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Calculations of the spin-orbit doublet separation in OV are performed. It is assumed that, to a first ap-
proximation, the individual-particle potential experienced by each nucleon in the nucleus is given by the
harmonic-oscillator potential. In this approximation the two-nucleon wave function for nucleons in the
nucleus is separable in their relative and center-of-mass coordinates so that, taking into account only two-
body interactions which depend on the relative coordinate, the K matrix elements are essentially functions
of quantum numbers of relative motion only and of the relative space coordinate. The nucleus O is con-
sidered as consisting of the nucleus O as a core plus a neutron outside. The spin-orbit doublet separation is
the difference in energy of O with the outside neutron in the states /=% and £, and is evaluated in the
approximation of taking interactions of the outside neutron with each of the sixteen core nucleons and
neglecting interactions between nucleons in the core. Numerical calculations are done using only the spin-
orbit part of the Gammel-Thaler potential, but treating it as a perturbation using hard-core harmonic-
oscillator wave functions as the unperturbed wave functions. A value of 5.95 MeV is obtained for the spin-

orbit splitting.

1. INTRODUCTION

HE problem of determining the two-nucleon in-
teraction inside a nucleus has been a basic prob-

lem in nuclear physics. Largely, authors have worked
with a phenomenological effective nucleon-nucleon in-
teraction to predict nuclear properties (which also de-
termine the parameters of the phenomenological effec-
tive two-nucleon interaction). Because of the presence
of other nucleons in the nucleus, it seems that the effec-
tive two-nucleon interaction should be different from
the free two-nucleon potential. However, it has not yet
been possible to determine the effective nucleon-
nucleon interaction! from basic principles. On the other
hand, the work of Brueckner,? and of Bethe,? and others,
on the nuclear many-body problem provides sufficient
evidence that nuclear properties can be calculated by
taking the two-nucleon interaction as that between two
free nucleons, the latter being determined phenomeno-
logically* from nucleon-nucleon scattering experiments.

* This work is based on a portion of a thesis submitted (by
W. K. N.) in partial fulfillment of the requirements for a Ph.D
degree at State University of New York at Buffalo, 1967.
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2K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958), and list of references quoted therein; K. A. Brueckner, J.
L. Gammel, and H. Weitzner, zbid. 110, 431 (1958); K. A. Brueck-
ner, A. M. Lockett, and M. Rotenberg, sbid. 121, 255 (1961);
K. S. Masterson, and A. M. Lockett, zbsd. 129, 776 (1963).

3H. A. Bethe, Phys. Rev. 103, 1353 (1956); H. A. Bethe and
J. Goldstone, Proc. Roy. Soc. (London) A238, 551 (1957); H. A.
Bethe, B. H. Brandow, and A. G. Petschek, Phys. Rev. 129, 225
(1963) ; J. Goldstone, Proc. Roy. Soc. (London) A239, 627 (1957).

4P. S. Signell and R. E. Marshak, Phys. Rev. 106, 832 (1957);
2bid. 109, 1229 (1958); P. S. Signell, R. Zinn, and R. E. Marshak,
Phys. Rev. Letters 1, 416 (1958); J. L. Gammel and R. M. Thaler,
Phys. Rev. 107, 1337 (1957); T. Hamada and I. D. Jonston, Nucl.
Phys. 34, 382 (1962); K. A. Brueckner, J. L. Gammel, and H.

167

The Brueckner-Bethe nuclear many-body theory has
been worked out in terms of the reaction matrix derived
from the free two-nucleon interaction, the reaction
matrix being treated as the effective two-body interac-
tion. Besides the difficulties involved in deriving the
reaction matrix from the two-nucleon potential, the
theory runs into a more formidable problem of calculat-
ing the self-consistent potential acting on an individual
nucleon in the nucleus. Various approximations have
been used to make the calculations tractable.

An alternative approach which has been used by sev-
eral authors? is to assume the individual particle poten-
tial as given, viz., that each of the nucleons in the
nucleus is moving under the influence of a common
harmonic-oscillator potential and the two-body interac-
tion as that of two free nucleons. The advantage of using
the harmonic-oscillator potential is that, as shown by
Talmi,® the wave function of the two nucleons in the
nucleus is separable in their relative and center-of-mass
coordinates. If the two-body interaction depends only
on the relative coordinates, the calculations are now
considerably simplified.

In this paper we have carried out a detailed calcula-
tion of the spin-orbit doublet separation in O, making
use of the above model. The calculation of the spin-
orbit interaction in nuclei has been previously reported

Weitzner, Phys. Rev. 110, 431 (1958); G. Breit, M. H. Hull, and
K. D. Pyatt, ibid. 120, 2227 (1960); M.. H. Hull, K. E. Lassila, H.
M. Ruppel, F. A. McDonald, and G. Breit, sbid. 122, 1606 (1961).

5 T, Terasawa, Progr. Theoret. Phys. (Kyoto) 23, 87 (1960); A.
Arima and T. Terasawa, ibid. 23, 115 (1960); J. F. Dawson, L.
Talmi, and J. D. Walecka, Ann. Phys. (N. Y.) 18, 339 (1962);
B. P. Nigam, Phys. Rev. 133, B1381 (1964).

6 I. Talmi, Helv. Phys. Acta 25, 185 (1952).
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by several authors.” Many of these are Born-approxi-
mation calculations, some using only the tensor part of
the two-nucleon interaction, resulting in the wrong sign
and a much smaller value for the spin-orbit interaction
in the nucleus. Various approximations have been made
regarding the nuclear density in order to carry out a
separation of the relative and center-of-mass coordi-
nates. In the present article the ‘“definite” model used
is to regard, to a first approximation, the nucleus OY
as a system of seventeen independent nucleons moving
in a common harmonic-oscillator potential. The eight
protons and eight neutrons fill up the 1s and 1p con-
figurations forming a core while the ninth (last) neutron
goes into the 1d state so that O can be in the /=4 and
J=% state. The use of the harmonic-oscillator functions
allows a calculation of the K matrix. To first order, the
contributions of the central and tensor forces to the K
matrix are identical in the /=% and J=$ states, leaving
only the contribution of the two-nucleon spin-orbit
force. Thus the procedure involves adding up the spin-
orbit contributions arising from the interaction of the
d-state neutron with each of the sixteen nucleons in the
core, assuming that the interaction between the core
particles can be neglected, since it is common to both
the J=4% and J=4$ states. Finally the numerical calcu-
lation of the spin-orbit doublet separation in O'7 is
carried out by treating the spin-orbit interaction as a
perturbation, using the hard-core wave functions as the
unperturbed wave functions.

2. METHOD OF CALCULATION FOR OY

In the case of O, the nucleus can be thought of as
consisting of a neutron bound to a core which has no
angular momentum. As a first approximation to the
wave function of such a system, we assume that the
wave function of the core is very nearly that of 16 inde-
pendent particles. The justification of this is provided
by Brueckner’s work on nuclear matter. Following the
lead of shell theory, we can assume that there are 2 neu-
trons and 2 protons in the lowest s state, and 6 neutrons
and 6 protons in the second energy level, the first p
state. We then express these orbitals in terms of har-
monic-oscillator wave functions, since these are conven-
ient to work with. In general, one would want to express
the wave function of each orbital as a sum of harmonic
oscillator functions with given 7 and , but different 7.
However, in the present case, the assumption that there
are 2 protons in the 1s state and 2 protons in each of the
three (m= =1, 0) 1p states, with no admixture of states
of higher 7, gives a charge density for O® which agrees?
well with experimental data, if 4/7 is chosen as 0.432

7 J. Keilson, Phys. Rev. 82, 759 (1951); L. S. Kisslinger, ¢bid.
104, 1077 (1956) B. ]ankov1c1 ibid. 107 631 (1957); Nuovo
Cimento 7,290 (1958) . P. Nigam and M. K. Sundaresan Can.
J. Phys. 36 571 (1958) Phys Rev 111, 284 (1958); J. Sawicki
2(1;19(155 Folk Nucl. Phys 11, 368 (1959); ] Sawicki, bid. 13, 350

8H. Noya, A. Arima, and H. Horie, Progr. Theoret. Phys.
(Kyoto) Suppl 8, 33 (1958)
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fm~1. We therefore assume that this is true of O7 as well.
Since all lower states are completely filled, the lowest
available state for the 17th particle is either the 2s or
1d state. Experiment shows the ground state of O to
have J=3$, so the extra neutron would have to be in a
d5 /2 state.

