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Low-Temperature Anharmonicity and the Debye-Wailer Factor*
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Low-temperature anharmonicity plays an important role in ferroelectrics, high-field superconductors,
light molecular solids, and other classes of materials of current interest. The Debye-Wailer factor f, which
in the harmonic approximation is a measure of the mean-square atomic displacement, is a useful gauge in
the degree of low-temperature anharmonicity. The f factor and its temperature dependence are discussed
for several simple models in which the potentials are such that low-temperature atomic displacements are
large enough to sample deviations from harmonic potential shapes. The f factor is factorable in the
classical temperature regime into harmonic and anharmonic terms, and also at low temperatures in certain
limiting cases. Factorization facilitates the analysis of experimental data to yield a gauge of low-temperature
anharmonicity.

I. INTRODUCTION

'HE basis of the modern theory of lattice dynamics
is the assumption that a harmonic approximation

is asymptotically correct at low temperatures. ' '
Although the harmonic approximation seems to be
quite satisfactory for most solids at low temperatures,
it has been known for some time that there are certain
classes of materials for which it is rather poor.

One such class is composed of the light van der %aals
solids such as Ne, D2, H2 and especially He4 and He'.4'
In these crystals, the zero-point kinetic energy is
significant in comparison to the cohesive energy, causing
the crystals to have, at moderate pressures, appreciably
greater interatomic distances than those corresponding
to the superposition of nearest-neighbor potential
minima. The eGect of this expansion is to produce a rela-
tively large and 6eld-free volume within which each
molecule moves, for the entire temperature range of
existence of the crystal, down to T=O. The boundaries
of the atomic volume are eGectively established by the
repulsive cores of the first-neighbor shell, and these
potentials rise quite steeply. The combination of these
effects tends to distort the potential from a quasi-
harmonic shape toward that of a square well. In the
extreme cases of He' and He4, the potential is higher in
the center than near the boundaries. ' Such potential
curves have been described by Lennard-Jones and
Devonshire' for dense van der %aals gases, and are
illustrated in Fig. 1.
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Another well-known class of substances exhibiting
such distortions from harmonic potentials is the
clathrates, or inclusion compounds, such as hydro-
quinone. ' These compounds have crystal structures
which contain regular cavities capable of containing
single isolated foreign atoms. When the foreign atom
is a small rare-gas atom, it is effectively held loosely in
a small cage. The potential well in which it is held is
rather similar in shape to that of the rare-gas solids,
and may have minima near the walls of the cage due
to van der Waals attractive forces.

1 erroelectrics and antiferroelectrics fall into several
groups, ' ' and in each type, ferroelectricity appears to
arise from fundamental anharmonicities in the po-
tentials of certain of the ions near their centers of
symmetry. In the displacive ferroelectrics such as
BaTi03, the Ti ions occupy regions appreciably larger
than their ionic size, so that they are loosely held in
potentials that are flattened in their central regions.
The central region of low or negative force constants,
together with the Lorentz correction to the dipole
moment, accounts for the essential features of the
ferroelectric behavior. " Theories of ferroelectricity in
order-disorder ferroelectrics such as KNO3 are based
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Fn. 1. Effective potentials for dense van der Waals gases,
for several average densities, after Lennard-Jones and Devonshire
(Ref. 6).
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upon similar distortions of the atomic potentials. "' In
the hydrogen-bonded ferroelectrics, such as potassium
dihydrogen phosphate, the hydrogen ions may occupy
one of two possible minimum potential-energy sites
near PO4 groups. "'

Numerous studies in recent years indicate that there
are several additions to be made to the list of materials
exhibiting low-temperature anharmonicity. These in-
clude small ionic impurities in ionic crystals, some high-
6eld superconductors, small metal ions in metallic solu-
tion, and most recently, certain pure ionic compounds.

Small ionic impurities such as Li+, OH, and CN in
ionic crystals of KCl and KBr are situated in potentials
having several equivalent minima, "—"and move among
these minima relatively freely at quite low temperatures.
Among the properties indicating such anharmonicities
are heat capacity, thermal conductivity, infrared ab-
sorption, and elastic constants. It appears that the
anharmonicity is quite directly the result of the reduced
sizes of the impurity ions, together with the normal
electrostatic and repulsive-core contributions to the
potentials.

