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Calculations of the spin-orbit doublet separation in 0 ~ are performed. It is assumed that, to a erst ap-
proximation, the individual-particle potential experienced by each nucleon in the nucleus is given by the
harmonic-oscillator potential. In this approximation the two-nucleon wave function for nucleons in the
nucleus is separable in their relative and center-of-mass coordinates so that, taking into account only two-
body interactions which depend on the relative coordinate, the E matrix elements are essentially functions
of quantum numbers of relative motion only and of the relative space coordinate. The nucleus 0" is con-
sidered as consisting of the nucleus 0"as a core plus a neutron outside. The spin-orbit doublet separation is
the difference in energy of 0"with the outside neutron in the states J=-,' and —,', and is evaluated in the
approximation of taking interactions of the outside neutron with each of the sixteen core nucleons and
neglecting interactions between nucleons in the core. Numerical calculations are done using only the spin-
orbit part of the Gammel-Thaler potential, but treating it as a perturbation using hard-core harmonic-
oscillator wave functions as the unperturbed wave functions. A value of 5.95 MeV is obtained for the spin-
orbit splitting.

l. INTRODUCTION

~ 'HE problem of determining the two-nucleon in-
teraction inside a nucleus has been a basic prob-

lem in nuclear physics. Largely, authors have worked
with a phenomenological effective nucleon-nucleon in-
teraction to predict nuclear properties (which also de-
termine the parameters of the phenomenological effec-
tive two-nucleon interaction). Because of the presence
of other nucleons in the nucleus, it seems that the effec-
tive two-nucleon interaction should be different from
the free two-nucleon potential. However, it has not yet
been possible to determine the effective nucleon-
nucleon interaction' from basic principles. On the other
hand, the work of Brueckner, ' and of Bethe, ' and others,
on the nuclear many-body problem provides sufficient
evidence that nuclear properties can be calculated by
taking the two-nucleon interaction as that between two
free nucleons, the latter being determined phenomeno-
logically from nucleon-nucleon scattering experiments.
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The Brueckner-Bethe nuclear many-body theory has
been worked out in terms of the reaction matrix derived
from the free two-nucleon interaction, the reaction
matrix being treated as the effective two-body interac-
tion. Besides the difficulties involved in deriving the
reaction matrix from the two-nucleon potential, the
theory runs into a more formidable problem of calculat-
ing the self-consistent potential acting on an individual
nucleon in the nucleus. Various approximations have
been used to make the calculations tractable.

An alternative approach which has been used by sev-
eral authors' is to assume the individual particle poten-
tial as given, viz. , that each of the nucleons in the
nucleus is moving under the inQuence of a common

harmonic-oscillator potential and the two-body interac-

tion as that of two free nucleons. The advantage of using

the harmonic-oscillator potential is that, as shown by
Talmi, ' the wave function of the two nucleons in the

nucleus is separable in their relative and center-of-mass

coordinates. If the two-body interaction depends only

on the relative coordinates, the calculations are now

considerably simplified.
In this paper we have carried out a detailed calcula-

tion of the spin-orbit doublet separation in 0', making

use of the above model. The calculation of the spin-

orbit interaction in nuclei has been previously reported

Weitzner, Phys. Rev. 110, 431 {1958);G. Breit, M. H. Hull, and
K. D. Pyatt, ibid. 120, 2227 (1960);M, H. Hull, K. K. Lassila, H.
M. Ruppel, F. A. McDonald, and G. Breit, ibid. 122, 1606 (1961).
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Talmi, and J. D. Waleck. a, Ann. Phys. (N. Y.) 18, 339 (1962);
B. P. Nigam, Phys. Rev. 133, 81381 (1964).
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by several authors. 7 Many of these are Born-approxi-
mation calculations, some using only the tensor part of
the two-nucleon interaction, resulting in the wrong sign
and a much smaller value for the spin-orbit interaction
in the nucleus. Various approximations have been made
regarding the nuclear density in order to carry out a
separation of the relative and center-of-mass coordi-
nates. In the present article the "definite" model used
is to regard, to a first approximation, the nucleus 0'
as a system of seventeen independent nucleons moving
in a common harmonic-oscillator potential. The eight
protons and eight neutrons 611 up the is and 1p con-
figurations forming a core while the ninth (last) neutron
goes into the 1d state so that 0"can be in the J= 2 and
J=—,

' state. The use of the harmonic-oscillator functions
allows a calculation of the E matrix. To erst order, the
contributions of the central and tensor forces to the E
matrix are identical in the J= ~ and J= 2 states, leaving
only the contribution of the two-nucleon spin-orbit
force. Thus the procedure involves adding up the spin-
orbit contributions arising from the interaction of the
d-state neutron with each of the sixteen nucleons in the
core, assuming that the interaction between the core
particles can be neglected, since it is common to both
the J=—,

' and J=—,
' states. Finally the numerical calcu-

lation of the spin-orbit doublet separation in 0'7 is
carried out by treating the spin-orbit interaction as a
perturbation, using the hard-core wave functions as the
unperturbed wave functions.

fm '. We therefore assume that this is true of 0'7 as well.
Since all lower states are completely filled, the lowest
available state for the 17th particle is either the 2s or
id state. Experiment shows the ground state of 0' to
have J= ~, so the extra neutron would have to be in a
d5p state.

Taking into account only two-nucleon interactions,
the Hamiltonian for 0"can be written in the form

17 '2
H=P +-', g e~(lr;—r, l),

i=& 2M

V=s 2 (»(re) s(&!1&—) I rel'}
i+j

(3b)

where we have neglected the mass difference between
the proton and the neutron, and the potential, p~, is
the two-nucleon potential, including central spin-orbit,
and tensor forces, all with hard cores. The assumption
that harmonic-oscillator orbitals can be used as a first
approximation to describe the system is equivalent to
doing a sort of perturbation theory, in which the Hamil-
tonian for the 17-nucleon system is modified to make
part of it have the form of a harmonic oscillator. Thus,
Eq. (1) is modified to read

&=Ho+ V,
where

17

(3a)

2. METHOD OF CALCULATION FOR 0'7 In writing Eq. (2) we have added and subtracted the
harmonic oscillator terms

i'
and assumed that the center of mass is fixed at the ori-
gin. The problem can now be treated by a "perturba-
tion" theory. If we chose the unperturbed wave function
well enough, the effect of V on the energy would be
small, although it might change the form of the wave
functions, e.g., by introducing correlation. Before one
can use a perturbation series, or the related series ex-
pansions for the K matrix we must also include the
hard-core part of V into the unperturbed Hamiltonian
Ho. We rewrite

V= VHC+ Vz, (4)
where

VHc Q eHG eHc(r;i) = eo, 0 & r;; & r,i'

(4c)i'
where v~ is the finite part of v~.

