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A discussion and comparison of the two forms of interaction, A y and E r, is given for two-body photo-
disintegration of He'. It is shown that in general the E r results are much better than the A y results.
Calculations are carried out to 140 MeV to compare with recent data. The Gunn-Irving wave function gives
a good fit to the total cross section at all energies, but fails to account for the ground-state matter form
factor. A simple three-nucleon ground-state wave function is suggested which adequately reproduces the
Coulomb energy, rms radius, and matter form factor (for ft'&3.5 F ') of He', but predicts a photodisintegra-
tion cross section which is 20% small at the peak, assuming no final-state interactions. The spin magnetic-
moment interaction, which Verde has shown is forbidden in the dipole approximation for transitions from
a spatially symmetric ground state, is computed without this approximation and is shown to contribute
only 1-10jp of the total cross section, the larger amount only at high energies.

I. INTRODUCTION

'HERE have been several calculations of the photo-
disintegration of the three-nucleon system. ' '

These have been primarily of the total cross sections
for photon energies &40 MeV, and calculated in the
dipole approximation, although recently authors have
included quadrupole terms. t There are four processes:
Hs(y, ts)d, Hs(y, P)2n, Hes(y, m)2P, He'(y, P)d. In this
paper we concentrate on the last case.) In the present
paper we compare the two forms of interaction A p and
E r for the photon-nucleus interaction and carry out
calculations up to 140 MeV, to compare with recent
data.

In. order to evaluate the transition matrix element,
one needs to choose an appropriate initial wave function
for the three-nucleon ground state; one must decide on
the proper form of interaction between the external
electromagnetic 6eld and the nuclear charge-current

t' This work was supported by the National Science Foundation
under Grant Nos. NSF-GP 2799 and NSF-GP 6198.' M. Verde, Helv. Phys. Acta 23, 453 (1950).' J. C. Gunn and J. 1rving, Phil. Mag. 42, 1353 (1951).' L. M. Delves, Nucl. Phys. 29, 268 (1962).

4 U. Eichmann, Z. Physik 175, 115 (1963).' R. I. Dzhibuti, V. I. Mamasakhlisov, and T. S. Macharadze,
Yadern. Fiz. 2, 59 (1965) /English transl. : Soviet J. Nucl. Phys.
2, 40 (1966)g.

s V. N. Fetisov, Zh. Eksperim. i Teor. Fiz. 46, 1395 (1964)
LEnglish transl. :Soviet Phys. —JETP 19, 943 (1964)g.' G. M. Bailey, G. M. GrifBths, and T. W. Donnelly, Nucl.
Phys. A94, 502 (1967).' B. F. Gibson, Nucl. Phys. B2, 501 (1967).

R. Bosch, J.Lang, R. Muller, and W. %'olQi, Helv. Phys. Acta
38, 753 (1965).

system, and one must choose the correct 6nal wave
function of the three nucleons.

Regarding the initial ground state: The theoretical
work done on determining this state has concentrated
primarily on reproducing the ground-state properties
such as Coulomb energy, binding energy, rms radius,
and form factor.""From this work, it is clear that the
predominant state is the spatially symmetric S state
times the antisymmetric doublet spin state. There is
some question as to the amount of D state and/or
mixed symmetry S' state present, "but it is no more
than a few percent. For our purposes we consider only
the doublet spin state and choose an appropriate sym-
metric wave function as discussed in Sec. II.

Regarding the photon-nucleus interaction: The
nucleus is a charge-current distribution j„=(j,p) inter-
acting with a (known) external field A„=(A, y=0).
The interaction Hamiltonian (density) is

V= —(1/c) j„A„=—(1/c)1 A.

But j is not known, for there are meson currents in the
nucleus which contribute to the total electromagnetic
current of the nucleus, and an ordinary Schrodinger

' H. Collard, R. Hofstadter, K. B. Hughes, A. Johansson,
M. R. Yearian, R. B. Day, and R. T. Wagner, Phys. Rev. 138,
857 (1965)."B.F. Gibson, Phys. Rev. 139, 81153 (1965)."B.F. Gibson and L. I. Schiff, Phys. Rev. 138, 826 (1965)."L.I. Schi8, Phys. Rev. 133, B802 (1964).