The P-tungsten structure compounds NbsSn, NbsA1,
Nb3Ga, V3Si, and V3Ga are all superconductors with
transition temperatures above 14'K, and all exhibit
elastic softening on cooling. ""The elastic moduli of
certain shear waves fall nearly to zero in the super-
conducting state, this softening being apparently re-
lated to the occurrence of high-temperature supercon-
ductivity. Recently a study of the Mossbauer effect of
Sn'" in Nb3Sn" has shown that the low-temperature
behavior of the Debye-Wailer factor (f factor) deviates
quite markedly from that of harmonically bound atoms
and the observed temperature dependence can be in-
interpreted to indicate that the Sn ions move in poten-
tial wells which are markedly anharmonic in their
central regions. '4-"
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The observation that the f factor for a square-well potential is
independent of temperature (actually, it is exactly constant only

Indications of low-temperature anharmonicity can
be adduced from Mossbauer studies of Sn"' in the
binary metallic compounds SnAs, SnSb, SnTe, and
SnPt."Very recently, definite evidence of low-tempera-
ture anharmonicity has been found for Fe'7 in the ionic
compound FeC1~.28

The temperature dependence of the f factor can pro-
vide a relatively direct indication of low-temperature
anharmonicity. The applicability of the f factor as a
quantitative gauge in such studies has been advanced
by the general theory of Housley and Bess, '4 who have
derived the limiting conditions on the temperature de-
pendence of the f factor for harmonic interatomic
forces, independent of the frequency spectrum of the
solid. The present paper explores the inRuence of low-
temperature anharmonicity on the temperature de-
pendence of the Mossbauer fraction, and describes how
the observed temperature dependence of f may be
analyzed to obtain some information on the detailed
shapes of the interatomic potentials.

II. CALCULATION OF DEBYE-WALLER FACTORS:
GENERAL DESCRIPTION

The Debye-Wailer factor f is a particularly sensitive
gauge of anharmonicity, since it is directly related to
the mean-square displacement of the resonant atom.
The well-known expression"" for f, which is exact for
harmonic systems, is

f=exp( —k'(x')),

where k is the wave number of the y ray and (x') is the
thermal average displacement of the radiating atom.
Equation (1) is a good approximation for atomic po-
tentials in which there is a considerable but physically
reasonable degree of cubic and quartic "high-tempera-
ture anharmonicity". ""The cubic and quartic terms
are usually adequate for semiquantitative theories of
anharmonic effects such as thermal expansion and
specihc heat at high temperatures. For materials with
Qattened wells, however, a power-series expansion is
not a useful representation of the potential because,
even at the lowest temperatures, the displacement of
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the atom extends over nonharmonic regions of the inter-
atomic potential.

An alternative approach is to emphasize the inde-
pendent-particle aspects of the problem, calculating the
f factors for individual atoms in individual anharmonic
potential wells. In ignoring the collective aspects of the
atomic motions, this procedure is likely to produce
inaccuracies similar to those of the Einstein model of
harmonic solids. As is well known, the Einstein model is
inadequate to describe low-temperature heat capacity,
because the latter is determined by the low-frequency
phonons with energy comparable to or less than kT.
The f factor for typical solids, on the other hand, is
fixed mainly by the higher-frequency modes. (The
mean-square zero-point displacement is proportional
to the minus first moment of the phonon spectrum. )
Therefore, an independent-particle (Einstein) model
calculation can give a reasonable first approximation
to the Debye-%aller factor but not the heat capacity.
The temperature derivative of the f factor, though,
will be inaccurate for the same reason that the heat
capacity is.

In addition, we find it possible to improve the single-
particle approximation by incorporating some features
of the collective motions, as is described in Sec. IV. For
most of the materials under discussion, the anharmon-
icity is limited to the interactions between certain
atoms and their immediate neighbors, while the re-
maining interactions in the crystal are essentially
harmonic. This is the situation, for example, in the case
of dilute ionic impurities, for rare-gas atoms in clath-
rates, and probably also in FeCl&. In favorable cases, the

fact that the long-range (and low-frequency) interac-
tions are basically harmonic will allow us to superimpose
these collective motions on the highly anharmonic inde-
pendent-particle motions, and to treat the combination
in a straightforward calculation. We find that the re-
sulting Debye-Wailer factor is a product of separate
factors due to the harmonic collective and anharmonic
independent-particle motions, and in this form is
useful for comparisons with experimental observations.

