuclear observables. An
attempt will then be made to choose between these sets
on the basis of the nucleon-nuclear data.

Since the evaluation of the binary-optical potential
requires knowledge of the nuclear-correlation function,
knowledge which is not readily available, we must also
investigate the effect of using different forms for this
function. The integral over the correlation function,
which arises in the evaluation of the binary potential,
will be evaluated directly rather than being approxi-
mated by correlation lengths as was done in Refs. 8 and
9. In evaluating the binary potential, we will relax the
forward-scattering approximation which was made in
Refs. 8 and 9. As a further correction, we improve the
very-small-angle part of the nucleon-nuclear amplitudes
used in the single-scattering part of the optical potential
by including contributions of the one-pion exchange tail.
The optical potential thus found will be used in its
momentum-space representation to solve the partial-
wave integral scattering equation for the scattering
of nucleons by He?, C2, O'¢ at energies of 142, 210, and
310 MeV. The method of solution and the manner in
which Coulomb effects are included are given in some
detail in Ref. 4.

In Sec. II, we discuss the evaluation of the optical
potential. Section III describes the quantitative effects
of the various parts of the potential on the observables,
elastic nucleon-nucleus differential cross section and
polarization. In Sec. IV, the calculations are compared
with data, and the Yale and Livermore sets compared
on this basis. This section also includes an empirical
choice between two models of the nuclear-correlation
function. Section V considers the various factors in the
calculation which affect agreement with experiment,
and in Sec. VI our conclusions are drawn.

II. OPTICAL POTENTIAL

The Watson’ expansion for the optical potential is
given as an expectation value over the nuclear ground
state |0) by

1
V=0|X 74+ X 7Qori+---|0).

(2.1)
=1 i#%j Q
=1
7 is a modified-scattering operator defined by
7= 01007 Qors, (2.2)

where v; is the potential between the incident and 7th
nucleons, Qo=1—|0)(0| is the nuclear excited-state
projector, and

d=Eo—'H0+1:6, (23)

where H, is the sum of the incident kinetic-energy
operator and the nuclear Hamiltonian ; E, is the sum of
the incident kinetic energy and the nuclear ground-state
energy. The operator 7 is the scattering operator for the
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scattering of a particle by a nucleon bound in a nucleus.
It is convenient to introduce the operator for the
scattering of a particle by a member of a target of
independent nucleons,

T,;’= 7)¢+ vi(l/a’)n' ) (2.4:)
where
(2.5)

and %, is the sum of the kinetic-energy operator of the
incident nucleon and those of the nucleons in the target,
and e is the corresponding energy eigenvalue. One can
easily show that

(kl, kl’) e akA’! Ti,[k; kl) o '7kA>
= (k" k/[t|kk)IT o(ky/—k,), (2.6)

J#1

o= €o— ho-’r’ie y

where k;, k/ are initial and final momenta of the
struck nucleon, k and k’ are the initial and final
momenta of the incident nucleon, and ¢ is the scattering
operator for two free nucleons. Following Kerman,
McManus, and Thaler,”® we eliminate v; from (2.2) and
(2.4) and find

ri= [/ 1/0Trs,  2D)

which can be iterated to give r as an expansion in 7’.
Keeping only the first term in this expansion, so that
r=1', is called the impulse approximation. Since our
aim is to retain all terms in V which are binary or less
in #, we examine the second term in the iteration
of (2.7);

[a71Qo—1/a"]r' = —7'a Py’
+7'a (' —a)(1/a")7, (2.8)

where Po= | 0)(0|. The difference (¢'—a) can be written,
using (2.3) and (2.5), as

ad—a=u—e,,

where % is the potential energy function of the nucleus
and e, is the shift in the nuclear ground-state energy due
to #. However, Brueckner!! has shown that # can also
be expressed in terms of Z, so that the second term on the
right of (2.8) is of third order in ¢ Therefore, the second-
order correction to the impulse approximation is simply
the first term on the right of (2.8). The terms which we
will retain in our analysis are therefore

vO=(0|5 4]0),

1
Vps®=(0]| EJ ti;QOtj [0, (2.9)
1

Via®= —<0|Z IfrPof,'IO).
T a
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The Schrodinger equation will be numerically solved
with a potential given by the sum of the three terms
given in (2.9). We expect the effect of the V'@ terms to
decrease relative to the V@ term with increasing in-
cident nucleon energy due to the presence of the 1/a
term in V.