~& J. Pappademos, Nucl. Phys. 42, 122 (1963); 56, 351 (1964)."R.H. Dalitz and T. W. Thacker, Phys. Rev. Letters 15, 204
(1965)."B.F. Gibson and L. I. SchiG, Phys. Rev. 138, B26 (1965).
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wave function (a function of the three positions of the
nucleons), such as we are using, of course does not take
into account these (virtual) mesons. In a nonrelativistic
Schrodinger treatment, one can approximate the effect
of the pions by inserting a "charge-exchange" potential
in the nuclear Hamiltonian (which potential is then a
phenomenological description of mesons) and solve for
the nuclear ground-state wave function in its presence.
Thus the mesons affect the ground state, and also, via
their electromagnetic current, aGect the interaction of
the nucleus with an external held. At any rate the
current is not just the convection current

S
P a

=i%

of Z point protons. Thus V= —g; (e/Mc)A p, is not
completely correct.

Now at low energies one might expect the dipole
approximation to hold, as it does in atomic physics. In
the nuclear-dipole approximation, there are three
separate approximations involved:

1. Replace A=Rose'~' by Aos=AO, where e is the
photon polarization vector.

2. Replace y by Mv= (M/ih)l H, rg so that

The point is that although 'at erst sight (allowing
approximation 1) Ao p and Eo r should yield nearly
the same result at low energies, we now see that they
need not. In fact they do not. They are both calculated
here and compared. In general the interaction E r gives
a better fit to the data whereas the A. y results are all
small.

Ke also find that much better agreement is found
(particularly at high energies) if in the E r interaction
we include the retardation factor e'~' instead of using
a constant electric 6eld. These two diBerent cases are
compared below. The second term in the Taylor series
expansion of e'"' contains the electric quadrupole
contribution (as well as the magnetic dipole). The fact
that inclusion of this term has a pronounced effect upon
the cross section was also observed by Kichmann, 4 who
employed a direct multipole expansion of the field, and
by Bailey et al.~

Foldy" and Sachs and Austern" have given a theo-
retical basis for retaining the factor e' ' in the electric
interaction. The latter authors base their development
on gauge invariance of electromagnetic interactions,
while the former author bases his arguments on the
differential charge conservation law. Actually, Foldy
suggests an average

(flA &l~) ~~o~(M/~@) (fl CH, rjl~), d~ eiek r

where II is the unperturbed nuclear Hamiltonian.
3. Apply H to

l f) and li) and bring out (Er E;)—
so that

(flA pl&) ~ ~M~&0'—(flrl~)

where h&o= (Er E;). Since Q)AO—R is proportional to the
electric Geld Eo, one is effectively evaluating (fl Eo.r li)

Step 1 is certainly legitimate at low energies. In
atomic physics steps 2 and 3 do not really involve any
approximation; they are identically correct (assuming
the atomic eigenstates are known). However, in the
nuclear case, step 2 requires that the internal nuclear
potential commute with the nucleon position r. This is
not the case if a charge-exchange potential is included.
Thus, in nuclear physics, step 2 is not valid unless one
makes speci6c allowance for the commutator of the
exchange potential. Step 3 requires that li) and

l f)
be true eigenstates of a nuclear Hamiltonian corre-
sponding to eigenvalues diGering by Ace. For any states
used in a calculation, this is generally not the case.
The wave functions are chosen on plausibility grounds
and are not true eigenstates of a single Hamiltonian.
In fact li) and

l f) may not even be orthogonal. Thus
step 3 is not valid in a calculation. With the use of
inexact wave functions we may expect the two forms of
interactions to give diferent results. '~

' This is discussed in the atomic case in H. A. Bethe and E. E.
Salpeter, QNantlm Mechanics of One and Tmo E/ectron Atoms
{Academic Press Inc. , New York, 1957), Sec. 59.

over the retardation factor. If this average is performed
in the matrix elements, the resulting cross section is
intermediate between the pure dipole results (e'"'= 1)
and our results quoted with the full e'"'.

One might expect a three-nucleon wave function to
represent the charge distribution of the nucleus more
nearly correctly than the current distribution, since it
does give the nucleon positions but makes no reference
to the motion of exchanged charged mesons. Thus, it
is not surprising that (fl E rli), which is like thematrix
element of a charge distribution, gives better results
that (f l

A y l i), which is more like the matrix element of
a current.