We take the hard core into account in the following
manner. The 0"particles are assumed to be in the 1s
and 1p states (nbn= 000; 010; and 01&1),two neutrons

In the case of 0", the nucleus can be thought of as
consisting of a neutron bound to a core which has no
angular momentum. As a first approximation to the
wave function of such a system, we assume that the
wave function of the core is very nearly that of 16 inde-
pendent particles. The justification of this is provided
by Brueckner's work on nuclear matter. Following the
lead of shell theory, we can assume that there are 2 neu-
trons and 2 protons in the lowest s state, and 6 neutrons
and 6 protons in the second energy level, the first p
state. We then express these orbitals in terms of har-
monic-oscillator wave functions, since these are conven-
ient to work with. In general, one would want to express
the wave function of each orbital as a sum of harmonic
oscillator functions with given / and m, but different e.
However, in the present case, the assumption that there
are 2 protons in the 1s state and 2 protons in each of the
three (m= &1,0) 1p states, with no admixture of states
of higher e, gives a charge density for 0"which agreesa
well with experimental data, if gv is chosen as 0.432

J. Keilson, Phys. Rev. 82, 759 (1951);L. S. Kisslinger, ibid.
104, 1077 (1956); B. Jankovici, ibid. 107, 631 (1957); Nuovo
Cimento 7, 290 (1958);B. P. Nigam and M. K. Sundaresan, Can.
J. Phys. 36, 571 (1958); Phys. Rev. 111, 284 (1958); J. Sawicki
and R. Folk, Nucl. Phys. 11, 368 (1959);J. Sawicki, ibid 13,350.
(1959).

'H. Noya, A. Arima, and H. Horie, Progr. Theoret. Phys.
(Kyoto) Suppl. 8, 33 (1958).
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and two protons being in each of these spatial states.
The 17th nucleon is a neutron which is in the 1d state.
We consider the particles two at a time, and express the
products of the spatial states in terms of products of
center-of-mass and relative states. The actual unper-
turbed relative states in each must take into account
the hard core and are not the usual harmonic-oscillator
wave functions. We therefore express' the relative states
in terms of the hard-core solutions, but in each case the
leading term is just the hard-core function with corre-
sponding e, /, m; the coefficients of the functions e', l, m
with e'Ne have been found to be extremely small, and
can be neglected.

The next step is to calculate the corrected wave func-
tions due to the potential U, as done by Brueckner. '
These functions are, according to Brueckner's calcula-
tions, quite close to those for hard-core only, so it seems
to be a justified procedure to use the hard-core functions
to evaluate the matrix elements of the potential.

In order to hand a first-order value for the spin-orbit
splitting we need to calculate the difference in energy
between the configuration having the extra neutron,
particle "1," in the d5~2 state as compared with the con-
6guration with particle 1 in the d3/2 state. Since the
extra particle is the only one which has a different con-
figuration in these two states, J= 2 and ~, in evaluating
the difference in energy for these two states, we need not
take into account the two-nucleon interactions among
the core nucleons but include only the interaction of the
d-state neutron with the core nucleons. The kinetic en-

ergy term is the same, since in both cases the outer neu-
tron is in a d state. Thus, we calculate the difference in
the potential energy terms, by evaluating only the E
matrix elements involving particle No. 1, the d-state
neutron:

(AE)lg= e5/2 e 2/2

= (1;0"
I
E

I 1; 0")2/2
—(1;0"

I
E

I 1; 0")2 2. (5)

Each of these two E-'matrix elements has the following
form:

17

(1 o"IEI1;O ')= p (1,cl otE811,c), (6)
c=2

where Sji; j)=—2&2Lji,j)—
I j,i)j, the numbers i and

j stand for all the indices necessary to specify the state
of each nucleon and c stands for a nucleon in the core.
According to the foregoing procedure, we write the two-
particle states

I 1; c) as products of single-particle states,
which will later be expressed in terms of relative states,
with the hard core taken into account. We therefore
write

I1; c)= jl)g lc)
= Inltl»jl~ltl(tl)2) In t.s.j.~.t.(t.)2), (/)

where the relevant quantum numbers are specified as

' W. K. Niblack alld B.P. ¹ganl, Phys. Rev. 156, 1191 (1967).

follows: For the extra neutron, we have e~——0, l~=2,
J~= —,

' or —,
' with J~~&3f~~& —J~. The sum is carried out

for the 16 core particles which are in the quantum states
n, =0, t,=0 (J,=-2', 3f,=W-'2) and t,=1 (J,=2,
M, =~2, W-'„and J,=-'„M.=~-2, ), (t.)2=~-2, .

Since the Talmi procedure cannot be directly applied
to the products of states in the l, s, J, M representation
these must be expressed in terms of /, m, s, m, states by
means of Clebsch-Gordan coefficients. "That is,

I n;t;sJ;cV;t,t 2) = Q (t;s,m, m„j J;/V;)
ms=I/2, +1/2

x I n;t;m;s, m„t;t;2), (8)

where m;=31;—m„- for each m„.
This should be done for particle one and for each of

the core particles separately, before multiplying them
and putting them into Eq. (6). However, we can avoid
a lot of work by noting that the sum over core particles
is carried over a complete shell. That is, each of the core
functions

I t,s,J,M,) can be expressed in terms of a linear
combination of the

I l,m,s,m„), and vice versa, so that
these two sets are simply two alternative basis sets for
the same Hilbert space. Thus, we may regard the core
particles as being in the sixteen states of type ln, l,m,s,
Xm, .t.t,2) with n, =0, 1,=0 and 1 (l,~&m, ~& t,);-
s,=-', (m„= +-2, ) and t,=-,'(t, 2

——a-2, ).
Using Kq. (8) for particle 1, we have from Eq. (6)

(1;0"
I
E

I 1;0")=Q p (llslmlm» I J1M1)*
tlbs1 fos],

x(t»lml m»'I Jr~1)8 2 2 g (nltlm»lmlltlt13, '

Lcmc tnsc &c3

Xn,l,m,s,m„t,t,aj 0, ESlnlllml'slm, l'tlt12,

X,n ,tm, st.t, )2. (9)

This expression can be put in a much simpler form by
immediately carrying out the sums over ns„and $,3. To
do this, we factor each of the states into a space part,
spin part, and isospin part as follows:

jn, t,m;s,m„t,t,2) = In;t,m;)
I
sm„) I t;t,2). (10)

We first combine the spins of the two particles using
Clebsch-Gordan coefficients. The reason for doing this
is that for two-nucleon interaction the E matrix is diago-
nal in the total spin S. Thus, we write

I
slm 1)Is.m„)= p (sls,m. lm„l sM) Is»2s3ll) . (11)

We note that if js»2S3f) is written in terms of the
states lslm, l) ls,m„), the result is the same as simply
using the antisymmetrization operator for 5=0 or the
symmetrization operator for S=1. For instance,

I
2-', 00)

=aj-'2 —2, ;
—', ——',). Since the entire two-particle state is

antisymmetric, the product of the space and isospin

0 J. M. Blatt and V. F. Weisskopf, Theoretical 1VNclear Physics
(John Wiley R Sons, Inc. , New York, 1952).
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parts is symmetric for S=O, and antisymmetric for
S=1.

Two distinct cases arise for the E matrix from Eq.
(9).