The general expression for the f factor is, for station-
ary states of the crystal l22, ), nuclear coordinate rp of
the active atom, and radiation wave vector k,

where m is the Boltzmann weighting factor for the n
state "L.ipkin has shown that if lm ) is not really a
stationary state but, as is always the case in practical
calculations, relaxes rapidly compared to the p-ray
lifetime, then the matrix element should be squared
after the thermal averaging. Therefore we may write

Tr(e PH~plp rp)—

Tr(e l'~)
where P = 1/k T, and

p2
a=& +V(r„r„,r„. , rill)

j 2m~

is the Hamiltonian of the entire crystal. For the region
of classical temperatures, the trace becomes an integral
over all particle coordinates and momenta,

Qf= e &~e'"'"g d'r, d'p; e &~gdpr d'p.

expL —p V(ri, r2, , rp, , rill)+ik. rp1 g d'r; expL —pV(ri, r2, , rp, ', rx)jg d'r&. (4)

In the simple case of independent particles in indi- the crystal lO):
vidual potentials,

f(o) =
I
(ol~'& "lo&12, (6)

V(ri, r2, , rll, , rg) =p V;(r,),

so that we obtain, after cancellation,

—P Vo (ro) haik
~ rod3 0

Equation (5) is a classical independent-particle ex-
pression, valid for the region in which the separations
between the independent-particle states are much
smaller than kT.

In the limit T=O, the Debye-Wailer factor. is given
directly by the matrix qlement for the ground state of

and therefore requires that the Schrodinger equation be
solved for the particular potential of interest. It is im-
portant to note that it is only for harmonic potentials
that Eqs. (5) and (6) are equivalent to Eq. (1). The
application of Eq. (1) to highly anharmonic systems, as
has been done by Schmidt" may lead to considerable
error, as we show in a later section.

In the following section we will apply Eqs. (5) and

(6) to particular well shapes, studying the high-tem-
perature and T=O behavior of f in the independent-
particle approximation.

"H. Schmidt, Phys. Rev. 156. 552 (1967).
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A straightforward calculation of Eq. (5) yields

L3/(kRo)'j (sinkR, /kRO —coskR0)+ 3 (n /2P~RO2)'" (sinkRO/kRO+ coskRO/PliRO ) exp (—k'/2)8li)v'f= . (11)
1+3(n./2p)iRO')'i'(1+ 1/pliRO')

Equation (11) reduces to Eq. (8) for )i-+ ~ (hard
walls). For high temperatures (P -+ 0), Eq. (11)becomes

gf= (coskR0)e k'"&" (12)

The exponential factor is just the high-temperature
result for the harmonic oscillator, while the cosine term
clearly arises from the flattened central region. The
Mossbauer fraction is thus approximately given by the
product of harmonic and anharmonic factors. Variation
of radius and hardness of the potential well can cause
the temperature dependence of f to vary continuously
from the square-well limit (no temperature dependence
at high temperature) to that of the harmonic lattice,
which at high temperatures corresponds to a linear
increase in the mean-square displacement.

Although physically reasonable values of hap usually
give coskR, nearly equal to unity, Eq. (11) can, in
principle, separate the magnitude of f from its tempera-
ture dependence, a feature shared by the models which
we study in the following section.

IV. COUPLED DEGREES OF FREEDOM

An obvious shortcoming of the single-particle models
is that the dynamics of all the rest of the lattice is
ignored. A first step in the direction of correcting this
deficiency is to replace the rest of the lattice by an
idealized harmonic system, coupled anharmonically to
our single particle. In such a case, if the lattice is de-
scribed by coordinates p;, r;, the single particle by y, r,
and if the single particle interacts with only one of the
lattice sites (i=O) with a potential V(r—ro), then
Eq. (5) gives

Tr (e
—PHeik ~ r)

v'f=
Tr(e &~)

Tr(e pirpeik ro) Tr(e—p—v(p)~ik p)

(13)
Tr(e ~~') Tr(e s &»)

where H= Ho+ V(r —rp), and Ho is the harmonic
Hamiltonian of the crystal. The relative coordinate
y=r ro Equatio—n (.13) is just the product of factors
for the lattice and that for the single particle. The
former factor corresponds to the usual harmonic term,
while the latter factor sets apart the contribution due
to the low-temperature anharmonicity.