For scattering on the two-nucleon energy shell, the
transition matrix ¢ is related to the two-nucleon scatter-
ing matrix M by

t(q)=— (4= i*/m)M (q),

where ¢ is the momentum transfer and # is the nucleon
mass. The elastic scattering of a nucleon by a nucleus,
however, is governed by A-+1 body kinematics, rather
than the two-body kinematics of N-N scattering.
Throughout this work, we ignore this difference in
energy shells and treat the two-nucleon amplitudes as
if they were functions of momentum transfer only. This
approximation is exact for forward scattering, and for
nonforward scattering at fixed momentum transfer is
expected to improve for decreasing target mass number.
Following Stapp,? the M matrix may be written as

M=[a+c(o1+07) 'ﬁ+17‘01 ﬁfrz'ﬁ‘*'%(g‘{‘h)ﬂl‘mﬂz'm
+3(g—h)os-loy-L]+[a'+ - - Jr1vme, (2.11)

where the second bracket is identical in structure to the
first, with all functions primed. The quantities a- - -¢’
are functions of the momentum transfer ¢, ¢ and < are
the spin and isospin operators, respectively, and #, i,
and [ are unit vectors in the directions kX k', k+k’, and
k—Kk’, where k and k’ are the initial and final relative
wave numbers of the two nucleons.

In momentum space, for 4=2Z nuclei, the first term
of (2.9), referred to as the “single-scattering” term, is

K| V®[k)
= — (4at?/m)A[a(g)+c(g)oo-A]F (),

where k and k' are, respectively, the initial and final
relative wave vectors of the nucleon-nucleus system,
and F(g) is the nuclear form factor. The approximations
made in obtaining (2.12) are the neglect of the momen-
tum distribution of the nuclear nucleons and the use
of symmetrized two-nucleon amplitudes rather than the
symmetrization of the 441 particle wave function.®®

We will be concerned with the scattering of nucleons
by He?, C2, and O. The one-particle densities of these
nuclei are well represented by the modified-Gaussian
shape of Ehrenberg et al.,*

o(r) = i1+ /a)Je o,
which yields the form factor
F(g)=[1—w(ga)*/ (4+6w)]e~ (a4,
1 G Talotla and K- M. | vlslgtsig %%yigizéig%‘? 1339 (1955).

1 H. F. Ehrenberg, R. Hofstadter, U. Meyer-Berkout, D. G.
Ravenhall, and S. E. Sobottka, Phys. Rev. 113, 666 (1959).

(2.10)

(2.12)

(2.13)
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The values of the parameters w and @ are taken from
Ehrenberg et al.** and from Fregeau.!®

In the evaluation of the binary terms of (2.9), we
follow Johnston and Watson® and neglect the energy
differences between the nuclear ground and excited
states. This approximation leads to an error® of 7/3e(k),
where 72230 MeV is the average kinetic energy of a
nuclear nucleon and e(k) is the incident kinetic energy.
This approximation enables us to use the closure of the
nuclear states in evaluating the binary terms. We also
make the assumption of Lax and Feshbach'® that there
are only two pair distribution functions for the nuclear
nucleons, corresponding to symmetric and antisym-
metric spatial states of two nuclear nucleons. We
combine the binary terms of (2.9), calling Vps @+ V12 ®
=V ® and obtain

2u

1 dk
& 7o k)= j f dde
w2 20 ) k= Kotie

X i@ 45 () (x")

_ _ _ _Gs+Ga _Gs_Ga
X[A—C—D—}-A 5 +B . :', (2.14)

where u is the reduced nucleon mass, ¢'=k'—K,
q"’=K—k are the momentum transfers of the successive
scatterings, and G*-* are the correlation functions corre-
sponding to symmetric and antisymmetric spatial states
of two nuclear nucleons. We assume that the joint
distribution function can be written

p(' )= p(t)p(*)1+G(|r—1"[)],

so that the correlation between two nucleons depends
only on their separation and is independent of the loca-
tion of the pair in the nucleus. The quantities 4---D
are averages over the ground-state spin and isospin
function |0) of the nucleus:

A=3(024]0),

=i

B=3% (0|t;P;0),
i

0=§(01ti|0)(0ltj|0),

D=3%(0[t:]0)(0]4]0).