(i) m, 1=m,l'= &-'3: Neglecting the space and isospin
part, we have

Q (»m, l, s.m„lEI»m, l, z.m, .&

tlEsc

=P (, a-. , —, m..lEI-, +-„-,m„)

=—(-', ~-'„-,' ~-,'
I
E

I
—,
' ~-,'; —', ~-', )

Using Eq. (11),we obtain

g (»m. l sm-IEI»ml sm-)

= (-:l1 ~1IEI ll1 +»+{l(ll»IEI ll10)
+-,'(~-,'00IEI-,'—,'00&~-;(-,'-;10IEI-;—;oo&

&3(-,'-3'00
I
E

I
—',-,'10))=E'1+'+'+-'E 1"+-',E3", (12)

where the upper sign is for m,1=+3 and the lower sign
is for m, 1

———
~ and where the last two terms have been

dropped since E is diagonal in S. The notation used is

+(-,' +-,'; —', w-', IE I-,' a-'„-,' w-', ). (-;-',Sms
I
E

I
33S'mS, )= ~sS.ESMsM'. (13)

(11) m, l= —m, l'= +3 (the spin-fhp terms): In this case we have

Q (»m, l, s,m, .lEI»m, l', s,m„)=(3 a3; —', ~-,'IEI3 ~3'; —,
' ~3)

tRsc

+(l ~l l ~l IE I l ~l; l ~l)= {lv2(ll1 ~1IE
I l 10)~-,'v2( 1 ~1

+{3&2('3310 I
E

I

—', —',1 %1)&(3300I
E

I
1331 &1&)= 31%2{El+'3+El' +') . (14)

Exactly analogous manipulations are carried out in the case of isospin. Combining the isospin of the outer neutron
with that of a core nucleon, we have

It,t»)lt, t„)= P (t,t.t»t. ,lTT,)lt,t.TT,),
0, 1

(15)

where t13———3. From Eq. (15), and taking into account that the E matrix is diagonal in T and independent of T3,
we obtain

Z(tlt», t.t.3IEs 'M'ltlt». , t.t.3&=(3 „3,IEs ' 'I, „„)
&c3

+.( . IE sM'sl . ) ( 10IE MsM'sl 10&+ ( 00IE M3M'sl 00)

+(331 —1IES ' 'i331 —1)=3ES(T-» ' '+3ES(T=31 ' ' (16)

introducing the notation:

+lilt sTT3 I
E

I
5 ~s'T T 3) bss'bTT'tlTsT'3EsT

and combining Eq. (12) with Eq. (16), we have the following.

(i) Non-spin-fhp case, m, 1=m, l'= &-'3:

P Q (»msltlt31 j Scmsctctc3 I
E

I &lmsltlt» j ~cmsctctc3)
msc tc3

= (-'E, +'+'+-'E„+'+')+-'(-'E "+-'E o")+-'('Eo "+'E33") . -(18)-
(ii) Spin-Rip case, m, l———m, l' ——a3:

p g (»msltlt13, ' scmsctctc3 I
E

I
slmsl'tlt»& s,m„t,t,3&= 3%2{3(E11+"+Ell+')+3 (Elo+"+Elo '+') ) ~

~sc &c3

(19)

Using the fact that the entire state is antisymmetric for interchange of all indices, we group the terms of Eqs.
(18) and (19) according to the symmetry of the associated space state. We thus obtain

Z Z (»msltlt13j ~cmsetctc3I E
I »msl tltl3j 3cmsctctc3) 4Ec +3Es

~sc &c3

1for 821=m 1

=(1/2 2v)(3 E, r+ E, r) for m, l'= —m, l, (20)
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where the subscripts s and a specify the symmetries of the spatial states, and where we de6ne

K.+—=3(2K'ii+'+'+Eu")+Eoo",

E,+= (2E—'io+'+'+ K'io")+3Eoi",

E.~+=—E„+io+E,io+',

f2=K +i 0+K 0 +1

In terms of the above notation [ Eq. (20)g, we may rewrite Eq. (9) as follows:

(21a)

(21b)

(22a)

(22b)

(1;0"
[ E [ 1;0io)= o g [ (l is imim, i[ JSI) [ 2{Q (eilimi, e,l,m, I

StE,+8+StE,+S
[ nilimi, n.l.m.)}+(1/2~2)

mph' lcmc

XP (lisimi' —m, i[JM)(lisimim, i [ JM)*{P (eilimi, n, l.m, I
6, 3E f+8+ S K,~+S [nilimi', n.l.m.)}, (23)

where

with

me1 lcmc

nlm; e'l'm')—= laaEInlm)iIn'l'm')o —In'l'm')il»m)2j

S[elm; nVm')=—-,'V2[ [nlm)i[nVm')2+ [nVm')i[nlm)2j,

(24a)

(24b)

[nlm);= y„i„(r;), i = 1, 2.

Equation (23) is a sum of matrix elements of the two types

(n, l,m„n.l.m. [8tK,+8 [n,l,m„n.l.m.)

(nilimi, n, l,m. I 8 Eo +8 Inilimi&1; e.l.m.),

(25a)

(25b)

where 8 is one of the unitary operators a or s, and we have taken into account the fact that mi+ m» ——m i'+ m, i' =Mi,
so that in the spin-flip matrix element (25b) we have mi'= mi+m» —m, i'=mi&1, since m.i= —m»'= &—', .

We wish to further diagonalize the E matrix, and to do this we use the property that the two-nucleon force is
independent of the state of the two-particle center of mass, but depends strongly on the relative l and J of the two

nucleons, as well as on their relative spatial wave function. However, it conserves the two-body total angular mo-

mentum J, and is independent of JIg. That is, the E matrix is diagonal in J and independent of M J.. We shall use
these properties to reduce the number of matrix elements we need to calculate. The fact that the E matrix is in-

dependent of the relative 3f'J, which is equal to mi+m„and of any of the quantum numbers of the center of mass,
means that we may change the sign of all the angular momentum projections, m&, m„M~, and M q in the matrix
elements (25a) and (25b) without affecting their value. Remembering that changing the superscript from + to
—on E, E„Ef, and E,f implies reversing the signs of 3fa and M'8, we write the following identity:

(eilimi', n, l,m. [8tXo 8[eilimi, n,l,m,)=(eili —mi,.m, l, —m, [8tXo+8[nili —mi,'n. l, —m,), (26)

where X stands for E„E„E,r or E,~. Equation (26) allows us to write Eq. (23) in the form (where m, i +-',)——

(1;0"[E[1;0")=-'QQ I(lisimim, i[JM) I'
mss j l cmc

X (nili &mr,' n, l, ~m, [ + E',8+S K,S [nili &mr,' n, l, ~m, )+(1/2&2) P P (lisimi' —m, i [ J3I)
ms/ Lcmc

X (lisimim, i [
JM)*(nili +mr, n, l, &m.

I
3QtK rQ+ S E,~S [nili +mi', n,l. +m,), (27)

where the superscript + on K is superfluous and is therefore dropped.
We now are in a position to express the symmetric and antisymmetric product functions 8[nilimi, ' n, l,m, ) in

terms of linear combinations of products of harmonic-oscillator states for the two-particle relative and center-of-
mass quantum states

I elm) and [1VLM), respectively. Thus we have

8
I eilimi, e,l.m, ) =2 2'o~r iraqi~"'""'"""'I&L~) I elm&,

where the T's are the Talmi coeKcients, ' which are functions of the quantum numbers e~l~m~, e,l,m, and ELM;
nl thme summation is over possible values of 1V, L, M, n, l, and m; and 8 stands for either "a"(antisymmetric) or
"s" (symmetric). The symmetric and antisymmetric space states are defined in terms of the basic harmonic-
oscillator states by Eqs. (24a) and (24b). The values of 1VLM and nlm are limited by the relations

mr+me= 3I+m (29)
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(2mi+li)+ (2N.+l.)= (21V+L)+(2m+i) .