In addition there is a small flip interaction, —m. B,
of the magnetic 6eld B, with the nucleon magnetic
moments m. This is indeed small. We And that it
accounts for only about 1% of the total cross section
below 40 MeV and about 10% between 100 and 140
Mev, provided we properly orthogonalize the initial
and final three-nucleon states. (Otherwise the con-
tribution would be from 10—50% of the total cross
section. ) It was long ago noticed by Schiff, 2' and later
by Verde' that in the dipole approximation (meaning
only step 1 above) this magnetic dipole transition is
forbidden if the ground state is spatially symmetric.

L. L. Foldy, Phys. Rev. 92, 178 {1953).
R. G. Sachs and N. Austern, Phys. Rev. 81, 705 {1951);

N. Austern and R. G. Sachs, ibid. 81, 710 (1951).
L. I. SchiG, Phys. Rev. 52, 242 (1937).
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In this approximation 8 is a constant vector and may
be taken out of the matrix element, leaving only the
spinor operator I between initial and 6nal spin states
but no operator between initial and final spatial states.
By orthogonality, therefore, the matrix element
vanishes. This is seen in our expression (7) for the
matrix element when we set e'"'»' (the spatial depen-
dence of the magnetic field) equal to 1.

Thus we consider three separate interactions, A y,
E r, and m 8, and present the results in the next two
sections.

Regarding the final state: For the wave function of
the deuteron we employ the triplet spin state and the
Hulthen function

Un (r) =Eg) (e " e~")/r—,

where r is the separation of the neutron and proton,
n= (MEs)"=45.7 MeV/c, and P=260 MeV/c"

For the relative proton-deuteron motion, it has been
calculated"" that 6nal-state interactions play a small
role. P-wave proton-deuteron phase shifts are known
to be small. '2 Thus we use a plane wave for this relative
motion. However, to investigate the qualitative effects
of a 6nal-state interaction, we discuss in Sec. III the
effect of a spherical square-well interaction between
proton and deuteron, and the possible eGect of a deu-
teron whose size depends on the distance of the free
proton. This last notion arises because in He' the proton
and neutron which are to become the deuteron are more
tightly bound to each other when the second proton is
present than they are when this second proton is free
and far aw'ay. That is, the nucleon separation in the
deuteron is larger than the separation of any two
nucleons in He'. Thus, as the free proton exists from
the helium, the remaining two nucleons are actually
closer together than our final-state deuteron wave
function gives them credit for.

In view of other uncertainties and the fact that E.r
emphasizes large distances, the eGect of a hard core in
the initial and 6nal states has not been considered.
Indeed, Fetisov has shown' that such a core produces
only a small change in the results of Gunn and Irving. '
Other authors'" have considered a soft or hard core
in photo- and electrodisintegration.

Of the recent helium photodisintegration calculations,
Dzhibuti et gl. ' tried the interaction A y (with A a
constant), using the Gunn-Irving ground state and
r 'e "for the deuteron. They used a helium parameter

= 2.0 F on the basis of a variational binding-energy
calculation, but, as w'e shall see in the next section, this
value is in wild disagreement with the Coulomb energy
and form-factor data. As the cross section is sensitive

"D. H. White, R. N. Schectman, and B. M. Chasan, Phys.
Rev. 120, 614 (1960)."B.H. Bransden, A. C. Douglas, and H. H. Robertson, Phil.
Mag. 2, 1211 (1957).

23 R. S. Christian, J. L. Gammel, Phys. Rev. 91, 100 {1953).
~4 F. C. Khanna, Nucl. Phys. A97, 417 (1967},

to the shape of the deuteron, the use of a Hulthen
function would produce quite different results.

Kichmann' and Bosch et a/. ' have performed a more
elaborate computation, keeping dipole and quadrupole
interactions and including nonsymmetric terms in the
ground state. Their results show that the nonsymmetric
contribution shifts the peak to lower energy but does
not greatly affect the integrated cross section (to 30
MeV). The inclusion of the quadrupole interaction has
a pronounced effect on the angular distribution of He'
disintegration: It pushes the peak of the distribution
farther forward from 90' to 70'—75' at 15 MeV. The
eGect of the final-state interaction is to increase the
peak cross section (which occurs at about 11 MeV)
by about 20 j~ but to slightly decrease the cross section
above 25 MeV.