At low temperatures, quantum eAects are important,
and the coordinate transformation which yielded Eq.
(13) no longer leads to a clean separation into two
factors, because of the noncommutative operators. We
must use approximate methods, for which the starting
points are the limiting cases where either the motion of

the particle is fast compared to the important modes
of the lattice or vice versa. We can then consider one
system to be static while a wave function is established
for the other. This is the Born-Oppenheimer approxi-
mation of molecular physics. It leads to a zero-order
wave function in the form of a simple product, and this
can form the basis for a perturbation series.

A very simple model of this type is shown in Fig. 4.
The active atom of mass m and coordinate r is inside a
hard spherical shell of mass M centered at R by har-
monic springs. The Hamiltonian of this system is

where

P2 p2
H = +-,'LR'+ +V(r—R),

23f 2m

V(r—R) =0, r—R(RO
V(r —R) = ~, r—R&RO.

(14)

The integrals of Eq. (13), for the classical temperature
regime, may readily be performed by transforming to
relative coordinates. The result is

3 slnkE. p—coskEp e "I'&".v'f=
(kR,) kR,

(15)

sin (m
~

r—R
~
/Ro)

P(r R) ~ ~
—yR /2

/r —R[
(16)

where y= (~M/k')'". Using this wave function, we

FIG, 4. An idealized model
having harmonic and anharmonic
forces which may be solved exactly
in certain limiting cases: a BB in a
tennis ball.

Equation (15) is again the product of two familiar
terms, one factor corresponding to the spherical square
well and the other to the harmonic oscillator.

The evaluation of the recoilless fraction is more
difFicult for T=0, where Eq. (6) is appropriate, because
one must 6nd the ground-state eigenfunction of the
Hamiltonian given by Eq. (14). An analytical form for
the wave function can be obtained only approximately,
with an accuracy which depends on certain parameters
in II. For example, if we assume that the frequency of
oscillation of the tennis ball is small compared to that
of the particle within it, then we can approximate the
wave function by a product of the ground-state har-
monic oscillator and square-well wave functions
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obtain
hap sins

~
—k2/4y dS

q

2kto mezzo x(1+x/2zr)

which again is the product of terms for the harmonic
oscillator and for the spherical square well.

A further improvement in realism is obtained if we

adopt a model for the lattice which has many degrees
of freedom. That is, we wish to replace the discrete
harmonic mode of 3SI in the previous model by a dis-
tribution of harmonic modes, while retaining the highly
anharmonic character of the single-particle well. When
this complication is added the resultant problem can
again be solved exactly in the high-temperature region.
The model we now envision has our active atom bound

by an anharmonic potential V(r—ro) to a site having
coordinates (yo, ro) of a harmonic lattice. A mechanical
example of such a system is an array of rigid, hollow

spheres interconnected by Hookeian springs; one of
the spheres con6nes the extra particle. This model may
be appropriate to some of the impurity systems dis-

cussed in the Introduction. The Hamiltonian for such
systems is

&=K.zzioe+ p'/2zzz+ V(r—ro)

This Hamiltonian is of the same form as Eq. (14), and
therefore the f factor for classical temperatures is
factorable, in the sense of Eq. (15).