100j.

(30)

It can be seen from parity considerations, or from direct calculation that for symmetric space states, / is always
even, whereas for antisymmetric space states, / is always odd. As an example of two of these expansions, we have
from Table IX (see Appendix A),

8]022; 01 —1)= (1/+20) ~031) ~000)+(1/+5) [111)~000)+P 11 —1) [022)
—(1/Q6) (011)(020)—(1/vS) (011)(100) (31a)

so that
Q$3OOO'»»

—' = (1/+20), 2 cQno2Q»'o' —~ = —(1/Q6),

Similarly, from Table XII, we have

@l022; 01 —1)= —(1/+6)1020) 1011)—(1/&3) I 100)1011)+2I
022) I

01 —1)
+(1/+20) [000) [031)+(1/+5) |000)(111). (31b)

Using Eqs. (28) and (26), and taking into account that the E matrix is diagonal in the center of mass quantum
numbers, we have for the matrix element (25a)

(ugly &mg, e,l, &m. ICE&eleglg &my, e,l, &m.)

p p (2' ntlzmznclcmc) 4

&&(njclg +mp[(2V)La +M)(Eg [lVcLc +M;) fn, lc +e;)Tpr, z,,y,n, g,
m""' '."". ' (32a)

=P JTe~r~ngm"" '"""f'c(el &m JEq(el &m), (3213)

subject to the restrictions (29) and (30).Thus, the non-spin-flip matrix elements depend only on the squares of the
Talrni coeKcients.

For the spin-fiip terms, such as element (25b), we have, using Eqs. (26) and (28),

(mglg &nag, N.l, &m. ~8 Eg g~mglg &my', e,l. +m, )
—P P(T nglungnclcmc)+

i k

&&(rsj,lI, RmI, )(1VALg +%I,~Eg ~lV;L; &3II;)~e,l; &m, )Tg~,r„~,„,
—g P(2'& & nzhmync4mc)4(2 e& &

ralgmx'nc4mc)(+„l„~~ ~+ f ~+,l, ~~,)
i k

(33)

where the summations over i and k are carried out for which jN~Lq &MA, )= ~$;L; &3II;).Taking into account
that m&'= m&&1 fc.f., Eq. (25b)j and Eqs. (29) and (30), we have

M~+m; =Bt +f8' =pl, +Bzy&1 =3Ey+7sp&1

2(lV;+m;)+(L~+l;) =2(mi+e, )+(li+l,) =2(lVq+rsI, )+(Lq+lq),
from which we have, for (1V;L;M;)= (1VI,L~MI,), the results

m Slip& 1

2e;+l;= 2mg+lI, .

Using Eqs. (35a) and (35b) in Eq. (33), we have

(nqlq &mq, e,l. &m,
~

gtEgrg
~
eqlq &m~&1; e,l, &m,)

(34a)

(34b)

(35a)

(35b)

2 Z(2 I1PLM l n&l&m&nclcmc) 4(2 OPLM '/' +1n&4m&+I nc4mc)(~l ~yz(Ey I ~ l ~yg+1) (36)

where i = (JVLM,nlrb); e'=e+k; and l'=l —2k, to satisfy Eq. (35b). The index k is summed over all integers for
which P&O.

We note that in Eq. (27) these matrix elements are summed over all values of l, and m. . Therefore, we have
arranged the Tables of Talmi coefficients so that these sums can be read off directly by simply adding the squares of
the Talmi coeKcients down each column, in case of no spin Qip. In the spin-Qip case, additional Tables are given
for the coefficients required in Eq. (36). Thus, for instance, to 6nd the matrix element sum: g~,m, (022; N.l,m,

~
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X 8+E.S
I
022; 22.t.m.); we simply add the square of the coefficients of each relative term

I n, t;,m;) down each column
in Table IX to obtain

2 (022 22 t m
I

cd E c)
I
022 21 t m ) (7/4)(E )000+(3/4)(E )022+2(E )021+0(E )020+ 2(E )100 (37)

lcmc

where we have introduced the notation

If we introduce the notation
(E,)„,„—= (atm IE, I

~tm).

(E,~)...=(~tmIE, &I nt m~1),

(38a)

we can write the spin-flip terms in a similar compact form. We do not introduce a notation for (ntmI EOf I22+1
t&2 m —1) which can occur in Eq. (36), since we shall show in Appendix 3 that from angular momentum con-
servation these are zero. Using these notations we may go back and write Eq. (27) in terms of (EO)„1 and (EO )„l .
Thus, we have, from Eqs. (27), (32b), and (36)

(1 0"IEI1; 0")=-' Q I(t»imjmciI JM) I'{g ITn2lr, 21.( "'""'"'"I'(E ) 1

ms&=+1/2 lcmci

+ 2 2 I T.~~~ 1-""'"'"""'I2(E.)-1+-}+(1/2v2) 2 (t»1m)+1 —m. iI J~)(t»imim. iI J~)*
lcmc i ms1=+1/2

X{p p (T nilimin l mc)*(T, , nihml+1 n l m )(E f)
lcmc i, Ic

+3 P P (Tnlllmlnclcmc) 8(T, , nlllml+1 nclcmc) (E r) 1 } (39)
Zcmc i,k

We now recast Eq. (39) in a different form. Using a notation which divides E into a triplet part and a singlet
part, we have from Eqs. (21a) for the non-spin-flip elements of E,

where

(Ec)nlm E(0)nlm +3E(1)nlm f01 eVen t

(E) l =E(0) l 0+3E(1)„l ' for odd t,

E(T)nlm =2(E1T )nlm+(E1T )nlm

E(T)nlm = (EOT )nlmc

(40a)

(40b)

(41a)

(41b)

and a similar notation is used for the spin-Qip elements.
We use this notation to write Eq. (39) in the compact form

(1;oioIEI1;oio)=P P (c„, )E.,„1+(=„,OE„, 0)+ P +elm y

nl ml m=1 [(t+m)(t —m+1)/2]')2
(42)

where we have omitted the labels "T"since they can be inferred from the indices ls on E. The coefficients C„l ',
and D„l are combinations of Clebsch-Gordan coefficients and Talmi coefficients. From Eqs. (39) and (40) we have:

Z
ms1=+1/2

I (t»imim» I
JM)

I
'{& & I

T,&1, +2lnimn"'+m'""+ ~ I'} for odd t
lcmc NLM

(It»imimcil JM)
I {p p I Tc&& +minim""'+ '"' ' + 'I } for even t (43a)

ms1=+1/2

C~lm 3C~lm' for odd

=3C„l for even /

lcmc NLM

(43b)

D„l ——4[(t+m)(t —m+1)]'" p (t»imi&1m, iI JM)(t»imimciI J~)*
ms1=+], /2

(T ~~~ l nlll+mlnclc kmc)(T &&~ & l &
in14+ml+inclc kmc) Odd t

lcmc NLM, Ic

=0[(t+m)(t m+1)$'(' g —(t»1m(&1 m 1I J3f)(tisimim 1I JM)*
ms1=+1/2

(T ~g~„l n'll +m'n'1' +m')(T, ~q~ +2 1 2) in'1'+m'+' n'i'+m') even t.
lcmc NLM k
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Because of the relationship between the Talmi coeK-
cients, the introduction of the radicals into the de6nition
of the D's makes them rational fractions.