These same effects will be observable in the present
calculation. We discuss the alternative forms for the
electromagnetic interaction, and suggest a very simple
wave function which adequately reproduces the Cou-
lomb energy and form factor (and therefore the rms
radius) of the ground state.

There are substantial experimental data for total cross
sections and 90' cross sections for helium photodis-
integration. " ~ Results prior to 1965 are nicely sum-
marized in Ref. 26. Our graphs use a representative
sample of this data. There are now also recent results'8
on total and difterential cross sections up to 140 MeV.

+t——Xg exp( —p9P),

+s ——Egr Lexp( —pR) j/R,

es ——ELexp( —pre) —exp( —psR) $/8,

g (Q r. .s)1/s

(2)

(3)

"T.A. Varfolomeev and A. N. Gorbunov, Zh. Kksperim. i Teor.
Fiz. 47, 30 (1964) LEnglish transL: Soviet Phys. —JETP 20, 20
(1965)j.

's J. R. Stewart, R. C. Morrison, and J. S. O' Connell, Phys.
Rev. 13S, 8372 (1965)."B.L. Berman, L. J. Koester, and J. H. Smith, Phys. Rev.
133, 3117 (1964).

'8
¹ M. O'Fallon, I.J. Koester, and J. H. Smith (to be pub-

lished).
~9A. N. Gorbunov and A. T. Varfolomeev, Phys. Letters 11,

137 (1964).' V. N. Fetisov, A. N. Gorbunov, and A. T. Varfolomeev, Nucl.
Phys. 71, 305 (i.965).

g' A. N. Gorbunov and A. T. Varfolomeev, Phys. Letters 5, 149
(1963).

'2 E. Finckh, R. Kosiek, K. H. Lindenberger, U. Meyer-
Berkhout, N. Nucker, and K. Schlupmann, Phys. Letters 7, 271
(1963)."J.B. Warren, K. L. Erdman, L. P. Robertson, P. A. Axen,
and J. R, MacDonald, Phys. Rev. 132, 1691 (1963),

II. CHOICE OF WAVE FUNCTION
AND CALCULATION

We now discuss the choice of the ground-state wave
function and evaluation of the photodisintegration
cross section.

We use the three functions
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The Gaussian (1) does not have the correct asymp-
totic behavior to satisfy the Schrodinger equation at
large separations, and we shall see that the low-energy
peak occurs at too high an energy, and at high energies
(&90 MeV) it drops off too rapidly. The Gunn-Irving
function (2) has a singularity at the origin which pro-
duces a too large form factor at high qs. In Eq. (3) we
have subtracted out this singularity. This is not meant
to introduce a nucleon core as done by Gibson' and
Khanna, '4 since %3 is nonzero at the origin, but only
to make the wave function finite.

To determine values for the parameters p, and p, ~, p2
we calculate the matter form factor and Coulomb
energy for He' with each function.

For the form-factor calculation and in the photo-
disintegration matrix elements, the usual procedure is
to introduce, in place of the nucleon coordinates r~, r2,
rs, the internal coordinates 9= rt —s (rs+rs) and
s=v3 ', (rs —rs)—and the center-of-mass position R= s(r,
+rs+rs).

The form factor

F (q2) .1- C
~ 'b

1 f

q2 (F-2)

Fro. 1. He' matter form factor. Curve (a), Gaussian, y '=4.1;
(b) Gaussian, p '=3.684; (c) +I, pq '=1.9, ps=1.44pq, (d) Gunn-
Irving, p '=2.6; (e) Gunn-Irving, p '=2.2. Experimental points
are from Refs. 10 and 34.

E(q') = &«"'I1t (9,s) I',

where x=~IO, d7-=d'pd's for the three wave functions,
is shown plotted in Fig. 1. (Analytic expressions are
given in the Appendix. ) Two values of p, determined
by Coulomb energy and rms radius, are shown for f,
and its. Curves a and b (straight lines on this semilog
plot) are for the Gaussian. Curves d and e are the
Gunn-Irving. Curve c is fs for the values 1/pt= 1.9 F,
@2=1.44 p~, which we find gives the best fit. The experi-
mental points shown are Fon(Hes) (from Ref. 10)
divided by (Gz +stGz") (Ref. 34).