Taking into account only two-nucleon interactions,
the Hamiltonian for O'7 can be written in the form

e 17 P, 2
E}ﬂ_{_z Ej”N(Iri_riD, 1)

where we have neglected the mass difference between
the proton and the neutron, and the potential, vy, is
the two-nucleon potential, including central spin-orbit,
and tensor forces, all with hard cores. The assumption
that harmonic-oscillator orbitals can be used as a first
approximation to describe the system is equivalent to
doing a sort of perturbation theory, in which the Hamil-
tonian for the 17-nucleon system is modified to make
part of it have the form of a harmonic oscillator. Thus,
Eq. (1) is modified to read

H=Ht+V, (2)

where
He= £ (/23002431 (32)
(3b)

=3 f; {ov(rij)—3(R/17) [ 1;5] 2} .

In writing Eq. (2) we have added and subtracted the
harmonic oscillator terms

" é 1= /ML, ] =20 17]

and assumed that the center of mass is fixed at the ori-
gin. The problem can now be treated by a “perturba-
tion” theory. If we chose the unperturbed wave function
well enough, the effect of V on the energy would be
small, although it might change the form of the wave
functions, e.g., by introducing correlation. Before one
can use a perturbation series, or the related series ex-
pansions for the K matrix we must also include the
hard-core part of V into the unperturbed Hamiltonian
H,. We rewrite

V=Vuc+Vp, (4a)
where
Vac=2 vuc; vuc(rij) =, 0<ry;<r.
i7f (4b)
= 0 r,-j> 7e
V=32 {W(rw)—l(k/ﬁ) lru I 2} ) (4c)

1747

where vy is the finite part of vy.

We take the hard core into account in the following
manner. The O particles are assumed to be in the 1s
and 1p states (nlm=000; 010; and 01==1), two neutrons
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and two protons being in each of these spatial states.
The 17th nucleon is a neutron which is in the 14 state.
We consider the particles two at a time, and express the
products of the spatial states in terms of products of
center-of-mass and relative states. The actual unper-
turbed relative states in each must take into account
the hard core and are not the usual harmonic-oscillator
wave functions. We therefore express® the relative states
in terms of the hard-core solutions, but in each case the
leading term is just the hard-core function with corre-
sponding #, I, m; the coefficients of the functions #/, 7, m
with 7’'5n have been found to be extremely small, and
can be neglected.

The next step is to calculate the corrected wave func-
tions due to the potential V, as done by Brueckner.?
These functions are, according to Brueckner’s calcula-
tions, quite close to those for hard-core only, so it seems
to be a justified procedure to use the hard-core functions
to evaluate the matrix elements of the potential.

In order to find a first-order value for the spin-orbit
splitting we need to calculate the difference in energy
between the configuration having the extra neutron,
particle “1,” in the ds» state as compared with the con-
figuration with particle 1 in the ds/» state. Since the
extra particle is the only one which has a different con-
figuration in these two states, /=$% and %, in evaluating
the difference in energy for these two states, we need not
take into account the two-nucleon interactions among
the core nucleons but include only the interaction of the
d-state neutron with the core nucleons. The kinetic en-
ergy term is the same, since in both cases the outer neu-
tron is in a d state. Thus, we calculate the difference in
the potential energy terms, by evaluating only the K
matrix elements involving particle No. 1, the d-state
neutron:

(AE)ls= €5/2— €3/2
=(1; 01| K|1; O1);,—(1; 01| K | 1; O')3/5. (5)

Each of these two K-matrix elements has the following
form:

17
(1; 01| K|1; 0%)= 3" (1,¢|]@'K@|1,c), (6)
c=2

where @|i; §)=%V2[|4,7)— | 4,i)], the numbers i and
7 stand for all the indices necessary to specify the state
of each nucleon and ¢ stands for a nucleon in the core.
According to the foregoing procedure, we write the two-
particle states | 1; ¢) as products of single-particle states,
which will later be expressed in terms of relative states,
with the hard core taken into account. We therefore
write

[1;0)=]1)®]c)
= |1’L11151J1M1t1(51)3)® lnalcsc]cMCZC(lc) 3) ) (7)

where the relevant quantum numbers are specified as

9 W. K. Niblack and B. P. Nigam, Phys. Rev. 156, 1191 (1967).
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follows: For the extra neutron, we have #;=0, ;=2,
J1=4% or £ with J1> M 1> —J1. The sum is carried out
for the 16 core particles which are in the quantum states
7n.=0, l,.=0 (J,=%, M.==+%}) and =1 (J,=%,
M.==+3%, +3; and Jo=3, M,==%3), (t.)s==+3.

Since the Talmi procedure cannot be directly applied
to the products of states in the J, s, J, M representation
these must be expressed in terms of I, m, s, m, states by
means of Clebsch-Gordan coefficients.!® That is,

[ndisi M is)= > (Lisimamsi| T M ;)

ms=—1/2,+1/2
X | nidmisimsiitis), (8)

where m;= M ;—m; for each m;.

This should be done for particle one and for each of
the core particles separately, before multiplying them
and putting them into Eq. (6). However, we can avoid
a lot of work by noting that the sum over core particles
is carried over a complete shell. That is, each of the core
functions |l.s.J .M ;) can be expressed in terms of a linear
combination of the [lm.sms.), and vice versa, so that
these two sets are simply two alternative basis sets for
the same Hilbert space. Thus, we may regard the core
particles as being in the sixteen states of type |#zdam.s,
Xtsddes) With 7,=0, 1,=0 and 1 (. Z>m.2>—1.,);
Se=%(mge==+%) and t,=2(t.3==+31).

Using Eq. (8) for particle 1, we have from Eq. (6)

<1, Olel 1, 016>=Z Z (llslmlm;1|]1M1)*

ms1 ms1’

X (hsymy'med' | TIM )@ 3 3 X (malymisimatitis;

leme mse te3
X oscmsdd dos| RTK Q| nidimy’sime’titns;
XndameSctetes) . (9)

This expression can be put in a much simpler form by
immediately carrying out the sums over ;. and Z.3. To
do this, we factor each of the states into a space part,
spin part, and isospin part as follows:

(10)

We first combine the spins of the two particles using
Clebsch-Gordan coefficients. The reason for doing this
is that for two-nucleon interaction the K matrix is diago-
nal in the total spin .S. Thus, we write

Islm81>lscmec>= Z (S1Scm31msc[SM) lS1SzSM>. (11)
8=0,1

| nadamisomsititis) = | nadams) | soms )| Litis) -

We note that if |si5,SM) is written in terms of the
states |sumq1)|samsc), the result is the same as simply
using the antisymmetrization operator for S=0 or the
symmetrization operator for S=1. For instance, |$300)
=a|3%; 3 —1). Since the entire two-particle state is

antisymmetric, the product of the space and isospin

10 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley & Sons, Inc., New York, 1952).
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parts is symmetric for S=0, and antisymmetric for
S=1.

Two distinct cases arise for the K matrix from Eq.
9.