Our next step is to recombine the relative states
I
n/n3)

with the spin states implicit in the E„l ' and E„l to
give states of the form In/SJM). To do this, we use
Clebsch-Gordan coefficients as follows:

ISMs)In/nl)=Q (/SmMsI JM j) In/SJM j). (44)

In Sec. 4 we obtain the explicit expressions in the form
of Eq. (48), for particle 1 in states J=~5, M=-2, , 2, -'„and,
find, of course that they are identical (although the
C„l ' are not identical for the various M values). Then,
we obtain similar expressions for the case J= —,', %=—'„-,'.
Finally, we subtract these, and obtain

+5= (1;0"IXI 1;0")j 5/2 (1 0"IXI 1;0")J 3/2

=Q ((68) 11(Q Bijk l, j')+(t) 8) 13k l,j'
nl

Since E is diagonal in 5 and J, we can write

(Esr ' )ni~=p (/Sn5MsI JM j)* where

+(~). 1(Z ~ijk-i.j')) (5o)

X (/Sn5M's
I
JM' j)k„ljs,, (45) (~@)nl (+nl )J 5/2 (@nl )J=3/2 (51)

where we have used the matrix elements

(n/S JMj I
E

I
n/S'J'M J')= Ass 8jJ'k l,J ~ (46)

These matrix elements are explicitly independent of 3fJ
and. 3f'J.

We show in Appendix B that E„l ' and E„l ~ can be
expressed in the form

(47a)

As we will show in Sec. 4E that for 0'2, (68)„is=a, we
6nally obtain

A5=P /), 5).1(P Al jk„l,j').
nl J

(52)

We have now proceeded as far as possible without
taking account of a particular form for the nucleon two-
body force. The k matrix is expanded in terms of the
potential U5 Lcf., Eq. (4c)] as follows:

l+I
&nim = 2 ( 4 ljm+J3l j)knl, j',

&n'l' &nl

I(ntsJI v, In't'sJ)I2
(4'/b) knl, J (VF)nl, j +Zr + . (53)

n'l'

where AlJ and BlJ are given in Table I.

&nl~/= L(/+n2) (/ —nl+1)/'2]'/2 p & ijknl, j (47c) This expansion takes into account the perturbation of
the two-nucleon hard-core wave function by the poten-
tial V5. From Eq. (4c), we have for Vr the following:

TABLE I. Values of the coeQicients A ~g and BtJ. v.(1,g) ="(1,~)—lk'Iri. I',

Alp=
2l+3

(/+ 1)(2/+1)

2l+3

2l+ j.

2l —1

l(2/+1)

2l —1

where 25(i,c) is the finite part of the two-nucleon
interaction.

The two nucleon potential m~ given by Gammel and
Thaler4 contains a central part, a spin-orbit part, and
a tensor part, which operate outside a hard-core of
radius 0.4 fm. Thus, we may write

V2(1,2) = Vgr (r12)—2k'r12'+ vgr'(r12)L12 S
+vgr (r12)S12 (55)

Incorporating the results of Eqs. (47a)—(47c) in Eq.
(42) we have: (n/SJMIV, In/S JM)

= ((n/I(vgrg(r) —-'2k'r2) In t')811

+(n/I Vgr 'In't)Z1 jt),1/)11

+(n/I Vgrrl n't') V'll j).1)Sjj t'ss &~~, (56)

(1;0"IEI1;0")=g (e.i'(P Bijk.i,j')
nl J

+(2',„,'k„, '1$„(QA k„, ')), (48)
J

where we de6ne
l

O nl'= Q Cnlm',

where Vgr (r), Vgr'(r), and. Vgr (r) are the radial
parts belonging to the central, spin-orbit, and tensor
forces given by Gammel-Thaler. 4 The matrix elements

(49a) of the spin-orbit and tensor operators are

e.l'=P C.l ',

(f)„1——p (nlC„1„'+D„l„).

(49b) (S/JM
I
L S

I
S'/'J'M')= t)2/3/. t/ JJ ass hll -t) sisal J (57a)

(S/JM IS12 IS't J M )= b2r2/ 5jjit) ssi8s19 lli j,
(49c)

where the ZlJ and VlJ are given in the Table II.
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TAsx,z II. Matrix elements of the spin-orbit
and tensor operators.

l l l
l+1 l l—1

0 —(l+1)

l+2
l+1

0

l—2
l —1

—2l

2l+3

2(l+1) 6L(t+1)(l+2)j"' 6/l(t —1)g'"
2

2l —1 l+3 2l —1

nl J

+~u(Ver'). l+ 6l,z(Var ).,}

3. FIRST-ORDER ENERGY DIFFERENCE

We now specialize the calculations to erst order. Using
Eqs. (52), (53), and (55), we have

Do= g (6$)„lP Alp(nil J'itsy I Vr ~nl1JM)
nl J

Eq. (27), the expression:

(1 0"~E~1;0")=-'P (021; n,l,m,
~

atE.e+StE,S
lcmc

1
X

~
021; n,l,m,)+ g—(02 —2; n, l,m,

~

20 &.m,

X (2',tEa(3',+StK,S
~
02 —2; n.l.m, )

2
+ P (022; n, l,m,

~

3CtK, r8+StE,fS
10 &chic

X i 021; n, l,m.), (62)

where the —2 in the second term comes about through
the use of Eq. (26).

Using the tables of Talmi coefficients (Appendix A,
Table X), we can write for Eqs. (32) and (33)

P (021; n.l.m.
~
StE,S ~021; n.l.m.)

&chic

(QQ) li 2 1/l(l+ 1 ))(V ls) (5g) (7/4) (Ks) 000+ 2 (Es)022+3 (Es)021+(5/12) (Es)020

+3 (Ks) os —2+ 3 (Ks)»o (63a)
where we have used the following equations which are

From Table IX, changing the signs of all nz's

Q AlJ 2 A lJ+ll, J Q J3lJ+llJJ J J'

Q AlgZlg=2 —1/l(l+1)

Z f3lJ 3j Z +lJ@lJ 1 ~

J J

We have also used the notation:

(Vgr") „l—= (nl
~
Var" (r) j nl)

P (02 —2; n, l,m,
~
StE,S~02 —2; n.l.m.)

lcmc

(59) = (7/4) (Ks) Ooe+ (5/4) (Es)02 —2+ 2 (Es)02 —1

+-'.(K.)„,+-.'(K.),., (63b)

Similarly

Q (021; n, l.m.
~

(2',tE (2', ~021; n.l.m.)
lac

= (5/4) (K.)0»+ (5/4) (K.)0»+ 3.(E.)02 —3

+2(Ka)os2+3(E )032+(3/20)(E )oso

+go(Ka)111+20(Ea)lies (64a)where p„l(r) are the wave functions for the relative
motion of two particles in a harmonic oscillator, with g (02 —2; n, l. .m~0', tE,8~02 —1; n.l.m,)
a hard-core potential. lcfsc