These averages can be written for A=2Z nuclei as'’
A= (it mp(A%a—A4B),
B= (4xti*/my[44a— (4%/4)6],
C+D= (4x#*/my A%,

(2.15)

15 H, H. Fregeau, Phys. Rev. 104, 225 (1956).
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where

a=a?+tc*+2acoo 1,
B="[a*+2c2+b*+3 (2+ k%) +2c(a+b)oo 7]
+3(a?+2c24 - ),

and where the typical quantity

2ac=a(g')c(q")+a(g")e(d).

The Vps® term of Johnston and Watson® can be
obtained from (2.14) by deletion of D.

The correlation functions of a nucleus are essentially
unknown and must be obtained by assuming a nuclear
model. Johnston and Watson?® find the correlation func-
tions of a Fermi-gas nucleus to be

(2.16)

et
1441 ] (2.17)
Go=—G,

where

G=RAGA—DT! E etk
=]

with r the separation vector of the two nucleons and k;
an allowed momentum in a Fermi gas. The function G’
may readily be evaluated to give

G'=(3(AGr—1)/(34-1), (2.18)

where
Gr(r)=[3j1(krr)/kpr J*

and % is the Fermi momentum for a nucleus, 1.27 FL
The form of (2.18) differs from that of Johnston and
Watson, who take G’=Gr, which is accurate for small »
or large 4. The correlation function is usually character-
ized by the correlation length defined by

0

R‘“-"=/ dr G*2(r).
0

It can be seen from (2.17) and (2.18) that the correla-
tion lengths for a Fermi gas are infinite, which is
reasonable since the correlation is due to the Pauli
principle, which implies a long-range correlation.

We have also investigated a Brueckner-Gammel
(BG)®® type correlation, which is due primarily to the
hard core of the two-nucleon interaction. Fowler and
Watson!” deduced a correlation function from the work
of BG and obtained the correlation lengths

R*=~Re=—0.84F.
We have assumed the correlation functions

G*=G"=Gs,

where (2.19)

Gp=—e10(1—5/2).
18 K. Brueckner and J. Gammel, Phys. Rev. 109, 1023 (1958).
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The normalization condition for large nuclei,

/GB(r)dr=0,

implies §=1%, and requiring

.}

/ Gp(r)dr=—084TF
0

implies b=1.42 F. It is worth noting that the Fermi-gas
correlation is due to the Pauli principle and hence the
correlation functions for the symmetric and anti-
symmetric states are quite different. In the BG model,
however, the correlation is mainly due to the hard core
of the interaction so that the symmetric and anti-
symmetric states have essentially the same correlation
function.

Using the correlation functions for a Fermi gas as
given by Egs. (2.17) and (2.18) the bracket of (2.14)
becomes

(4w #i*/m)*(—1A%6Gr) ,

while for the BG-type correlation functions of Eq.
(2.19), the bracket becomes

(Arte/my [ — AB+ (A%a—AB)G5].

The evaluation of (2.14) is complicated by the fact
that « and B are functions of the integration variable K.
The usual practice®? is to use the forward-scattering
values of the two-nucleon amplitudes in calculating
a and 8. a and B are then taken outside the integral
(2.14). This procedure over estimates V® because «
and B are products of two amplitudes, both of which
decrease with increasing momentum transfer. The
forward-scattering approximation in fact replaces a and
B by their maximum values. To reduce this overestima-
tion of V®, we set  and 8 equal to their maximum
values subject to the constraint that the initial and
final momenta are given by k and k’. As can be seen
from Eq. (2.16), « and 8 are symmetric in ¢’ and ¢”.
Therefore, if « and 8 have maximum values, they occur
when ¢’=¢". Further, because the two-nucleon ampli-
tudes decrease with increasing momentum transfer, this
common value must be as small as possible. It is easily
seen that these conditions are met when K=1(k+k’),
50 that omax=0a(%¢,5¢9). (@,8)max are then taken outside
the integrals in (2.14) and the integrals completed.

The integrals to be evaluated are of the form

e 1 / dK
() ) B—Ktie
Xo@)p(rG(|t'—1"]).