For low temperatures we must resort to an approxi-
mation. Either we consider the extra particle to be light
compared to the lattice atoms /corresponding to the
result for the simpler model expressed in Eq. (16j or
vice versa. In either case we must unmix r and ro in

V(r —rp). For the case of a light active particle one way
to do this is to change the variable r to r—ro. Formally,
this is accomplished by a unitary transformation,

U, then
V(r —ro) V(r) —ro V'V(r), (2o)

adding a linear term to the potential energy of the
lattice, which no longer is a minimum at r;=0. The
transformation which accomplishes this shift can again
be expressed in a form similar to Eq. (19), but now
U fails to commute with the particle kinetic energy
rather than with that of the lattice, because the trans-
lation of coordinates will clearly be proportional to
V'V(r). The transformation operator turns out to be

«()
U=exp i P po'

& A~~~3f
(21)

where po' is the /th component of the normal-mode ex-
pansion of po. However, the algebra is more transparent
if we use another approach, working with the creation-
annihilation operators. The lattice Hamiltonian can
then be written'

Kattice=Z ~~&(&z &l+z) )
l

(22)

po ze Q (M——kcoi/2)V)'"(air ai)—(24)

where the creation (annihilation) operators ait(ai)
satisfy the usual commutation relations

(23)

The frequency of the /th normal mode in Eq. (22) is ~&

and for simplicity, we have restricted ourselves to one
direction of polarization e. In terms of the phonon
operators, the coordinate and momentum of the center-
(zeroth-) particle are

r(& ——e P Ps/2cVcVcvi)'i'(air+a)),

where
U 'V(r —ro)U= V(r),

U g
—jrp p/5 (19)

Po ~

l

The a's will be translated to new operators n,
The transformation can be verified if one recognizes
that when p —+ —ihV, the expansion of Eq. (19) is the
familiar Taylor series. Unfortunately, U does not com-
mute with Hi„z;... because the latter contains I'o'/2M.
If the commutator $U,Poz/2M] is small compared to
the other terms in H, the separation results in a product
form for the f factor. The condition for the validity of
this conclusion is the same as for Eq. (17), namely that
the important lattice frequencies are small compared
to those of the single particle.

The other extreme is also interesting. When the
characteristic frequencies of the active particle are
much smaller than those of the important lattice
modes, it is appropriate to build a perturbation method
by shifting the lattice coordinates to follow the particle
motion rather than the other way around. If the lattice
displacements are small compared to the range of

nl izl+zzz 1

by the unitary transformation which translates the
coordinates. The n s will again satisfy Eq. (23) if the
n's commute with the n's. Upon expressing the total
Hamiltonian LEq. (22) plus Eq. (20) plus extra-particle
kinetic energyj in terms of the n's, with the help of
Eqs. (24) and (25), we find

H=P AGoi(ni ni —zzini —Ni nt+
~
Qi~ +z)

+p'/2zzz+ V(r) —e Q V'V(r)
2MXo) (

X (nti+ni zzi zzz*), —(26—)

which will be in diagonal form as far. as n phonons are
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e V'V(r)
(27)

(2MEh&a I)'Is VI. EXPERIMENTAL SIGNATURES

concerned if the coefficient of cr (and nit) is chosen to elevated temperatures and will disappear at low tem-
vanish. This is the case if peratures unless the zero-point amplitudes are so large

that the atoms feel the higher-order terms even at 1 =0.

N~ can therefore be interpreted as a mode strain coordi-
nate. Then

H=P hcei(n(nit+ ,')+P-'/2m+ V(r)

(e V'V(r))' I
(2g)

2ME

in which the net effect of the transformation is seen to
be an effective single-particle potential deepening in-
versely proportional to the lattice stiffness. The Hamil-
tonian is now the sum of the lattice part and a remainder
containing the modified anharmonic potential. The
ground-state wave function is therefore a product,
leading again to a product of f factors.

V. HIGH-TEMPERATURE ANHARMONICITY

In contrast to the deviations from harmonic forces
which we have been discussing up to now, the cubic
and quartic terms in the expansion of the interatomic
potential have their most pronounced e8ects on observ-
ables at high temperatures. In this case, we may use
Eq. (5) for f. If the anharmonic corrections V are
small in comparison to the harmonic Hs, then Eq. (5)
can be expanded in a power series in V. For a total
Hamiltonian

H=Hp+V

we obtain, through second order in V, using the
notation

It is clear that if we know the structure of a crystal
and the interatomic forces, then we can in principle
calculate the f factor as a function of temperature. It
is equally clear that the inverse process is not unique;
i.e. , many different models will give the same f(T).
Nevertheless the approximate separation of f into
factors due to the anharmonic and harmonic forces
allows one to obtain quantitative gauges of some im-

portant parameters, for actual potentials varying within
wide limits.