4. NUMERICAL CALCULATIONS

A. Case J~=» M~ ——
~

For this case, the outer neutron is in the state J~=
~

and Ms ——2, and Eq. (g) for the state of the extra neutron
becomes:

I nits»J2Mstltss) —
I
022'-2'2-2'——,')

I/2

(22'msm. l
~

—2'2)
~
nsllmlslm, ltstls)

me1=&/&

—(9/4) (Ea) 01 -1+3 (Ea)010+3(Ea)011+f.(Ea)03 —3

+3(Ka) es —2+ (1/20) (Eo)03 —2+ 3 (Eo)» —2, (64b)

P (022; n,l.m. i S E, S i 021; n,l.rn, )
&chic

=q, (Es )022+(3/2+6)(Ks )osss (64c)

P (022; n, l,m. i
StK,rS

j 021; n, l,m, )
lcmc

=&2(Kaf) 0221(3/2+6) (Kaj)032+ (1/+10) (Ear) 032

+(3/20V3)(Ear)032+(1/5v2)(E af)223. (64d)'
=Qs

~
0212 —,'2 —2)++3

~
0222 —22 —2) . (61)

Putting Eqs. (63) into Eq. (62) yields the equation
Carrying out all the manipulations, we obtain, for corresponding to Eq. (39):
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(1; 0"
I
E

I 1; 013)= (7/18) (E,)000+12 (E3)100+(21/80) (Eo)011+(21/80) (E~)010+(13/80) (Ea)oi —1

+(1/50) (E&)111+(1/50) (E&)11o+ (1/100) (E~)11 —1+10 (E8)op 2+ (3/20) (Es)021+ (11/120) (Es)opo

+ (3/40) (E,)02 —1+(1/18) (Eg) 02 —2+ (3/80) (Eg) p3 —3+ (1/80) (Ea) 03 —2+ (1/400) (E,)op 1+(3/100) (E,)030

+ (2/25) (Ea)031+10(Ea)032+ (6/5) (E, )110+(3/25) (E~ )111+(3/10v2) (El )022+ (3/10v3) (Es )021

+(9/10V3) (E~ )p33+ (3/&/5) (E& )p32+ (9/50+6) (E&f)opi ~ (65)

Using Eqs. (21a) and (21b) this can be written in the
form given in Eq. (42). The coeKcients C„i 8 and D„i
are listed in Table III.

Combining the Inlm) states with the ISMs) states
gives Eq. (48). From Table III (a, b, and c) and the
definitions (49a)—(49c), we have for S„p and S„i the
values in Table IV.

B. Case J»——» M» ———,
'

In this case, the outer neutron is in the state J»= —'„
Mi ——

2 and Eq. (8) for the state of the extra neutron
becomes

I n1ll~lIl~ltlt13) /3 I
0202 2 2 2)

+v'-'1021-,' —-', —', ——,'). (66)

are different, their sums are the same, and whereas even
D is different in the two cases, the quantity

S„i——P„D+Q mC is identical with the previous case.
Thus, this calculation acts as a check of the figures ob-
tained previously, and confirms the statement that the
same energy expression suftices for both JI/I»

——~ and
M» ———,'.

C. Case J»=~, M» ——2

The same procedure is used to And the interaction for
the case that the neutron is in the state J»=-'„M»=-,''.

I nalisi jiN ititip) =g-;
I
022-,' —-', -', —-', )

—gp'
I

02111-', ——',) . (68)
Thus, we have

(1 0"
I
E

I
1 0")= 1 P (02 —2; n, l,m,

I
82E,8+stE,sThis results in the following form for Eq. (2'7):

(1;0"IEI1; 0")=(3/20) Q (020; n, l,m, I

~cmc

1
X l02 —2; n.l.m.)+—Q (021; n.l.m. I

2O Lcmc

&chic

X CLtE 8+StE,S
I
020; n, l,m, )

+—,'. g (02 —1; n.l.m. IntE. e+StE,S v2
X ~2'tE0CL+ StE,S

I
021; ln, m) g——(022; n, l,m, I

g i.m.
&cine

X I
02 —1; n.l.m.)+2v3 p (021; n,l.m. I

&chic

X38tE.S+StE,S
I 020; n, l,m.) . (67)

X3StE,S+StE,SI021; n, l,m, ) . (69)

TABLE III. Values of C l and D ~ for J»=-,', M»=-,'.

The matrix elements in Eq. (69) are the same as those
Using the Tables of Talmi coeKcients to express the in Eq. (62); the case Ji——2, 351——23, but they have differ-

sums in Eq. (67) and Eqs. (23b) and (23c) yields the ent coefficients. They are given in Eqs. (63a)—(64d).
interaction in the form of Eq. (42). Although all the C s Using these in Eq. (69) and using Eqs. (21a) and (21b)

(a) Cnlm'

nl =00
01
02
03
10
11

(b) c„,.o

el =00
01
02
03
10
11

() D..
nl =01

02
03
11

~ ~ ~

9/10
~ ~ ~

~ ~ ~

1/10
3/10

~ ~ ~

~ ~ ~

3/10
1/10

~ ~ ~

~ ~ ~

3/1O
6/10

~ ~ ~

~ ~ ~

63/80
3/20
6/25
~ ~ ~

3/50

~ ~ ~

21/80
9/20
2/25
~ ~ ~

1/50

6/5
3/10
9/50
6/50

7/16
63/80
11/120
9/100
1/12
3/50

0

21/16
21/80
11/40
3/100
1/4
1/50

Dnl

6/5
3/5

42/25
6/So

~ ~ ~

39/80
3/40
3/400

~ ~ ~

3/100

~ ~ ~

13/80
9/40
1/400

~ ~ ~

1/100

nl

3/2
3/4

21/10
3/20

~ ~ ~

1/16
3/80

~ ~ ~

3/16
1/80

~ ~ ~

~ ~ ~

9/80

~ ~ ~

3/80

Qm |-"num»

7/16
33/16
23/48
63/80

1/12
3/20

21/16
11/16
23/16
21/80

1/4
1/20

mCa~m'

0
3/10
3/20

21/50
0

3/10
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nl

00
01
02
03
10
11

~ni

7/16
33/16
23/48
63/80

1/12
3/20

21/16
11/16
23/16
21/80

1/4
1/20

s
0

3/2
3/4

21/10
0

3/20

TABLE IV. C„~~ and S„~for J1———,', M'1= $. coefficients in the difference expression cancel out, leav-
ing only the S coefBcients for the final expression. Thus,
the difference in energy of the extra neutron between
the J~=2 and J~= ~ case, i.e., the spin-orbit splitting
is given by an expression of the form

Ao= P (6$).&(g A (gk. i„g') . (71)
nl J'

yields the interaction in the form of Eq. (42) with the
coefficients given in Table V (a, b, and c).

The energy is given by the same formula [Eq. (48)j in
terms of the Ol's and S's given by Table V (a, b, and c).