(1) msa=ms'==%: Neglecting the space and isospin
part, we have

2 (stmar; Scmac| K| s1mar; Scmisc)

Mmse

=20 G £33 meo| K3 55 3 Mac)

Mse

“‘(2 :!:2>2i 1K|2i2)2:':2>

SPIN-ORBIT DOUBLET SEPARATION
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Using Eq. (11), we obtain

> {simar; Smse| K | simar; semse)

=331 £1]K[331 £1)+ {33310/ K|3310)
+1(4100| K| 4200)-1(3310| K | $300)
+3(3300| K |3310)} = Ky#1 =143 K, 043K, (12)

where the upper sign is for mq=+3% and the lower sign
is for ms;= —% and where the last two terms have been
dropped since K is diagonal in S. The notation used is

+@G +3; 3 F3K|F £33 F5). 33SM 5| K |535' Mg )=0bsg KgMsM's.  (13)
(ii) ms1=—ms'==3% (the spin-flip terms): In this case we have
3 (s1er; Sctao| K |sumar’s smae)= (& £3; % £1|K|: F5; 5 +£3)
+@G 3 3 FH K3 F4 3 F)= (V203 +1| K310)FH2(3 +1] K| 3300}
+{HV2GEH10] K351 F1)£GR00[ K531 1)) =3V2{KH + K0T}, (14)

Exactly analogous manipulations are carried out in the case of isospin. Combining the isospin of the outer neutron

with that of a core nucleon, we have

|titis)|tdes)= 3 (tatetrstes| TT3) |0at T Ts),
7=0,1

(15)

where {13= —%. From Eq. (15), and taking into account that the K matrix is diagonal in 7" and independent of T,

we obtain

- (tatas; tetes]

te3

KgMsM's [ titis; tetes)= (%

+3 —h 4 —H K8 1 D)=

Introducing the notation:

and combining Eq. (12) with Eq. (16), we have the following.

(i) Non-spin-flip case, ma=mq'=£3:

Z Z <slmslllt31; scmlctctc(ilKlslmsltltH; Scmsclciﬁ)

mse tc3

(i) Spin-flip case, moa=—ma'==3%:

b BIK s}~ 1)
1(3310| K sMsM's|1310)+3 (3300 | K sMsM's|£300)

+ (331 —1|KsMsM's| 331 —1)=3K s 0=y "' 5+-3K s(r=0ys¥’5.  (16)

(SMSTTs|K|S'MgT'T's)= 08558871 ryr K sr™s™'s 17)

= (3KuF 43Kt ) + 3 (K10 +3K10°) + 33 Ka+3K00™) . (18)

(19)

Z Z <51m,1t11513; scmcctctc:ilKlslmsl’tltm; scmsclctc?:):% 2{%(K11i1'0+K110’¥1)+%(K10i1’0+K100':F1)} .

mse te3

Using the fact that the entire state is antisymmetric for interchange of all indices, we group the terms of Eqgs.
(18) and (19) according to the symmetry of the associated space state. We thus obtain

Z Z <slmsltlt13; Scmsctctc:i{Klslmalltlllii; Scmsctclcb‘):%Kai'i—i‘Kai fOl‘

msc ted

—_ ’
M 1= Ms1

=(1/2V2) 3K /*+KJ/*) for mea'=—ma, (20)
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where the subscripts s and a specify the symmetries of the spatial states, and where we define

K=3(2Ky 14 K y) + Ko, (212)

K = (2K 1014 K 1o")+ 3K 01, (21b)
K /E=Kqy#! 04Ky, 0 71, (22a)
KJt= Ko 04 Ky L. (22b)

In terms of the above notation [Eq. (20)], we may rewrite Eq. (9) as follows:

(1;09|K|[1;01)=1 3 | (lisymamner | TM) | 3 (nibims; nodeom.| @K QA+ 8TK ES | nadima; nbeme) }+(1/2V2)

msl leme

XZ (11511%1' —m,,l]]M) (llslm1m,1|JM)*{ Z (n1l17’i$1; nclcmc| @T3Kafi@+ S*stislmhm;'; nclcmc)} 3 (23)

msl leme
where
G| nlm; w'Vm’)= V2L | nlm)1| 0/ Vm’)o— |9'V'm’)1 | nim)2] (24a)
S|nlm; w'l'm")=V2[ | nlm)i|w'Vm’) o+ |9/ Vm’)1 | nim)2 ], (24b)
with

[nlm)i=pnim(rs), =1, 2.
Equation (23) is a sum of matrix elements of the two types

(nibmy; ndom.| 01K 20| nibimy; nolom.) (25a)
and

(nabyma; nedome| 0 K o0 nibymi1; nlam.) , (25b)

where 6 is one of the unitary operators a or s, and we have taken into account the fact that mi+me=mi'+ma'= M,
so that in the spin-flip matrix element (25b) we have my = mi+msa—ms' =miE1, since ma=—mq'=+£3.

We wish to further diagonalize the K matrix, and to do this we use the property that the two-nucleon force is
independent of the state of the two-particle center of mass, but depends strongly on the relative / and J of the two
nucleons, as well as on their relative spatial wave function. However, it conserves the two-body total angular mo-
mentum J, and is independent of M. That is, the K matrix is diagonal in J and independent of M ;. We shall use
these properties to reduce the number of matrix elements we need to calculate. The fact that the K matrix is in-
dependent of the relative Mz, which is equal to #;+m,, and of any of the quantum numbers of the center of mass,
means that we may change the sign of all the angular momentum projections, 71, 7., M g, and M’ in the matrix
elements (25a) and (25b) without affecting their value. Remembering that changing the superscript from + to
— on K,, K,, K./, and K,/ implies reversing the signs of M s and M’s, we write the following identity:

(n1llm1; nclcmc[ 0*3439“0[%111%1; nclcmc)z (nlll — M1, mclc ~'"chl 0TJ€9+0l”1l1 —mai; nclc _mc) ) (26)
where % stands for K., K,, K./ or K,/. Equation (26) allows us to write Eq. (23) in the form (where m4==3%)
(1;0%|K[1;0")=% 3 X |(hsymuma|TM)|?

ms1 leme

X (nlll :*:ml; nclc :I':mcl @TKU.@_‘_ sTKsS'nlll :Emly nclc :l:mc)—l—-(l/Z\/Z) Z Z (llslml, —mﬂll ]M)

ms1 leme
X (Lisymumer | TM)* (nady s£my; nole £me| 3QTK S G+ 8K /8| naly =my'; nolo =mo), (27)

where the superscript + on K is superfluous and is therefore dropped.

We now are in a position to express the symmetric and antisymmetric product functions 8|nilymy; ndan.) in
terms of linear combinations of products of harmonic-oscillator states for the two-particle relative and center-of-
mass quantum states |nlm) and | NLM ), respectively. Thus we have

0| milima; ndome)=>" Tonrsrnim™iminetenc| NLM ) |nlm), (28)

where the 77s are the Talmi coefficients,® which are functions of the quantum numbers nilwm1; nclome and NLM ;
nlm, the summation is over possible values of N, L, M, n, I, and m; and 8 stands for either ‘e’ (antisymmetric) or
“s” (symmetric). The symmetric and antisymmetric space states are defined in terms of the basic harmonic-
oscillator states by Eqs. (24a) and (24b). The values of NLM and nlm are limited by the relations

mitm.=M-+m (29)
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@Cryt+l)+ 2net+1)= 2N+ L)+ (2n+1). (30)

It can be seen from parity considerations, or from direct calculation that for symmetric space states, / is always
even, whereas for antisymmetric space states, / is always odd. As an example of two of these expansions, we have
from Table IX (see Appendix A),

81022; 01 —1)=(1/4/20) |031) IOOO)-I—(l/\/S) l 111) ]000)—!—% I 1 —1) ]022)
—(1/\/6)[011)[020)—(1/\/3)[011)[100) (31a)
so that
T 50130002201 —1= (1/\/20), T s011020°%20! 1= — (1/\/6), etc.