The spatial integrals in (2.18) can be simplified if,
instead of the modified Gaussian density of Eq. (2.11),

/dr,dr/,e_i(q/ BN US L))

(2.20)
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we take for p(r) a simple Gaussian
p(r)=e""1e"/n¥l2q3 (2.21)

with @ chosen to give the same rms radius as the corre-
sponding modified Gaussian. (The effect on the observ-
ables of using this Gaussian density in V® as well is
negligible for small momentum transfers. The Gaussian
density does, however, produce a less pronounced
diffraction minimum than does the corresponding
modified Gaussian.)
If we make the change in variables

', R=3(¢+r)

r=r'—r

and note that

1 dK eiEr 1 etr
(27r)3/ P—K'tie 4r 7
Eq. (2.20) becomes
e—(ga)?/8
J=————J (2.22)

(27)3/263Q ’

where Q=12 (k’+k) and
J= / dr e 120k 5inOr G(r). (2.23)
0
Using the Fermi-correlation functions, we find
2u (@8 sAxpN2 A2
K[y |k)=————<——a> Bt (2.24)
72 (2m)%/2a%Q 4

and the form obtained with the BG correlation functions
can be found in a similar way.

In comparing the two-nucleon amplitude with two-
nucleon data, partial waves up to some Lpng. are in-
cluded. The infinite number of partial waves beyond
Lyox—which are, presumably, accurately represented
by the one-pion exchange (OPE) Born approximation—
are neglected since they contribute only to the very
small momentum-transfer region which is not observable
and where, for charged particles, they are completely
obscured by the Coulomb interaction. However,
Bjorklund et al.'® have suggested that the nucleon-
nucleus optical potential could be thought of as the
result of repeated small momentum-transfer collisions.
We therefore have investigated the effect of including
the OPE tail of the two-nucleon amplitudes in the
calculation of V® following the method of Ref. 19.

The optical potential as obtained in this section is
used to solve the partial-wave integral-scattering equa-
tion in momentum space. The method of solution and

the method of treating Coulomb effects are given in
Ref. 4.

®F. E. Bjorklund, B. A. Lippmann, and M. J. Moravcsik,
Nucl. Phys. 29, 582 (1962).
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F16. 1. p-carbon differential cross section at lab energies of
(a) 142 MeV, (b) 310 MeV, calculated from the optical potential
in the stages SS, DS, IA, AC(B-G), and AC(F), using the Yale
phase-shift set.

III. EFFECTS OF THE CORRECTIONS

In this section we examine the effect of the different
terms of the optical potential, discussed in Sec. II, on
the nucleon-nuclear observables. The complexity of the
potential was increased in the following sequence: (i)
single scattering (SS); (ii) the addition to SS of the
double-scattering correction with the forward-scatter-
ing approximation (DS); (iii) the addition to DS of
the impulse approximation with the forward-scattering
approximation (TA); (iv) elimination of the forward-
scattering approximation (EFS); (v) the addition of
the OPE tail to EFS (AC). Stages (ii)—(iv) were
calculated with the Fermi-correlation function only.
The complete potential (v) was calculated for both the
Fermi and BG correlation functions.

In Fig. 1, we plot the differential cross section and in
Fig. 2 the polarization obtained with the optical
potential in the stages SS, DS, IA, AC (Fermi) [AC(F)]
and AC (BG). The calculations are made with the Yale®
phase-shift set for protons incident on carbon at incident
energies of 142 and 310 MeV. The qualitative behavior
of the curves for the Livermore® set is similar. The
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F16. 2. p-carbon polarization at lab energies of (a) 142 MeV,
(b) 310 MeV, calculated from the optical potential in the stages
SS, DS, IA, AC(B-G), and AC(F), using the Yale phase-shift set.

curves for EFS cannot be distinguished from those of
AC(F) and are not plotted. This indicates that the
corrections to the very small momentum-transfer region
included in the OPE tail are not necessary in fitting the
two-nucleon amplitudes to the nucleon-nuclear data in
the region of interest to the present work.