For the Gaussian, the Coulomb value (b) yields a
form factor which is everywhere too large, whereas the
rms value (a) fits only the low q' data and is then too
small.

The Gunn-Irving gives the wrong shape. No value
of p, fits the data for any significant range of q2. The rms
value (e) agrees only for the smallest q' and then swings
far too high. The Coulomb value (d) is too small for
small q2 and then again swings too high.

Wave function (3) gives an excellent fit (c) for all
q'&3f ' and then again is too high. Its initial slope is
slightly too negative, which gives it a slightly large rms
radius LF(q') = 1—tsq'(r') for small q'j.

The experimental binding energy difference between
He' and H' is 0.764 MeV. If we ignore proton structure,
the Coulomb energy Ec= (PI e'/r»IQ) is easy to calcu-
late. The Coulomb energy parameter values in Fig. 1
were obtained by equating this to the binding energy
difference, a procedure which has been questioned by
Okamoto. "For the set of values of p~, p, 2 used in the

'4C. DeVries, R. Hofstadter, A. Johansson, and R. Herman,
Phys. Rev. 134, 8848 (1964)."K.Okamoto, Progr. Theoret. Phys. (Kyoto) 34, 326 (1965).

form factor, one obtains the value 0.744 MeV= 2.65%
small. We observe that the set of parameters p~ '= 1.7
F, p, 2= 1.14@& or the set p& '= 2.1 F, p, 2= 2.1p& give only
slightly diQerent form factors, cross sections, and Cou-
lomb energy. With the present accuracy, we cannot
determine both p~ and p2. We adhere to the first set of
values as giving the best form factor.

Matching the mean-square radius means only that
you have the correct initial slope to the form factor.
As we see in curve e, this does not guarantee a good fit
for larger q2. Thus we choose our parameters to match
the form-factor curve at the expense of slightly incorrect
initial slope and Coulomb energy. fs gives a radius of
1.75 F, 5.4% larger than the experimental value of

1.66~0.07 F. Expressions for the radius and point
Coulomb energy are given in the Appendix.

Having obtained the helium wave function and
parameters we now discuss the cross section. Ke calcu-
late in the center of mass and use the notation
k=photon wave vector, k'=final proton wave vector,
M=nucleon mass, 9;=r,—R=nucleon position with

respect to the c.rn. , g;=gyromagnetic ratio, =5.58 for
proton (j=1,2), = —3.82 for neutron (j=3), A=vec-
tor potential, S=VXA, R= —(1/c)aA/at, and. m;=
magnetic moment of jth nucleon.

As mentioned before we consider the three inter-
actions

V,= —P cE(rt) 9, .
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Our 6nal spatial wave function is Uf= U~e'"'& and
the initial is U~e '"'", U~ being%'~, C2, or%'3. The spin
states have been specified. We use a plane wave photon.
The diRerential cross section

l2- .06—

d~/did= (2~/@) (p/~) I(fl I'I s) I

s

where p =density of 6nal states, F= incident Aux, is
to be summed over six Anal spins and averaged over
two initial polarizations and two initial spins. The
results are

E

.6

do' e2k

I
8

I

' sin't)
dQ ~.~ 4m3Ec'k

e'kk'

dQ m.g 48+3fc'
+[m, [ ),

da ' eMkk'
E'ls sin't)

dQ E., A@2

(5)

(6)

lO 20 30 40 50 60 70 80 90 l00

LAB PHOTON „ENERGY (M eV)

FIG. 3. Total cross section for the E r interaction. Curve (1),
Gaussian, p i=4.1; (2) 4's, p& i=19, gas=1.44jg~,' (3) Gunn-
Irving, p '=2.6; (3d) Gunn-Irving, y '=2.6, e'~'=1. The histo-
gram is from Ref. 30. The points are from Ref. 28.

where

3f,=g; dr Ug*e'"'»U~ )

J= drUf*tte'" » ,'e'" »gV—U—&

=k'8+kX, which defines 8,
2F=- dr U,*Le'" »——,'e'" »jpU»
3

=k'E'+kX, which defines E'.