Similarly, from Table XII, we have

@]022; 01 —1)=—(1/4/6)|020)]011)— (1/v3) | 100)|011)+%|022) |01 —1)
+(1/4/20)[000)|031)+(1/4/5)|000)[111). (31b)

Using Egs. (28) and (26), and taking into account that the K matrix is diagonal in the center of mass quantum
numbers, we have for the matrix element (25a)

(naly stm; nle =me| 67K of | maly semy; nole f=m.)
:Z Zk (T on L1 b pnptymy, mAnelome) ¥

: X (i, =i | (N Ly =My | K| NiLi =M ) | nils =ma)Ton inim instom™1mneleme (32a)
=3 | TonLarnim™Wmincleme| 2(nl 4-9n | Ko|nl t=m), .

subject to the restrictions (29) and (30). Thus, the non-spin-flip matrix elements depend only on the squares of the
Talmi coefficients.
For the spin-flip terms, such as element (25b), we have, using Egs. (26) and (28),

(naly f=ma; nelo =me| 01K o0 | naly f=mi; nole £m.)
= Z 2 (TowyLamtangimy ™ Hrmineteme)
X (ale £m) (NiLy =M 1| Kof | NiLi M) |03l =ma)Ton;1im intim, 1 1m nebeme

=2 2 (T onLarnpigmy ™3™ 7ebeme) ¥ (Ton 1 arn gtgm; ™11 neleme) (yly A=my | Ko | mily d=ms), (33)
ik

where the summations over 7 and % are carried out for which |NyLy, =M )= |N;L; &=M ;). Taking into account
that m1'=my+1 [cf., Eq. (25b)] and Egs. (29) and (30), we have ‘

M Ami=mctmid =m~+mit1=Mp+mi+1 (34a)
2N Am)+ (Lit-1)=2(n1+no)+ (it-1e) = 2(Vetni)+ Lat-1) (34b)
from which we have, for (V;L;M ;)= (NyLiM}), the results
mi=mp=1, (352)
2ni+bi=2nx+ 1 (35b)

Using Egs. (35a) and (35b) in Eq. (33), we have

(s f=ma; nole m.| 07K 70| mily £ma=1; nole Fm.)
=3 > (TonrLarnin™1mneleme)*(Ton 1 arns 1 mgrHHmEL neleme) (y] £ | Ko/ | 'l m+1), (36)
Tk

where i=(NLM nlm); w' =n—+k; and I'=1—2k, to satisfy Eq. (35b). The index % is summed over all integers for
which /2> 0.

We note that in Eq. (27) these matrix elements are summed over all values of /, and .. Therefore, we have
arranged the Tables of Talmi coefficients so that these sums can be read off directly by simply adding the squares of
the Talmi coefficients down each column, in case of no spin flip. In the spin-flip case, additional Tables are given
for the coefficients required in Eq. (36). Thus, for instance, to find the matrix element sum: _i,m, (022; ndom.|
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X 8tK8|022; n.lam.); we simply add the square of the coefficients of each relative term |7:gm;) down each column
in Table IX to obtain

2 (022; noom.| 8TK 810225 nolome) = (7/4) (K s)ooat (5/4) (K &) 0225 (K ) 021§ (Ks) 0203 (K ) 100, (37

leme

where we have introduced the notation
(K o) nim= {nlm | Kq|nim). (38a)
If we introduce the notation
(Ko”) nim=(nlm | K o’ | nl m=1), (38b)

we can write the spin-flip terms in a similar compact form. We do not introduce a notation for (nlm| Ky’ |n1
1772 m—1) which can occur in Eq. (36), since we shall show in Appendix B that from angular momentum con-
servation these are zero. Using these notations we may go back and write Eq. (27) in terms of (Kg)nim and (Ko”)nim.
Thus, we have, from Eqgs. (27), (32b), and (36)

(1;0%|K|1;0%)=% X |(somma| M) T |Tanrynim™mnelere| (Ko)ny 1m

ms1=+1/2 lemet

+ 3 | Tonrarnim™iminclome | 2(K Y 4} +(1/2V2) X (sl —ma | TM) (isymama | TM)*

leme % ms1=:=%1/2

X{ Z Z (TsNLMnlmnlllmlnclcmc)*(TaNLMn’l’ m;};lnlllmlil nclcmc) (st)nl +m+1

leme i,k
+3 3 2 (Tawrmnim™mncteme) ¥ (Tonparnry myy™mEL nclome) (Ko F) g ympa}.  (39)

leme 2,k

We now recast Eq. (39) in a different form. Using a notation which divides K into a triplet part and a singlet
part, we have from Egs. (21a) for the non-spin-flip elements of K,

(Ko)nim= K (0ynim'+3K ynin® for even I (40a)
(Ka)nlm: K(O)nlmo'{‘ 3K (l)nlm1 for odd l, (40b)
where
K(T)nlmS=1=2(K1Tn)nlm+ (KlTOO)nlm (413)
K (1ynim5="= (K o1°) n.1m (41b)

and a similar notation is used for the spin-flip elements.
We use this notation to write Eq. (39) in the compact form

! ! nlm
1; O8|K 1; 01f)= (Cn len ml+cn mOKn mo + Z Kﬂ mf ’ 42
ORI OM= | 2 (Coant B Coae e o e 2™ “

where we have omitted the labels “7” since they can be inferred from the indices Is on K. The coefficients Cpin?,
and Dy, are combinations of Clebsch-Gordan coefficients and Talmi coefficients. From Egs. (39) and (40) we have:

Cnlm1=% Z l (llslmlmﬂ[]M) l 2{ Z Z l Tonr ianmmll Eminele im"[ 2} for odd /

ms1=+1/2 leme¢ NLM
=i X (bsmmma|IM)|HE X |Tonr sunpn™h Fmnele £me|2} - for even (43a)
mar=£1/2 lome NLM
Crim®=3%Crnim! for odd !
=3Cpnim for even / (43b)
Doin=3[(+m)(—m+1)]1/2 %1/2 (hsimi1 moy | TM) (Lisymume | TM)*
moi=
X2 X (Tenpanim™hEminee £me)(Tonp s nyp 1-gk moyMEmIFnle £me)  odd ]
leme NLM ,k
=1[+m)(l—m+1)]? Zﬂ/z (hsvmy==1 mg | TM) (hsymums: | TM)*
msi—

X Z Z (TaNLMnlth +mincle imc)(TaNLM ntk 1—2k m-lmhj:mri-l nele :tmc) even I.
leme NLM K
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Because of the relationship between the Talmi coeffi-
cients, the introduction of the radicals into the definition
of the D’s makes them rational fractions.

Our next step is to recombine the relative states |nlm)
with the spin states implicit in the Kni»® and Kuim' to
give states of the form |#ISJM). To do this, we use
Clebsch-Gordan coefficients as follows:

|SM o) | nim)=3 (ISmMs|TM ;) |niSTM ;). (44)

Since K is diagonal in .S and J, we can write
(K so™MsM'8) =3 (ISmM s| JM 5)*
C XUSHM S| TM DS, (85)
where we have used the matrix elements
(nISTM ;| K |nlS'J'M 'Y= 585587 5kn1,s5.  (46)

These matrix elements are explicitly independent of M s
and M';.

We show in Appendix B that Kui,* and K ,i.' can be
expressed in the form

Knlmozknl,lo, (478.)
141
K= 2. (Aum+Bin)kn,s*, (47b)
J=l-1

anmf= [(l-{-m) (l—m—i— 1)/2]1/2 Z A kanz'.rl ’ (47(3)
J

where 4,7 and By are given in Table 1.

TazirE I. Values of the coefficients 4,7 and By,.

J= 41 l -1
243 1 21—-1
A= S
41 @41 10+1) 1Q214+1)
2143 21—-1
Byy= S 1 —
2141 214-1

Incorporating the results of Eqs. (47a)-(47¢) in Eq.
(42) we have:

(1; 0| K|[1;0%)=3" { @ui'(2_ Bisknr,sY)
nl J
+ @ni%n1, s+ Bt Arsknr, sV}, (48)
7
where we define

l
@nll= Z Cnlm17

(492)

m=—1
anlo= Z Cnlmo ) (49b)
(Bnl= Z (mcnlml+Dnlm) . (4-'9(:)

SPIN-ORBIT DOUBLET SEPARATION IN
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In Sec. 4 we obtain the explicit expressions in the form
of Eq. (48), for particle 1 in states J=%, M=%, 3 5 and
find, of course that they are identical (although the
Crnin® are not identical for the various M values). Then,
we obtain similar expressions for the case J=%, M=%, .
Finally, we subtract these, and obtain

Ae=(1;0'| K [1; 0) 50— (1; 01| K |1;0%)ysye
=3 {{AQ)n (X Busknt,s)+(AR)n%n1,s°
nl J
+(A03)nt(ZJ Avknr, sV}, (50)

where
(A@)n15= (QniS) r=5/2— (CniS) y3/2 (51)

As we will show in Sec. 4E that for OY, (A@)»;5=0, we
finally obtain

Ae=> AB(X Arrknr,s"). (52)
nl J
We have now proceeded as far as possible without
taking account of a particular form for the nucleon two-
body force. The % matrix is expanded in terms of the
potential Vp [cf., Eq. (4c)] as follows:

| GuIST |V 5| WV STY|2
knl,Jsz(VF)nl,Js—'_Z }

'l €n'pr— €nl

oo, (53)

This expansion takes into account the perturbation of
the two-nucleon hard-core wave function by the poten-
tial V. From Eq. (4c), we have for ¥V the following:

Ve(1,0)=vr(1,0)—35F |71c|2, (54)

where vp(1,c) is the finite part of the two-nucleon
interaction.