In Fig. 1(a), we see that the DS correction reduces
the small-angle scattering and enhances the large-angle
scattering when compared to SS, which is what would be
expected intuitively. The TA correction raises the small-
angle cross section by ~109%, and is significant through-
out the entire angular range. In comparing IA with
AC(F), we see that our method of correcting for the
forward-scattering approximation has little effect at
small angles but strongly affects the shape of the curves
at large angles. As discussed in Sec. II, the forward-
scattering approximation over estimates the scattering
at finite angles. That is, the AC(F) cross section lies
below that for TA and is therefore, closer to the data.
We also see that the small-angle cross section for
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AC(BG) is almost twice that for AC(F) at 142 MeV,
which indicates the importance of knowing the correct
nuclear-correlation functions.

A notable characteristic of the experimentally ob-
served polarization is the “hole” or large dip which
occurs in the vicinity of the cross-section diffraction
minimum. This hole is an aspect of multiple scattering
and an indication of nuclear structure; it does not
appear in Born-approximation polarization calculations
which are independent of nuclear structure or form
factors.? In Fig. 2(a) we note that the SS potential does
not give rise to the polarization hole at 142 MeV. The
hole appears only when the binary corrections are added,
and then only with the Fermi correlation functions and
not with the BG functions. This phenomenon may be
understood qualitatively by noting that the SS polariza-
tion is near maximum at the cross-section diffraction

02

10!

DIFFERENTIAL CROSS SECTION (mb/sr)
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LAB SCATTERING ANGLE (Degrees)

F16. 3. Calculated differential cross section versus data at an
incident lab energy of 142 MeV. (a) p-He elastic scattering, data
marked by circles from CPRW. (b) $-C elastic scattering, data
marked by triangles from SPC, and by circles from DS. In this
and succeeding figures, error bars are not drawn where quoted
statistical errors are smaller than data symbol.
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minimum. There is a large difference between the scat-
tering of nucleons whose spin is perpendicular to the
scattering plane in a left-handed manner and those
whose spin is right-handed. The double-scattering con-
tribution is opposite in sign to the single-scattering
amplitude; if the correlation is spin-independent, it will
subtract roughly equally from the left-handed and
right-handed spin amplitudes, thus leaving the differ-
ence and hence the polarization unchanged. This latter
situation is characteristic of the BG correlation func-
tions which are the same for spatially symmetric and
spatially antisymmetric nuclear pairs in the nucleus,
i.e., for singlet and triplet target pairs. The Fermi-
correlation functions, being opposite in sign for singlet
and triplet target states, can lead to a diminution of the
spin-amplitude difference and hence to a dip in the
polarization. This situation would be most marked at
the diffraction minimum, where the single-scattering
amplitudes become small enough to be comparable with
the double-scattering amplitudes, as is observed.

Also apparent is the pronounced effect on the polari-
zation at large angles due to the removal of the forward-
scattering approximation; this is correlated with the
expected reduction in the large-angle cross section as
seen in Fig. 1(a).

A comparison of Figs. 1(a) and 1(b) indicates that all
of the corrections decrease with increasing energy of the
incident particle, as expected. At 310 MeV, the cross
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F1G. 4. Calculated differential cross section versus data at an
incident lab energy of 142 MeV. (a) $-O elastic-scattering data,
marked by circles from TW. (b) #-C elastic scattering, data
marked by circles from Hr, and by triangles from VVW,
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Fic. 5. Calculated differential cross section versus data for $-C
elastic scattering at an incident lab energy of 210 MeV. Data
marked by circles are from T.

section is well represented by the SS curve. The same
trend can also be seen in the polarization curves, Figs.
2(a) and 2(b).

At the SS and DS stages we were able to compare
our work with that of McDonald and Hull,? who
calculated the small-angle cross section and polarization
for p-C scattering at 142 and 310 MeV using the Yale
set. We found* that our SS cross sections and polariza-
tions at both energies are essentially identical to theirs.
At 142 MeV, our DS cross section is again identical to
theirs; however, our DS polarization lies above, and
closer to the data, than does our SS polarization,
whereas McDonald and Hull find the SS and DS
polarizations to be the same at small angles for this
energy. At 310 MeV, our DS cross section lies below our
SS, while in Ref. 9 the DS cross section lies slightly
above the SS. The 310-MeV polarizations are difficult to
compare because of the closeness of the curves. Of the
several details in which our calculation differs from that
of McDonald and Hull, it is difficult to single out one as
giving rise to the differences in calculated observables
just noted. However, it should be noted that McDonald
and Hull make the approximation of using a correlation
length, whereas we stick to the more fundamental
correlation function. Furthermore, we use the exact
relation (2.18), whereas they assume G’=G; which is
likely to be a quite erroneous representation of (2.18)
for the values of 4 of interest here.
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Fic. 6. Calculated differential cross section versus data at an
incident lab energy of 310 MeV. (a) p-He elastic scattering.
(b) -C elastic scattering. Data marked by triangles in (a) and (b)
are from CSTWY.