An essential step in the analysis of actual data is the
assignment of limits on the temperature dependence of

f that are consistent with purely harmonic forces.
Housley and Bess'4 have shown that for harmonic
forces, the temperature dependence of —lnf at high
temperatures, which is linear in T, provides a gauge of
the force constant of the active atom corresponding to
its motion relative to a stationary environment. At
lower temperatures, the deviations from the classical
dependence will vary according to the harmonic fre-
quency spectrum, but the maximum deviation from
classical behavior corresponds to a 5-function spectrum,
i.e., to the Einstein model. Thus, the temperature varia-
tions consistent with a definite slope d( —lnf)/d T in the
classical region are given by a region lying between the
classical and Einstein curves. This is illustrated in Fig. 5.

(A)e Tr(e ~~'A)/Tr(e ——~HO),

&f= (e*"')o+ (PV)o("')o (&Ve'"')—o
—(PV)e(PVe's' )p+((PV)p)s(e' '

)p
—-'((&V)')o(e"')o+-'((P V)'e'"') s

(29)

Cubic and quartic corrections to the f factor have been
calculated by Maradudin and Flinn, " and some quali-
tative features of their results can be understood by
inspection of Eq. (29). First, cubic anharmonicity gives
no first-order contribution to f The reason. for this is
that it is odd in the displacements; thus

and (PVe'"')p is pure imaginary. The second-order
contribution of cubic anharmonicity usually will de-
crease f, if the second-order terms in Eq. (29) dominate,
but might increase it if the imaginary first-order con-
tribution to Qf is large. Quartic anharmonicity, on the
other hand, contributes to f in first order, and if it is
positive it increases f. Thus, as is often the case, the
quartic contribution may overwhelm the cubic. The
effects of both cubic and quartic terms are enhanced at

TEMPERATURE

FlG. 5. Characteristic temperature dependences of the f factor
for harmonic, high-temperature anharmonic, and low-temperature
anharmonic forces: (a) low-temperature anharmonicity absent;
(b) low-temperature anharmonicity present. The shaded regions
of each curve correspond to the allowable values of f according
to various phonon frequency spectra. In each case, the upper
bounds correspond to 8-function spectra, while the lower bounds
are classical.
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If the usual sort of high-temperature anharmonic cor-
rections become important at high T, the deviations
from the harmonic curve take the general forms of
deviations above or below (usually above) the classical
curve of —lnfat high temperatures, and such deviations
are also illustrated. For the type of low-temperature
anharmonicity discussed in this paper, the f factor is
reduced below that due to the harmonic forces. The
anharmonic term has, for these simple cases, either
little or no temperature dependence, particularly in the
classical high-temperature region. The harmonic term,
however, is subject to the same limits found by Housley
and Bess for completely harmonic systems. Therefore,
the effect of the low-temperature anharmonicity on
—Inf is to displace the harmonic curve upward by an
amount roughly proportional to the square of the di-
mension of the Qattened central region of the well. The
actual behavior of —lnf at low temperature will again
deviate upward from the classical line, in a manner
similar to the curve for a purely harmonic crystal.
Such curves have been obtained from detailed studies of
FeClq, for example. "'s Analysis of the experimental f
values of FeC12, based upon the present models, yields

g6 D. P. Johnson, thesis, University of %'ashington, 1967
(unpublished).

estimates of a central Rat region that are consistent
with an estimate based upon the relative ionic sizes and
the known structure.

Thus it has been found that for several models

exhibiting low-temperature anharmonicity there is a
convenient separation between factors due to anhar-

monic and harmonic terms. For the high-temperature
classical regime, the separation of terms is exact for
the rather general types of anharmonic coupling treated
here, while at low temperatures complete separation is
obtained only for the extremes at which the frequencies
of the active atom are much smaller or larger than the
frequencies of the dominant normal modes of the
crystal. For most physical substances the frequencies
are intermediate, and therefore no detailed predictions
can be made concerning the low-temperature portions
of the curve. Nevertheless, it is likely that the actual
low-temperature behavior will have a qualitatively
similar shape to the idealized curve shown in Fig. 5,
i.e., a deviation tending to exceed the harmonic limit.
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