The two nucleon potential v given by Gammel and
Thaler* contains a central part, a spin-orbit part, and
a tensor part, which operate outside a hard-core of
radius 0.4 fm. Thus, we may write

Vr(1,2)=VarC(riz) —1k'r122+ Vert*(riz)Lia- S
+VerT(r12)S1e (55)
(ISTM |V ¢ |WVS'T' M)
={(nl|(Ver®(r)—3k'r) |n' )ou
+(nl| Vart | n'l) L1s6510u
+ | VerT|n'V) T 5601} 0r5 85800, (56)
where Ver®(r), Ver®(r), and Ver?(r) are the radial
parts belonging to the central, spin-orbit, and tensor

forces given by Gammel-Thaler.* The matrix elements
of the spin-orbit and tensor operators are

(SIUM |L-S|SVJ'M"y=83m8s50s5 001815
(SUM|S12|SVI'M")y= 8228758585081 Twr 7,

(57a)
(57b)

where the £;7 and 7;; are given in the Table II.
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Tasre II. Matrix elements of the spin-orbit
and tensor operators.
V= l l l 142 1—2
J= I+1 I I-1 I+1 1—1
L= l 0 —(@+1) 0 0
. -2 2041 6[C+1E+2)T2 6LE—1)]u2
wy= ——
2143 21—1 143 21—-1

3. FIRST-ORDER ENERGY DIFFERENCE

We now specialize the calculations to first order. Using
Eqgs. (52), (53), and (55), we have

Ae=3 (A®) i X Ary(nllIM |V ¢|nllTM)
nl J

=2 (A®) it 2 A1r{(Var®)ni— 3k 7Y n1
nl J

F+ L1 (Ver') it Tu,s(VerT)n}
= Z; (A®)u[2—1/10+1)](Ver*)ni, (58)

where we have used the following equations which are
easily proved using Tables II and I:

2 Au=2 AuTu,;=Y BurTus=0
7 7 7

; Ay Lir=2—1/1(+1) (59)

Z BIJ=3§ Z BisLir=1.
J J

We have also used the notation:

(Ver')ni= (nl| Vor**(r) | nl)
- / U OV ar* (Wm)rdr,  (60)

where ¥,:(r) are the wave functions for the relative
motion of two particles in a harmonic oscillator, with
a hard-core potential.

4. NUMERICAL CALCULATIONS

A. Case J;=%, M=%

For this case, the outer neutron is in the state J;=$§
and M=%, and Eq. (8) for the state of the extra neutron
becomes:

ln1l15‘1]1M1t1i13) = 102%%’%% — %)
1/2

= 2

ms1=—1/2
— V4021333 —1)+v3[0223 — 33 —3).

Carrying out all the manipulations, we obtain, for

(23mama1|53) | nalimasimsitites)

(61)
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Eq. (27), the expression:
(1;01] K|1;01)=1 3" (021; ndom.| G KoQ+ STK,S

leme

1
X021; ndome)+— 3. (02 —2; nolam,|

leme

XA K.Q+ 8TK,8]|02 —2; nelem,)

V2
+— 3 (022; nldom,|3@TK,/ G+ STK,’S

leme
X 1021; nlom.), (62)

where the —2 in the second term comes about through
the use of Eq. (26).

Using the tables of Talmi coefficients (Appendix A,
Table X), we can write for Egs. (32) and (33)

2. (021; nlom.| STK,8|021; nolam.)

leme

= (7/4)(Ks)o00+3(K 5) 022+ 2(K s) 021+ (5/12) (K ) 020
+%(Ka) 02 —1+%(K3)100 . (633.)

From Table IX, changing the signs of all m’s

> (02 —2; ndam| 'K 8|02 —2; nelam,)

leme

= (7/4)(K+) oo+ (5/4) (Ks)oz —o+3(Ke)ez -1
+3(K)o20+3(Ks)100. (63b)

Similarly

> (021; nldom,| GTK.@|021; ndom,)

leme

= (5/4)(Ka) o+ (5/4)(Ka)orot+3(Ka)o1 -1
+3(Ka) osat+2(Ka)os1+(3/20) (K o) 030
+15(Ka) 111+16(Ka)110,
2 (02 —2; ndam.| R1KoG|02 —1; ndam,)

leme

=(9/4)(Kao)or —1+3(Ko)oroF+1(Ka) o1+ 2(Ka)os —s

(64a)

+1(Ka)os -2+ (1/20)(Ka)os -1+ 2(Ka)11 -1, (64b)
> (0225 ndom,| STK/8]021; nolom.)
leme
= (K022 (3/2/6) (K o) 032 , (64c)

2. (022; nldam.| 81K/ 8|021; nelans)

leme

= \/Q(Kaf) 011+ (3/2\/6) (Kaf) 032+ (1/’\/10) (Kaf)ogg
+(3/20V3)(Ko”) a1+ (1/5V2) (K o) 111.  (64d)

Putting Egs. (63) into Eq. (62) yields the equation
corresponding to Eq. (39):
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(1; 01| K[1; 01)= (7/18)(K s) a00+ 15 (K 1) 100+ (21/80) (K ) o114 (21/80) (K 0) 010+ (13/80) (K o) o1 —1
+(1/50) (Ka) 111+ (1/50) (K o) 110+ (1/100) (K o) 11 —1475 (K o) 022+ (3/20) (K ) 021+ (11/120) (K 5) 020
+(3/40) (K 5) oz 1+ (1/18) (K +) 02 —2+(3/80) (Ka) 03 —s+ (1/80) (K ) 03 —2+ (1/400) (K o) 03 —1+ (3/100) (K o) 030
+(2/25)(Ka)os1t+10(Ka) 0s2+(6/5) (K o) 110+ (3/25) (Ka”) 111+ (3/10V2) (K7 022+ (3/10V3) (K &) 021

+(9/10V3) (K o’) 0ss+ (3/5v/ ) (K o) 032+ (9/500/6) (K o) 051

Using Eqgs. (21a) and (21b) this can be written in the
form given in Eq. (42). The coefficients Cp1,® and Dyim
are listed in Table III.

Combining the |nlm) states with the |SM ) states
gives Eq. (48). From Table III (a, b, and c) and the
definitions (49a)-(49c), we have for @,;5 and ®,; the
values in Table IV.

B. Case Ji=%, M;=1

In this case, the outer neutron is in the state Ji=3%,
M,=% and Eq. (8) for the state of the extra neutron
becomes

| nalisiJ 1M titis) =/ 2020555 —3)
V0213 —4 —1).
This results in the following form for Eq. (27):
(1; 08| K|1; O1%)= (3/20)1 > (020; nlom.|
X @TK .G+ 8TK,8|020; nlom.)
75 X (02 —1; nidame| GTK.G+S'K,$

leme

X102 —1; nldome)+2V3 X (021; nobom.|

leme

X3QK .G+ STK,8|020; nloms). (67)

Using the Tables of Talmi coefficients to express the
sums in Eq. (67) and Egs. (23b) and (23c) yields the
interaction in the form of Eq. (42). Although all the C’s

(65)

are different, their sums are the same, and whereas even
> m D is different in the two cases, the quantity
®ni=2_m D+, mCisidentical with the previous case.
Thus, this calculation acts as a check of the figures ob-
tained previously, and confirms the statement that the
same energy expression suffices for both M;=4% and

1-_—-2.
—_— -3
C. Case J,=%, M=%

The same procedure is used to find the interaction for
the case that the neutron is in the state J,=%, M;=3:
l’ﬂlllsllelIfﬂla) =\/% l 022% -—%% —%

—V/3021333 —%). (68)
Thus, we have

(1; 08| K|1;01)=1>" (02 —2; nldam.| @ K.G+ 8K, 8

leme

1
X102 —2; nlame)+— > (021; nlom.|
20 leme

V2
X QK ,G+8TK,:8|021; nelome) —— 3. (0225 nlom.|
5 lcmo

X3@TK.Q+8'K,8|021; ndome). (69)

The matrix elements in Eq. (69) are the same as those
in Eq. (62); the case J1=%, M1=4%, but they have differ-
ent coefficients. They are given in Egs. (63a)-(64d).
Using these in Eq. (69) and using Egs. (21a) and (21b)

TasLE IIL. Values of Caim® and Dypim for J1=5, M1=3%.