IV. COMPARISON WITH DATA

In this section, we compare our calculations with
nucleon-nuclear elastic-scattering data. Our primary
purpose here is to attempt to choose between the Yale®
(Y) and Livermore® (L) phase-parameter sets on the
basis of this comparison. Before this can be done, how-
ever, we must decide whether the Fermi (F) or BG
correlation functions more closely resemble the actual
correlation functions. The calculations used for com-
parison with data in this section include all of the correc-
tions discussed in Sec. II; they are designated AC in
Sec. III.

Differential Cross Section

142 MeV. Figure 3(a) shows the p-He differential
cross section. The data are from Cormack et al.?
(CPRW). The Y-F curve gives a reasonable fit to the
data to ~10°, while the L-F curve is almost a factor of
two too high in this range. The Y-BG and L-BG curves
lie even higher.

Figure 3(b) shows the p-C differential cross section.
The data are those Steinberg et al2! (SPC), and of
Dickson and Salter?? (DS). The SPC data are corrected

2 A. M. Cormack, J. N. Palmieri, N. F. Ramsey, and R. Wilson,
Phys. Rev. 115, 599 (1955).

1 D. Steinberg, J. N. Palmieri, and A. M. Cormack, Nucl. Phys.
56, 46 (1964).

22 J, M. Dickson and D. C. Salter, Nuovo Cimento 6, 235 (1957).
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for multiple Coulomb scattering in the target and are
believed to have a systematic error of 3%, or less; they
are, by far, the best data we have found. As can be seen,
the Y-F curve fits the data quite well, especially the
SPC data. The L-F curve is ~50%, high in the small-
angle region and Y-BG and L-BG are ~1009%, high in
this region.

Figure 4(a) shows the p-O differential cross section.
The data are those of Taylor and Wood? (TW). Again,
it is the Y-F curve which best fits the data; with the
L-F curve high by a factor of almost 2.

Figure 4(b) shows the #-C differential cross section,
with data from Harding®* (Hr) and Voss, VanZyl, and
Wilson?s (VVW). Here, also, the Y-F fits the data very
well to ~20°, while the L-F curve is ~25%, high at 0°.

— Y-F aaaa CPRW
—— L-F 00 o DS
------Y-BG
wveeeee L-BG

POLARIZATION

(-]

o 10 20 30
LAB SCATTERING ANGLE (Degrees)

Fi6. 7. Calculated polarization versus data at an incident energy
of 142 MeV. (a) p-He elastic scattering, data marked by triangles
from CPRW. (b) p-C elastic scattering, data marked by circles
from DS.

% A. E. Taylor and E. Wood, Nucl. Phys. 25, 642 (1961).

24 R, S. Harding, Phys. Rev. 111, 1164 (1958).

2 C, P. VanZyl, R. G. P. Voss, and R. Wilson, Phil. Mag. 1, 1003
(1956).
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210 MeV. Figure 5 shows the p-C differential cross
section with the data from Thwaites?® (T). We can see
that the L-F and L-BG curves show excessive destruc-
tive Coulomb interference. The Y-F curve is about 209,
low in this region, while the Y-BG curve is about 509,
high.

310 MeV. Figures 6(a) shows the p-He cross-section
fits, with the data of Chamberlain et al.2” (CSTWY).
All of the curves fit the small-angle data fairly well, al-
though the L-F and Y-F curves lie somewhat closer to
the data than the corresponding BG curves.

Figure 6(b) shows the p-C cross-section fits, with the
data of CSTWY. This is the only case we have found in
which the BG fits are closer to the data than the F fits.
We can see that the L-F and L-BG fits both show more
Coulomb interference than do the data. It should be

5
o
g LX) AyJ'I
E —— LF
N | Y-BG
z 10— weerienn L-BG _—
< oo oHr Ll >
o P
e e
7
v
- 7/
,/
5
% % "J‘/
S s TN
727
% 7 \
/,1;" \
Z (b) \
0 \
\/
l | '
o 10 20 % ©

LAB SCATTERING ANGLE (Degrees)

T16. 8. Calculated polarization versus data at 142 MeV. (a) p-O
elastic scattering, data marked by circles from AJT. (b) #-C
elastic scattering, data marked by circles from Hr.