(2)

(9)

part I parallel to k is irrelevant. With the spin states
we have used, these last six equations are correct for
an arbitrary 6nal three-nucleon spatial wave function
Uf(p, s) and for any fully symmetric spatial wave
function Ulr(p, s) for the helium.

For the most part, the matrix elements 3f;, 8, 8'
are no harder to evaluate with e'" »/1, than in the
dipole approximation. However, this causes a deviation
from a sin'0 distribution and the angular integration
must be done numerically (for the Gunn-Irving wave
function). For this we used the University of Illinois
IBM 2094 computer.

III. RESULTS

l.o

.8
J5
6
b.6

a Gaussian pc" 4. l

b
e Gunn irving ls,-l.2.6

fL Ref so.
, /Ref 28

4

.2

20 30 40 60
LAB PHOTON ENERGY (MeV)

80 90

FIG. 2. Total cross section for the A p interaction. Curve (a),
Gaussian, p '=4.1; (b) %'s, p&

' ——1.9, ps=1.44iu, (c) Gunn-
Irving, p '=2.6. Experimental histogram is from Ref. 30. The
points are from Ref. 28.

f) is the c.m. angle of the outgoing proton. J and F are
parallel to k and k', but only e.J and e.F enter the
expression for the cross section, and since a k=0, the

In Fig. 2 are shown the total cross sections for the
interaction A p along with the data of Refs. 28 and 30.
They are all nearly a factor of 2 too small at the peak,
and a factor of 5 or more too small at higher energies.

Figure 3 shows the E r results with the same wave
functions. The Gaussian, curve (1), peaks at much too
high an energy and at high energies drops oR much too
fast, as expected. 4s, curve (2), has a nearly correct
high-energy behavior but is 20% too small at the peak
and peaks at 16 MeV, about 4 MeV too high.

The Gunn-Irving wave function, curve (3), gives a
surprisingly good fit to the data for all energies. The
effect of setting e's'=1 (dipole approximation) is
shown by the dotted curve (3d). This dotted curve is
then the same calculation as the early Gunn-Irving
results, ' with the exception that we have used the
Hulthen deuteron function instead of the singular
r 'e ". The Hulthen wave function has the eRect of
raising the old results by a factor of about 1.3 at the
peak and a somewhat larger factor at higher energies.

The results for the 90' cross section are shown in Fig.
4 for the E r interaction. Only the Gunn-Irving wave
function peaks at the proper energy and there it is
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lOO-

80—
C

80- et al, Ref. 27

et al, Ref. 26

et al, Ref. 28

lo—

s 6-
CO

0
O
0)

20
I

40 60 80 IOO I 20 l40

LAB PHOTON ENERGY (MeV)

FIG. 4. Ninety degree differential cross section for the R r
interaction. Curve (a), Gaussian, p ~=4.1; (b) 4's, pq r=1.9,
F2=1.44@1', {c) Gunn-Irving, p, '=2.6. Experimental points are
from Refs. 26, 27, and 28.

20%%u& too high. The fact that the 90' results are much
too small at high energies whereas the total cross section
remains quite good is due to the forward peaking of the
angular distribution, as shown in Fig. 5 at 60 MeV
(curves 1 and 2). It practically disappears in the back-
ward hemisphere and the peaking at 45' is greatly
pronounced, in disagreement with experiment.

Also shown in Fig. 5 are the angular distributions
for ps and fs using Foldy's interaction 1st ds e"~'
(curves 1' and 2'), which gives a result intermediate
between the dipole distribution (sin'0 in the center of
mass) and the E r results with the full retardation
factor. This improves the angular distribution greatly
but it is still too small in the backward hemisphere.

We also show in Fig. 5 the distribution from the
A p interaction (curve 3) for the Gunn-Irving wave
function. For ease in comparison we have multiplied
the actual theoretical result by 3.38 to normalize the
curve to the 60 data point. The angular distribution
is not greatly different from that of the Foldy inter-
action, but it is even smaller for large angles.

This fact, that the differential cross section agrees
so poorly, indicates that we cannot take too seriously
the agreement of the total cross at high energy. That a
singular wave function which ignores mesons and pro-
duces an incorrect differential cross section should yield
the correct total cross section at high energies must be
regarded as somewhat fortuitous.