(a') Cﬂlml m=3 2 1 0 -1 —2 -3 Zm Cnlm1 Zm 7'”C’nlm1
nl=00 7/16 7/16 0
01 o 63/80 63/80 39/80 o oo 33/16 3/10
02 1/10 3/20 11/120 3/40 1/16 . 23/48 3/20
03 0 3/10 6/25 9/130 3/400 3/80 9/80 63/80 21/50
10 N 1/12 e 1/12 0
11 3/50 3/50 3/100 cee 3/20 3/10
(b) Crim® m=3 2 1 0 -1 -2 -3 2m Catm®
nl=00 21/16 21/16
01 21/80 21/80 13/80 11/16
02 3/10 9/20 11/40 9/40 3/16 X 23/16
03 0 1/10 2/25 3/100 1/400 1/80 3/80 21/80
10 e 1/4 e .o 1/4
11 1/50 1/50 1/100 cee 1/20
() Daim m=3 2 1 > m Daim B
nl=01 6/5 6/5 3/2
02 e 3/10 3/10 3/5 3/4
03 9/10 6/10 9/50 42/25 21/10
11 6/50 6/50 3/20
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TaBLE IV. @ni® and Ry for J1=%, M1=4%.

nl Qi Qnl® Bt
00 7/16 21/16 0
01 33/16 11/16 3/2
02 23/48 23/16 3/4
03 63/80 21/80 21/10
10 1/12 1/4 0
11 3/20 1/20 3/20

yields the interaction in the form of Eq. (42) with the
coefficients given in Table V (a, b, and c).

The energy is given by the same formula [Eq. (48) ] in
terms of the @’s and ®’s given by Table V (a, b, and c).
D. Case J1=%, M=%

In this case the neutron wave function is

[n11151]1M1t1t13)=\/§ IOZI% —%% —%)

and we have
3
(1; 08| K|1; O%)y=— 3" (02 —1; ndm.|
2Q leme
X @K,G+8'K,8|02 —1; ndam)
+1% X (020; nclan.| Q'K .G+ 81K ,8]020; nolom.)

leme

V3
—— 2 (021; ndom.|3GRTK.G+ STK,S
5 leme

X 1020; ndame). (70)

It can be verified that the @’s and ®’s are the same in
this case as in the case J1=%, M=% (although the C’s
and D’s are quite different in the two cases).

E. Energy Difference Ae to the First Order
Since the @ coefficients are the same in both the
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coefficients in the difference expression cancel out, leav-
ing only the ® coefficients for the final expression. Thus,
the difference in energy of the extra neutron between
the J1=4% and J1=% case, i.e., the spin-orbit splitting
is given by an expression of the form

Aezzl (AGS)M(ZJ Avgkn,st). (1)

To evaluate the first-order energy splitting, we use
V for K in Eq (71). The matrix elements of V are given
in Eq. (55) and Table II. Using these, we obtain Eq.
(58), namely,

AE=Z[ (A(B)nl[Z-—l/l(l—I— 1)]([’0@“)7,1, (72)

where
(Vort®)m= / Ut () V e U W) rdr. (73)

The coefficients of (Ver").: can be obtained by sub-
tracting the results for the ®,; for /=% from those for
J1=%, and multiplying by [2—1/I(l41) ] as indicated in
Table VI.

Our final expression for the first-order energy is
Ae=(45/8)(Var') i+ (55/16)(V ar*) o2

+(161/16)(Vgr™)as+(9/16) (Vort) .  (74)

The Gammel-Thaler* spin-orbit force is given by

Ver(l,r)=— (5000 MeV)e377/3.7r for even [
=—(7315 MeV)e*77/3.7r for odd I,

where 7 is the internucleon distance in fm.

The value of Ae using Egs. (74) and (75) with hard-
core wave functions has been evaluated in an earlier
paper.® The result obtained is as follows:

Ae= E5/2‘—E3/2= (45/8)(—0.752)
+(55/16)(—0.064)--(161/16)(—0.0044)

(75)

J1=% and the J;=% case (see Tables IV and V, the @ +(9/16)(—2.38)=—5.95 MeV. (76)
TasLE V. Values of Cp1S and Dy for J1=%, M1=3.
(a) Crim® m=3 2 1 —1 -2 -3 Qnit
nl=00 7/16 7/16
01 cee ce 27/80 27/80 111/80 ves 33/16
02 .. 1/40 3/80 13/240 9/80 1/4 . 23/48
03 0 3/40 3/50 9/400 3/100 3/20 9/20 63/80
10 1/12 1/12
11 oo cee 3/200 3/200 6/50 3/20
(b) Crim® m=3 2 1 0 —1 -2 -3 Gt
nl=00 .. 21/16 21/16
01 9/80 9/80 37/80 .. . 11/16
02 o 3/40 9/80 13/80 27/80 3/4 ven 23/16
03 0 1/40 1/50 3/400 17100 1/20 3/20 21/80
10 1/4 1/4
11 1/200 17200 1/25 1/20
(©) Danim m=3 2 1 Sum Bt
al=01 —6/5 —6/5 — 9/4
02 oo -3/10 -3/10 — 3/5 — 9/8
03 —9/10 -3/5 —9/50 —42/25 —63/20
11 —3/25 —3/25 — 9/40
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TasiLE VI. Values of AB,;.
AB[2—1/
nl Bu(l=3) ®BulJ=32) (A®) a1 I0+1)]
01 3/2 — 9/4 15/4 45/8
02 3/4 — 9/8 15/8 55/16
03 21/10 —63/20 21/4 161/16
11 3/20 — 9/40 3/8 9/16
5. SUMMARY

Assuming that as a first approximation, the indi-
vidual-particle potential experienced by each nucleon
in the nucleus is given by the harmonic-oscillator po-
tential, the Hamiltonian for the nucleus (taking into
account only two-nucleon interaction) is written as a
sum of an unperturbed Hamiltonian corresponding to
the harmonic-oscillator Hamiltonian and all the two-
nucleon interactions minus the harmonic-oscillator po-
tential [Eq. (2)]. We consider the problem of spin-orbit
interaction in O'. The nucleus O can be considered
as consisting of O core plus an (extra) neutron outside;
the particles in O fill up the 1s and 1p states (slm = 000;
010; and 01 41 with two neutrons and two protons
being in each of these spatial states) with the last neu-
tron occupying the 1d state with J=4% or §. In order to
determine the spin-orbit splitting it is necessary to cal-
culate the difference in energy between the configura-
tions having the extra neutron in the states ds;; and
d 3/2. In calculating this difference it is assumed that the
core being common to both the configurations, the two-
nucleon interactions among the core particles can be
neglected. Thus we need to evaluate the diagonal ele-
ments of the K matrix for the nuclear wave functions
which are the two-particle states involving the extra
neutron and each of the nucleons in the core [Egs. (5)
and (10)] for the two cases when the extra neutron is in
the ds;» state and d; state. The difference K(ds)
—K(d 3/2) determines the spin-orbit splitting [Eq. (5)].
It is advantageous to express the two-particle oscillator
wave function |niliminalems) in terms of the linear
combination Z,’ Tn'-lim.-N‘-L‘.M‘""ll’"mzl’mz I n.ilim,-N.:L,-M,-),
where the quantum numbers #;lm; pertain to relative
motion of the two particles while V;L;M; to the center-
of-mass motion [m1+mae=m;+M;, (2n1+45)+ (2ne+1)
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= (2n;+1)+ (2N;+L,;)], since the two-body K matrix
is diagonal in the center-of-mass quantum numbers.
Further use has been made of the property that the K
matrix is diagonal in the total angular momentum
7i@:=L+S) and the spin S(S=s;1+ss) of the two-
nucleon system. Thus the calculation of the K matrix
for the extra neutron in the states J=4% and J=3% has
been carried out. It is explicitly demonstrated that the
K matrix is independent of M (=J,). The actual evalua-
tion of the K matrix is done by expanding in terms of the
two-nucleon potential [Eq. (53)]. Since all realistic
two-nucleon potentials include a repulsive hard core,
this expansion is carried out in terms of the matrix ele-
ments of the finite part of the two-nucleon potential
evaluated for modified oscillator wave functions which
include the effect of the hard core. The numerical cal-
culations are done for the Gammel-Thaler* potential to
first order so that the only contribution to the nuclear
spin-orbit interaction is from the two-nucleon spin-
orbit part of the potential. The tensor part of the poten-
tial will contribute in the second order, as also the effect
of the Pauli exclusion principle and the excitations of
the core. The first-order calculation gives a value of
—5.95 MeV for the spin-orbit doublet separation in O
as compared to the experimental value!* of —5.083
MeV. The agreement is expected to improve since the
tensor force is noted to contribute a small amount but
of the wrong sign to the spin-orbit interaction in nuclei.
These higher-order calculations, within the framework
of this paper, are quite laborious and we expect to re-
port them subsequently.