26 T. T. Thwaites, Ann. Phys. (N. Y.) 12, 56 (1961).
27 0. Chamberlain, E. Segre, R. D. Tripp, C. Wiegand; and
T, Ypsilantis, Phys. Rev. 102, 1659 (1956).
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F1c. 9. Calculated polarization versus data for p-C elastic
scattering at an incident lab energy at 210 MeV. Data marked by
circles from Hf.

mentioned that Batty?® has questioned the normaliza-
tion of the small-angle CSTWY data which include the
data to 7°.

Polarization

142 MeV. Figures 7(a), (7b), 8(a) show the polariza-
tion for p-He, p-C, $-O, and #-C scattering. The $-O
data are from Alphonce et al.?® (AJT). All of the 142-
MeV data lead to the same conclusion: The small-angle
polarization is best fit by the Y-F curves. It is also
striking that neither of the BG curves shows the
characteristic hole in the polarization at the diffraction
minimum, which is exhibited by both of the F curves
and by the data. (In Fig. 7, the data have been adjusted
downward, following Jarvis and Rose.?0)

210 MeV. Figure 9 shows the p-C polarization at
210 MeV; the data are from Hafner®® (Hf). The Y-F
fit is extremely good to ~14°, The L-F and L-BG fits
show excessive Coulomb interference. Again, the BG
curves do not have the deep hole at the diffraction
minimum, which seems to be required by the data and
which is shown by the F curves.

310 MeV. Figures 10(a) and 10(b) show the p-He
and p-C polarization at 310 MeV. It is difficult to make
a comparison of the fits because the small-angle fits all
lie very close together. We see that the F curves come
down faster at the diffraction minimum than do the BG
curves and are thus more similar to the data variation
at larger angles.

Correlation Functions

The fits at 142 and 210 MeV strongly favor the Fermi-
correlation functions and the polarization at 310 MeV

28 C, J. Batty, Nucl. Phys. 23, 562 (1962).

2% R, Alphonce, A. Johansson, and G. Tibell, Nucl. Phys. 4, 672
(1957).

® O, N. Jarvis and B. Rose, Phys. Letters 15, 271 (1965).

3L E, M. Hafner, Phys. Rev. 111, 297 (1958).
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F16. 10. Calculated polarization versus data at an incident lab
energy of 310 MeV. (l;) p-He elastic scattering. (b) p-C elastic
scattering. Data marked by circles in (a) and (b) are from
CSTWY.

is certainly consistent with such a choice. From the form
of the function J [Eq. (2.21)] in which the correlation
functions G appear, we can that it is the value of G(r) at
intermediate separations which most strongly affects the
optical potential; the integrand of J is damped by an
exponential at large  and by a sine at small 7. Therefore
we conclude that the Fermi-correlation functions more
closely resemble the true correlation functions in the
intermediate range of  than do the BG functions, i.e.,
there is a significant difference between the spatially
even and odd two-nucleon correlation functions. Mc-
Donald and Hull® believe that their calculation favors
the BG functions, but their calculation is not extended
to angles large enough to make the polarization hole
apparent. Furthermore, as discussed in Sec. II, our
calculation differs from theirs in the inclusion of the
impulse-approximation correction as well as the modifi-
cation of the forward-scattering approximation and the
use of the correlation functions rather than simply the
correlation lengths.
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In our comparison of the Yale and Livermore phase

parameters, we will proceed on the premise that the

Fermi-correlation functions are the best available.

Comparison of Phase-Parameter Sets

At 142 MeV, we found that the Yale set gave a
decidedly better fit to the p-He, -C, p-O, and #-C
data, both differential cross section and polarization,
than did the Livermore set. We therefore conclude that
our calculation favors the Yale over the Livermore set
at this energy.

At 210 MeV, the Yale set gave a very good fit to the
$-C polarization and gave the qualitative behavior of
the differential cross section as well. The Livermore set,
on the other hand, gave rise to excessive Coulomb inter-
ference in both observables. We conclude that our cal-
culation favors the Yale set over the Livermore set at
210 MeV.