D. Case Jg=~, My=2

To evaluate the erst-order energy splitting, we use
V for K in Eq (71).The matrix elements of V are given
in Eq. (55) and Table II. Using these, we obtain Eq.
(58), namely,

ho= Q (5$)~)[2—1/l(l+1)](Vgz")~i, (72)
nl

where

In this case the neutron wave function is (Vgr")j.i= f„~*(r)Vgr'(t, r)P„~(r)r'dr . (73)

In&t»&JgMgtgtgo) =4 II021-', ——',-', ——',)
—~-,' I

o2o-; —,'-; ——;),
and we have

3
(1;0"IKI1; 0")=—g (02 —1; N, l,m, I

2O lcmc

XO',tK 0',+StK.SI02 —1; rt, l,m, )
+~() Q (020' e lm

I
StK 8+StK SI020'e l m)

lcmc

——g (021; m, l,m, I38tK, G+StK,S
lcmc

X I 020; r/, .l.m.) . (70)

It can be veri6ed that the 6,'s and S's are the same in
this case as in the case J~= 2, M~ ———,

' (although the C's
and D's are quite different in the two cases).

E. Energy Difference Aa to the First Order

Since the 0', coeKcients are the same in both the
J~=2o and the J~——2o case (see Tables IV and V, the 8

C7

The coefficients of (Ug&") „& can be obtained by sub-
tracting the results for the S„lfor J~=-,' from those for
Jz= » and multiplying by [2—1/l(l+ 1)$ as indicated in
Table VI.

Our final expression for the 6rst-order energy is

&o= (45/8) (Vgr') op+ (55/16) (Vgr') oo

+(161/16)(VGT )03+(9/16)(VGT )11~ (74)

The Gammel-Thaler4 spin-orbit force is given by

Vgr"(1 r) = —(5000 MeV)e ""/3.7r for even t
(75)= —(7315 MeV)e '~"/3 7r for odd I,

where r is the internucleon distance in fm.
The value of Do using Eqs. (74) and (75) with hard-

core wave functions has been evaluated in an earlier
paper. ' The result obtained is as follows:

De= E5/Q E3/o (45/8)( —0.752)

+ (55/16) (—0.064)+ (161/16)(—0.0044)

+ (9/16) (—2.38)= —5.95 MeV. (76)

TABLE V. Values of C„g ~ and D„~ for J~ ——~, 3E1———,'.

() c..
nl =00

01
02
03
10
11

(b) c..
nl =00

01
02
03
10
11

(~) Dnrm

nl =01
02
03
11

m=3

m=3

~ ~ ~

—9/10
~ ~ ~

~ ~ ~

1/40
3/40

~ ~ ~

~ ~ ~

3/40
1/40

~ ~ ~

e ~ ~

—3/10
-3/5

~ ~ ~

27/80
3/80
3/50

~ ~ ~

3/200

~ 0 ~

9/80
9/80
1/50

~ ~ ~

1/200

—6/5—3/10—9/50—3/25

0

7/16
27/80
13/240
9/400
1/12
3/200

0

21/16
9/80

13/80
3/400
1/4
1/200

~ ~ ~

111/80
9/80
3/100
~ ~ ~

6/50

~ ~ ~

3'//80
27/80

1/100
~ ~ ~

1/25

Sum

—6/5—3/5—42/25—3/25

1/4
3/20

~ ~ ~

~ ~ ~

3/4
1/20

~ ~ ~

—9/4—9/8—63/20—9/40

~ ~ ~

9/20

~ ~ ~

3/20
~ ~ ~

~nl

7/16
33/16
23/48
63/80

1/12
3/20

8 P

21/16
11/16
23/16
21/80

1/4
1/20
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TABLE VI. Values of 6$„~.

01
02
03
11

& ~(~ t=)

3,/2
3/4

21/10
3/20

8 ((J=-',)
—9/4—9/8—63/20—9/40

(ae).,
15/4
15/8
21/4

3/8

5/8[2 —1/
l(1+1)1

45/8
55/16

161/16
9/16

5. SUMMARY

Assuming that as a erst approximation, the indi-
vidual-particle potential experienced by each nucleon
in the nucleus is given by the harmonic-oscillator po-
tential, the Hamiltonian for the nucleus (taking into
account orily two-nucleon interaction) is written as a
sum of an unperturbed Hamiltonian corresponding to
the harmonic-oscillator Hamiltonian and all the two-
nucleon interactions minus the harmonic-oscillator po-
tential [Eq. (2)j.We consider the problem of spin-orbit
interaction in O' . The nucleus 0' can be considered
as consisting of 0"core plus an (extra) neutron outside;
the particles in 0"fill up the 1s and 1p states (nlm =000;
010; and 01 &1 with two neutrons and two protons
being in each of these spatial states) with the last neu-
tron occupying the 1d state with J= 5~ or ~. In order to
determine the spin-orbit splitting it is necessary to cal-
culate the difference in energy between the con6gura-
tions having the extra neutron in the states d5~2 and
d 3~2. In calculating this difference it is assumed that the
core being common to both the con6gurations, the two-
nucleon interactions among the core particles can be
neglected. Thus we need to evaluate the diagonal ele-
ments of the E matrix for the nuclear wave functions
which are the two-particle states involving the extra
neutron and each of the nucleons in the core [Eqs. (5)
and (10)j for the two cases when the extra neutron is in
the d~/2 state and d 3/'2 state. The difference E(d~/2)

E(d 3/2) determines the spin-orbit splitting [Eq. (5)j.
It is advantageous to express the two-particle oscillator
wave function ~nilimin2l2m~) in terms of the linear
combination g; 2'~,.i,.f~,.iit,.r„.~,."'"~'"'" '

~
n;l,m;1V,L/ill;),

where the quantum numbers e;l,m; pertain to relative
motion of the two particles while E;L;3E; to the center-
of-mass motion [mi+m2=m, +3II;, (2ni+li)+(2n2+l2)

= (2n;+l;)+(2X;+1.;)1, since the two-body E matrix
is diagonal in the center-of-mass quantum numbers.
Further use has been made of the property that the E
matrix is diagonal in the total angular momentum
j;(j;=1~+S) and the spin 5(S=si+s2) of the two-
nucleon system. Thus the calculation of the E matrix
for the extra neutron in the states J= ~ and J=-,' has
been carried out. It is explicitly demonstrated that the
Ematrix is independent of M(= j,).The actual evalua-
tion of the E matrix is done by expanding in terms of the
two-nucleon potential [Eq. (53)j. Since all realistic
two-nucleon potentials include a repulsive hard core,
this expansion is carried out in terms of the matrix ele-
ments of the finite part of the two-nucleon potential
evaluated for modi6ed oscillator wave functions which
include the effect of the hard core. The numerical cal-
culations are done for the Gammel-Thaler4 potential to
first order so that the only contribution to the nuclear
spin-orbit interaction is from the two-nucleon spin-
orbit part of the potential. The tensor part of the poten-
tial will contribute in the second order, as also the effect
of the Pauli exclusion principle and the excitations of
the core. The first-order calculation gives a value of
—5.95 MeV for the spin-orbit doublet separation in 0"
as compared to the experimental value" of —5.083
MeV. The agreement is expected to improve since the
tensor force is noted to contribute a small amount but
of the wrong sign to the spin-orbit interaction in nuclei.
These higher-order calculations, within the framework
of this paper, are quite laborious and we expect to re-
port them subsequently.