APPENDIX A. TABLES OF TALMI
COEFFICIENTS

In the Tables VII-XVIII the center-of-mass state
| NLM) is written next to the Talmi coefficients.® The
relative states are given as column headings.

APPENDIX B. RESTRICTION ON THE FORM OF
THE K MATRIX ELEMENTS IMPOSED BY
CONSERVATION OF ANGULAR
MOMENTUM

Since the two-body K matrix conserves the (two-
body) total angular momentum J we know that the

Tasre VII. Talmi coefficients for the symmetric core-core states.

| nlm)

S| nilvmindeme) 1000) |022) [021) |020) 02 —1) |02 —2) 1100)
$1000; 000) 1000)
$]011; 000) lo11)
$1010; 000) |010)
8101 —1; 000) jo1 —1)
§1011; 011) (1/4/2)[022) —(1/4/2)1000)
$]o11; 010) (1/4/2)]021) —(1/4/2)]000)
$1011; 01 —1) (1/4/6)020) +(1/4/3) | 100) —(1/4/6)[000) —(1/+/3)|000)
$1010; 010) (1/4/3)1020) — (1/4/6) | 100) —(1/4/3) | 000) (1/+/6)1000)
$1010; 01 —1) (1/4/2)]02 —1) —(1/4/2)]000)

$lo1 —1;01 —1)

—(1/4/2)1000)

(1/v2)|02 —2)

11 M. A. Preston, Physics of the Nucleus (Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962), p. 184.
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TasLE VIII. Talmi coefficients for antisymmetric core states.

| nim)

Q| mlminceme) lo11) |010) |01 —1)
@] 011; 000) 1000)
@1010; 000) 1000)
@01 —1;000) | 000)
@|011; 010) (1/4/2) [ 010) —(1/+/2)]011)
@lo011; 01 —1) (1/42)]01 —1) —(1/4/2)|011)
@|010; 01 —1) —(1/4/2)|01 —1) (1/4/2)|010)

matrix elements are of the form

(ISTM | K| w'VS' T M'y= 575835k nwv,7, (B1)

where we have also taken into account that the K
matrix derived from the two-body nuclear-force law is
diagonal in .S. From Egs. (42), (40a), and (40b) we see
that the interaction between the extra neutron of O
with the core can be written as a linear combination of
the following three forms:

@ Um| K| nimy={n'Vm|{2K 17"+ K17"} | nbm) (B2a)

W. K. NIBLACK AND B. P. NIGAM
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so that the matrix elements become [using Egs. (B1),
(B3), and (B4)],

W Um’ | K so™S"MS| nlm)y=3, (ISmM s|JM 5)*
7
X (l'Sm'M'slJMJ)knlnz'z,JS. (B5)
1. Expansion of (n''m| K*'|nim) for n'l'=nl
(nlm | K| nlm)=2{nlm111| K| nim11)
+{nlm10| K 7| nim10)=2 3 (Um1|IM)%ka1,s*
7

+3 (Um0 | TM) k1, s' =3 {Arym~+Bis}kar, s, (B6)
J J

where
Ayym~+Buy={201m1 | TM)2+ (1m0 | TM)?}. (B7a)

For the three values of J, the results are

(a) J=1+1
"Vm | K° | nlm)=(n'Vm | K1r% | nl B2
0 ¥im | KO mim)= o Von] Koo ) (B2b) U+m+2)(+m+1)  (+mt1)(1—m+1)
— (=2 :
(n'Vm—1| K/ | nlm) 2(041)(20+1) (+1)(2+1)
=nUm—1|{Kip"+Kir* 1} |nlm), (B2
(n'Tm—1|{K1r"+Kir° 7'} [nlm), (B2c) 2043 2143
where 7= (1,0) for /= (odd, even) for K and K/ and the = i+ 1)(2l+1)m ! 2041 , (B7b)
opposite for K° The notation above is, explicitly
b) J=I
KgpMsM's=(SMg|Kr|SM's). (B3) ()
I—m)(I+m+1
In view of Eq. (B1), we write the states |nlmSMg) {---}= 2(—)~(—————-——)
in terms of the states |#SJM ;) using Clebsch-Gordan 20(+1)
coefficients: .
m
-+ =1-— m, (B7c)
| nlmSM s)=ZJ (ISmM s|TM 5)|niSTM ), (B4) 0+1)  I(+1)
TasLE IX. Talmi coefficients for the symmetric state §]022; nclcm.).
8| mibymindame) [900) |022) |021) |020) [02 —1) |02 —2)  |100)
$|022; C00) (1/72)|022) (1/¥Z) |000)
$]022; 011) +/2]033) —1]011)
$1022; 010) 3/032) 1/010) —(1/v2)|011)
8/022; 01 —1) (1/4/20)|031)+(1/4/5) | 111) 311 —1) 0 —(1/4/6)]011) —(1/¥3)|011)
> squares 7/4 5/4 3 t 0 0 1
TaBLE X. Talmi coefficients for the symmetric states 8|021; nlom.).
8| mlymndom,) |000) |022) [021) 1020) [02 —1) |02 —2) [100)
$]021;000)  (1/vZ)|021) (1/v2)|000)
8/021; 011) (1/v2)]032) —(1/v2)|010)
8]021; 010) 1V/2|031) — (1/4/10) | 111) —(1/v3)|011) (1/4/6)|011)
$]021; 01 —1) ~/(3/20)|030)+(1/4/10)|110) 101 —1)  —(1/4/12)]010) —3}|011) —(1/4/6) |010)
> squares 7/4 3 3 5/12 1 0 3
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(c) J=1-1 ’vf
. .}=2(l—m)(l—m—1) (=m)(+m) s §_§ 2
21(2141) 1(214-1) = § &3
A-1 2-1 =%
= m. (B7d) '
241 1(2+1)
2. Expansion of (n''m—1| K’ | nlm) for the Case n'l'=nl {T\ i.
\o o
{(n'Um—1| Ky’ | ndm)= {nlm—111| K¢ | nlm10) g g I
+{nlm —1 10| Kr|niml —1) !
=3 (1 m—11|Tm)(I1mO| T M )knz, " -
7 ~ gg
+3 (1 m—10|Jm—1)(Um—1|Jm— 1k, s I g%a
J 8 0 A
=X {}eus'. (BY) = 323
J g [
The curly brackets on the right hand side of Eq. (B8) ; ~ o
are evaluated below: Sl sl8as!
|| S|lgges™
(a) for J= l+1 % - s e -qi-o e
[(l+m+1)(l+m)]1/2[ (U+1)2—m? ]”2 £
20+1)@+1) 1 Le+1)@+1) g T
[(z+1)2— (m—1)2]1’2 [(l—m—i—Z)(l——m—}- 1):|1/2 slgl 85
- (=} i }
(+1)@H1) 2+ 1)(2+1) £ 23
(IHm)—m+1) 20143 g Il
[T e
2 (+1)(2+1) 8 =
- [
(b) for J=1 § | =
{ [(z+m)(z—m+1)]w[ m -Jw 502 S
N 2A(+1) 1(i+1) 3 T
=
[(m- 1)2]”2[(l—m-l—l)(l—l—m)]”2 =7
S
I(I+1) 21(1+1) o==
23
+m)—m+1) 1 =33
BGOSR | G RV R
2 1I+1) 8| SL¥S
- oA
(c) for J=1—1 g3l
Z_ oo WM
{ [a+m><z—m>2(l—m+1>]w Sksx
212(2141)2 S
[<z+m_ 1)2(z+m>(l-m+1>] - -
—_ N v
2P(21+1)2 ilgggis
) (= (<3~
S| n tnin e
=[(z+m>(l—m+1)]u2[ 21—1 ] (399 HEEEE i-
2 1(21+1) i