At 310 MeV, the Yale set gives a slightly better p-He
cross section than does the Livermore set. For the p-C
cross section, the Yale fit is good to ~5°, where it falls
below the data. The Livermore p-C fit shows more
Coulomb interference than do the data and lies below
the Yale fit to about 6°. As can be seen from Fig. 10, the
polarization fits are inconclusive. We therefore conclude
that our calculation favors the Yale set over the Liver-
more set at 310 MeV as well, although not as strongly as
at the lower energies.

V. FACTORS WHICH AFFECT AGREEMENT
WITH DATA

In this section we explore the question of why our
agreement with data does not extend over a larger
angular range. In comparing Figs. 1(a) and 1(b) and
2(a) and 2(b) we see that the effect of V@ relative to
that of V® decreases with increasing energy. It seems
reasonable to ascribe most of the decrease in accuracy
of the large-angle fits at 310 MeV to the approximations
made in obtaining ¥ ®, These are (i) lack of symmetri-
zation of the A4-1 particle wave function, (ii) neglect
of target nucleon momentum, and (iii) energy-shell
approximation. The first two approximations have been
estimated? to give errors of ~39, each at 100 MeV, and
cannot account for the large-angle discrepancies at
310 MeV.

The energy-shell approximation is exact for forward
scattering and, for nonforward scattering, is expected
to improve at a fixed angle of scattering with decreasing
mass number of the target. If we compare the p-He and
p-C differential cross sections in Figs. 6(c) and 6(b), we
can see that the calculated p-He cross section begins to
get poor at ~20° in the lab frame, corresponding to a
momentum transfer of ~1.4 F~, while the p-C cross
section gets poor at ~5° in the lab, for a momentum
transfer of ~0.4 F-L.

A similar comparison at 142 MeV cannot be made
because the binary potential is significant with respect
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to the single-scattering potential. In addition to the
approximations made for the first-order potential,
additional approximations have been made in the
evaluation of the second-order potential, which makes
it difficult to isolate the cause of the poor large-angle
fits at 142 MeV.

The results at 310 MeV, however, strongly indicate
that the off-energy shell behavior of the two-nucleon
amplitudes must be taken into account if a better fit to
the data over a larger angular region is to be obtained.

VI. CONCLUSION

In this work, we have calculated the optical potential
to second order in the two-nucleon scattering ampli-
tudes. This required the evaluation of double scattering
and impulse-approximation corrections. Corrections to
the impulse approximation had not been included in
previous efforts in this area.® In addition, we have
partially removed the forward-scattering approximation
in evaluating the binary potential. We have also
evaluated the integrals over the correlation functions
rather than approximating them by correlation lengths,
as is usually done.

By comparing the resultant calculated observables
with experiment for several nuclei at incident energies of
142, 210, and 310 MeV, we concluded that, except for
the proton-carbon cross section at 310 MeV, the Fermi-
correlation functions were definitely superior to the BG
correlation functions insofar as they appear in the calcu-
lation of the binary potential. Since this superiority
holds for both sets of phase shifts, we infer that some
information is obtainable from elastic scattering data
about nucleon correlations without conclusive a priori
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information about the N-N interaction, Taking the
Fermi- correlation functions as the better representation
of the actual correlation at intermediate V-V distances
in the nucleus, we find that a reasonably clear distinc-
tion is possible between different V-V phase-shift sets
and that the Yale set gives a better fit to the data than
the Livermore set at all three of the energies
investigated.

In order to obtain high-quality fits to the data at the
larger angles, it appears that a major program for
understanding off-energy shell effects will have to be
undertaken. However, there does seem to be an inter-
mediate range of scattering angles where energy-shell
uncertainties are not yet sufficiently important and
where it is possible to draw distinctions between the
different available sets of N-N scattering phase shifts.
It is hoped that further improvements in the search
procedures for the N-N parameters (such as the newer
Yale fits 5) will lead to sets which allow precision fitting
of the nucleon-nucleus data in the intermediate angle
range just mentioned. Such precision fits would be the
obvious starting point for investigations of off-energy-
shell effects, which should then lead to improvement in
the fits over the entire angular range considered in this

paper.
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