Of course the differential cross section is much more
sensitive to the details of the wave function than is the
total cross section. It would be very surprising if such
a simple model as we are using were to correctly describe
the details of the nucleus at an interaction energy of

say 60 MeV or greater, where short wavelengths begin
to probe the internal structure. This means that the
differential cross section at low or intermediate energies
(&50 MeV) is a sensitive test of the ground-state wave
function. It is at the intermediate energies that various
models will differ in their predictions suKciently enough
to be able to derive meaningful information from com-
parison with experiment. Accurate experimental dif-
ferential cross sections in this energy range would be
very helpful.

As mentioned in the Introduction, the 6nal deuteron
should have a radius which is smaller when the free
proton is near and larger when farther away. Since our
deuteron is more spread out than the helium, this
correction would have the effect of increasing the over-
lap of the initial and final states, thereby increasing the
cross section.

To qualitatively investigate the e6ect of a final-state
interaction we have inserted a proton-deuteron square-
well attraction of depth 75 MeV and radius 1.5 F. This
increases the peak cross section by about 15% and
decreases the high-energy (&35 MeV) cross section by
nearly a factor of 2. The result is quite sensitive to the
potential radius. The same low-energy e6ect has been
noticed by Eichmann. 4

These last results are encouraging, for they tend to
bring the nonsingular wave function %3 into better
agreement with the low-energy data. In fact, they will
also tend to bring the A p results into better agreement,
although it is very doubtful that 6nal-state interactions
couM account for nearly a factor of 2. The large dif-
ference between the two interactions is most likely due
to the use of inexact wave functions.

We 6nally see that the three wave functions tried
cannot match both the photodisintegration cross sec-

26

24 ON, et al, Ref.2S

Is

~ I6

I4

12
Cs~ 10

b
s

20 40 60 80 IOO I20 I40 l60 180
LAB PROTON . ANGLE (DEGREES)

FIG. 5. Angular distribution at 60 MeV for three diferent inter-
actions. Curves 1, 1', and 3 are the Gunn-Irving wave function
Cp with p '=2.6F. Curves 2 and 2' are +3 with p1 ' ——1.9F.,
p,2=1.44p1. Curves 1 and 2 are the interaction E r with the full
retardation factor e'~'. Curves 1' and 2' are the E r interaction
with the Foldy space dependence JP ds e*'~' for the electric IieId.
Curve 3 is the A. p interaction multiplied by 3.38 to normalize
to the 60' data point. Experimental points are from Ref. 28.
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tions and the ground-state properties of He' (especially
the form-factor curves). In fact, they cannot even
simultaneously xnatch the ground-state quantities
Eo«~,~b, (r'), and form factors. 4'3 does best in this
respect, giving a good 6t to the form factor and
Ec«»~b, and a slightly large (r'). The fact that 4'3 and
the Gunn-Irving match well the high-energy total
cross section without Anal-state interactions is not too
significant, however, for the computed cross section
should be low at high energies since virtual meson
production does play a role which we have ignored.
These meson currents cannot be neglected since the
nucleon current interaction A p gives too small results.
This fact cannot be remedied by choosing better
ground-state wave functions, for on the one hand they
must have more high-momentum components to raise
the cross section, while on the other hand they must
have fewer high-momentum components to lower the
form factors at high q'.
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APPENDIX

We present here the expressions for the form factors,
point proton Coulomb energy, and rms radius for the
three functions (1), (2), (3).

If
g(p) = $1+(q/p)'/12 j/ L1+ (q/p)'/18 j"',

then the form factors are

Fg (q') =exp( —q'/36''),

~2(q')=,E1—g (~)j,
(q/~)'

~3(q') = p'fL2a(k( i+~2))—g( ~)
—g(») j

(q/~~)'

where

1+/' —2i
&1+~j

~=Pi/P~

The Coulomb energies (f~ e'/r~ ~P2) are

Ay=2 — Q p

16
(2)ll2e2p

3'
16 ( 2~ ~'-

EB (-')"'e'pgXr ——1—+t' —2~

3~ &1+ti

and the rms radii computed either directly or by ex-
panding the form factor are

(r') g
= 1/6p',

(r') 2= 5/9~'

(r )~= (5/9+/)1V&{1+P 2L2&/(1+—&)j )