IN

o7

TasLE XII. Talmi coefficients for the antisymmetric states @|022; nlom,).

[111)

[031)

(032)

|033)

[01 —1)

[010)

[011)

G| ndimnd.me)
@022; 000)

$(000)

V/11000)

$]022)

—3]022)

|011)

@]022; 011)

1]022)

—(1/v2)|021)

@022; 010)

3

(1/4/5)[000)

(1/4/20) | 000)
1/20

i

ool

L))

L

—(1/4/6)[020)—(1/¥3) |100)
9/4

@]022; 01 —1)
Y squares
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K.

W.

1010

0¢/1 1/t 0¢/1 & 0z/6 &= /L z1/61 ravl’ sarenbs X
(000 (0£/v/T) (0001 %/ (oot | (81M/1)— (0201 % (rzol (eM/ 1) — (¢— zolONM/1)—  (1— 10 ‘020]®
(000l (s1/0) /N — (0001 (02/6) /> (1zol(e1/M/1)— (001 ](6/2) M+(0T01 8 — (1— zol @M/ 1) — (070 *020|®

(000| (0EN/T) (000| &/ (ceol oM/ 1) — (rzol (er/1)— (00T (8T/M/T)—(0TO0l % (110 ‘0z0|®

(r10l ON/1) (ool g (T— 10l (O/M/T) (000 ‘0z0|®

(1— 11} ort| (1l (1— ¢ol {ogo] (10| (1~ 10| {o10| (1710] (Cwr Pty |o

(CuPu £0z0|D 21e1S OIPWWASTIUR 91} 10] SJUITOLF00D TWR], "ATX ATAV],

& & oe/¢ £ % t ¥/ ¥/ soxenbs
(0001 (0T M/T) (000 (0z/€) /™ (zol® (0ot i(©//1)—(0z0| €I/ 1) = - (- oolf- (1= 10 ‘120/®
(000! (0T /M/T) — (000l £/ (0011 (9N /1) + (020! (80 T) — (010 12010

(000} (zr/T) (¢eol @/1)— (110 ‘1201®

(110] (2M/T) (o10] (2A/1) (000 ‘1201®

(o1t} (111] {0go| (10| (zgo] (I— 10| (o10] (110! Cupurutyu|p

(CuPu $170|D SeYRIS dMPWASTIUE 9Y) I0] SHUIIOGA0D rue], ‘TIIX ATV,
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We see that

(nlm—lIKf|nlm)=[

where the 4,7 are the same as those for (nlm | K r!|nim).

SPIN-ORBIT DOUBLET SEPARATION

(I+m)(I—m+1)

IN Otr 1011

3. Expansion of (n''m| K!|nim) for the
Case '=142; n'=nF1

Here, we must have J=141:
W Um| {2K 171+ K17} | nlm)
={2(U"1m1|l1 m+1)(ISm1 |11 m=1)
+ 1m0 |I4=1 m) (1m0 |I==1 m)}
X{nV1i1 M|Kp|nllil=1 M).

1/2
-

X2 Aiskar,st, (B10)
7
(B11)

TasLe XV. Spin-flip coefficients for #, I, m’=022 (symmetric).

(022| K /|021) (021|K.7|020) (020|K /|02 —1) (02—1|K /|02 —2)

(022; 000|StK ,8]021; 000)
(022; 011[81K,8(021; 011)

(022; 010|81K,8|021; 010)

() ° ° :

0 0 0 0

S S IR

1\ /1 1 1
(022; 01 —1|8K,8]021; 01 —1) (—)(—) 0 (____>(__) 0
2/\2 V6N 2
Sum $(Ks")oze (1/2/6) (K')o2t (1/24/6) (K ) 021
TasrLe XVI. Spin-flip coefficients for #, I, m’=022 (antisymmetric).
{011] K.’ |010) (010|K.7[01 —1)  (Ko)oss (Ka’)oss (Ko)ost (Ko 111

(022; 000| @*K4/@|021; 000)

(022; 011 | G1K,/@|021; 011)

(022; 010| G1K @] 021; 010)

(022; 01 —1|@'K,7@[021; 01 —1)

Sum

o)
C ICIO)

1 1 < 1( 1 1 /3\2 1 1
(-am) (9)(5) o

@/NV2) (Ko )ou

Tasre XVII. Spin-flip coefficients for %, I/, m’=021 (symmetric).

(B ooz (B )om (B oz (B oz 1
(021; 000|S'K,$|020; 000) 1/+/6 3
(021; 011 S1K ,$|020; 011)
(021; 010]S'K,$|020; 010) 1/4/36
(021; 01 —1|8'K,8$]020; 01 —1) % 1/4/36 1/24/6
Sum (1/7/6) (K o) g2z (K om (K )on (1/24/6) (K &) 022
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TasLE XVIII. Spin-flip coefficients for #, /, m’=021 (antisymmetric).

(Ka")out (Koot (Ko )os2 Koo Koo (Ko)in Koo
1 1
(021; 000| Gt K,@]020; 000) N— —_
V3 /12
1 3\ 12
(021; 011| @1 K,@|020; 011) —_— (—)
V12 20
1 1 9\ 1/2 25\ 12
(021; 010| 1K ,@]020; 010) T <_) (_)
6V3 3V3 50, 150
1 -1 1 3 1
(021; 01 —1|@'K,@|020; 01 —1) — - = _
2V3 312 6V3 10v2 10v3
3 3 9 3
Sum —(Ka)ous ———(Ka)os2 ——(Ka")os1 — (Ko )1
V3 24/15 10v2 10v3
. nlm | K| nim)= K nim!
The coefficient in brackets is zero, for all /, m, as can nlm | K* | )= Konim
be verified by direct substitution &
’ = Y (4-m+Biukast (B13b)
J=l—1

4. Expansion of (n'l'm—1| K’ |nlm) for the
Case I'=1+2; n'=nF1 (nm—1| Ko! | nim)y=K nim’

Hm)(l—m+1)72 +
“‘—‘—] > Aukast (B13c)
2 J=1-1
nF11£2m| K| nlm)=0
=nF1I£2m—1|Ksf |nim), (Bl4)
where A;; and B, are given in Table XIX.

In this case also, we must have J=141: =[
' Um—1|{K1r"+K17° 71} | nlm)
={(l£2 1 m—1 1]I1 m)(UAmO0 |11 m)
+(£21m—10|ixlm—1)(UUm —1|l1 m—1)}

X(n'l'l I+1 M[Kﬂnll I+=1 M) (B12)
TasLE XIX. Values of 4;; and By in Egs. (B13a)-(B13c).

The coefficient in brackets is zero, for any /,m, as can be

seen by direct substitution. J= I+1 l -1
4 2143 1 21—-1
=
5. General Form D@+ ety e
From the above, we see that we can write the (#'l'm’| 2043 -1
X K |nlm) in terms of the kn;,s5 as follows: Bis= — 1 -
2+1 2+l

W' V'm| K| nlm)=K nim®= ka1, (B13a)