APPENDIX A. TABLES OF TALMI
COEFFICIENTS

In the Tables VII—XVIII the center-of-mass state
~&I.M) is written next to the Talmi coefficients. ' The
relative states are given as column headings.

APPENDIX B. RESTRICTION ON THE FORM OF
THE X MATRIX ELEMENTS IMPOSED BY

CONSERVATION OF ANGULAR
MOMENTUM

Since the two-body E matrix conserves the (two-
body) total angular momentum J we know that the

TABLE VII. Talmi coeQicients for the symmetric core-core states.

g I 01l 12Ã ltScl cme) +
gI000; ooo)
gI011; ooo)
gI010; 000)
S 101 -1;000)
gI011; 011)
g I011; 010)
Sloii; 01 —1)
g I 010; 010)
gIoio; oi —1)
gI01 -1; 01 -1)

I000&

I ooo)
I oii)
I 010)
I 01 —1)
(1/+2) I 022)
(1/~z) I oz 1)
(1/ Q6) I 020) + (1/Q3) I 100)
(1/Q3) I 020) —(1/Q6) I 100)
(1/~z) I oz —1)
{1/~z) I oz —2)

Iozz&

—(1/ v/2) I 000)
—(1/+2) I 000)

I ozo&

—(1/%/6) I 000)
—(1/Q3) I 000)

102 —1)

—(1//2) I 000)

Ioz —2&

—(1/~2) I ooo)

Iioo&

—(1/v'3) I 000)
(1/~6) I ooo)

"M. A. Preston, Physics of the Eeclels (Addison-Wesley Publishing Co., Inc. , Reading, Mass. , j.962), p. 184.
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TABLE VIII. Talmi coeQcients for antisymmetric core states.

+Inlm)
6 I nll1fnieotomo) ~
I I 011' 000)
g I 010; 000)
ejoi -1 000)
QI011; 010)
IIoii; oi -1)
8 I 010; 01 —1)

I oi 1) Ioio) I 01 —1)

I ooo)
Iooo)
I ooo)
(1/Q2) I 010) —(1/Q2) I 011)
(1/Q2) I 01 —1) —(1/Q2) I 011)

—(1/Q2) I 01 —1) (1/Q2) I 010)

matrix elements are of the form

(n/SJM~[E~[n'/'S'J'M')=Sing ass ks» gg, , (81)

where we have also taken into account that the E
matrix derived from the two-body nuclear-force law is
diagonal in S. From Eqs. (42), (40a), and (40b) we see
that the interaction between the extra neutron of 0'
with the core can be written as a linear combination of
the following three forms:

so that the matrix elements become )using Eqs. (81),
(83), and (84)j,
(n'l'm'I Esz~s'~s Inlm)= g (/SmMs[ JM&)*

X(l'Sm'M'si JMz)k" r t, zs (85)

1. Expansion of (n'/'m[ X'[nlm) for n'l'=nl

(nlm [E' [nlm) = 2(nlm111 [Ez [ nlm11)

+(nlm10[Er In/m10)=2 P (/1m1[ JM)'k„t, ~'

+Q (/1m0[ JM)'k t,g'=Q {Atgm+B)g}k„t,g', (86)

At~m+Btq= {2(/im1[ JM)'+(/1m0[ JM)'}. (87a)

For the three values of J, the results are

(n'/'mjE'jn/m)—= (n'/'m[{2Etp +Ejr '}[nlm) (82a)
(a) J=l+1

(n'/'m
[
E'

[ nlm) —= (n'/'m
[
Etp" [ nlm) (82b)

(n'/'m —1[E~[nlm)
=—(n /'m —1[{Errio+Etro —t}In/m), (82c)

where 2'= (1,0) for /= (odd, even) for E' and E~ and the
opposite for E . The notation above is, explicitly

2(l+1)(2l+1) (l+1)(2/+ 1)

2l+3 2l+3m+, (87b)
(l+1)(2/+1) 2/+1

(i+m+2) (/+m+1) (i+m+1) (l m+1)—
{ "}=2

E ' = (SM [E [SM—' ). (b) J=l
(83)

(l—m) (i+m+1)
In view of Eq. (81), we write the states [n/mSMs) {~ ~ }=2

in terms of the states [n/SJMJ) using Clebsch-Gordan 2/(/+1)
coeKcients:

[n/mSMs)=g (/SmMsl JMz) I~~~JMz)

m2
= 1— -m, (87c)

l(l+1) l(l+1)

TAsr.z 1X.Talmi coefiicients for the symmetric state S [022; e,l.m,).

S
[ ng4mga, l,m, ) [000) [022) [021) [020) [02 —1) [02 —2) [100)

S [022; 000)
S [022; 011)
S [022; 010)
S [022; 01 —1)
g squares

(1/v2)[022)
g-', [033)
As [032)
(1/+20) [031)+(1/V'5) [111)

7/4

(1/V2) [000)
[011)

As [010)
/[11 —1)

5/4

—(1/v2) [011)
0 —(1/Q6) [011) —(1/vS) [ 011)

TAmE X. Talmi coellicients for the symmetric states S [021; n.l,m.)

S [ ngl gmrn, l,ra,} [000) 1022) [021) [020) [02 —1) [02 —2) [100)

S[021;000) (1/v2)[021)
S[021;011) (1/vT)[032)
S[021i 010) Qs[031)—(1/+10)[111)
S [021;01 —1) Q(3/20) [030)+(1/+10) [110)
P squares 7/4

—(1/vT) [020)
(1/W2) [000}

as [01 —1)

—(1/v3) [011)
—(1//12) [010) —As [011)

5/12

(1/v'6) [011)
—(1/V'6) I o1o)
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(c) J=/ —1

(l—m)(l —m —1) (l—m)(l+m)

2/(2l+1) l(2/+1)

2/ —1 2I—1
m. (BM)

2/+1 l(2/+1)

2. Expansion of (n'/'m —1
i
Xi

i nlm) for the Case n'/'= n/

(n'/'m —1iKr~inlm)=(nlm —111iKpinlm10)

+(nlm 1—10 i Kp i
n/mi —1)

=g (/1 m 1—1iJm)(/im0i JM)k„i,g'

CV

I

O—c
00

O
waco

( "&=
(/+m+1)(l+m) '" (l+1)'—m'

2(l+1)(2/+1) (l+1)(2l+ 1)

(l+1)'—(m —1)' '" (l—m+ 2)(/ —m+1)

(l+1)(2l+1) 2(l+1)(2/+1)

(l+m)(l —m+1) '"

(b) for J=/

2l+3
(89a)

(l+ 1)(2l+1)

~ ~ ~

(l+m)(l —m+1) '" m'

2l(l+1) l(l+1)

(m —1)' '" (l—m+1)(l+m)

l(l+1) 2l(l+1)

(/+m)(l —m+1) 'I'

(c) for J=/ —1

(l+m) (l—m) '(l—m+ 1)
~ ~ ~

2/2(2/+1) 2

(89b)
l(l+1)

(l+m —1)'(l+m) (l—m+1)-

+P (l1 m —10' Jm —1)(l1m—ii Jm 1)k—„i

=Q { )k, ' (88)
J

The curly brackets on the right hand side of Eq. (88)
are evaluated below:

(a) for y=/+1

O~ O

I I

O O
gC

O
co[ao oooo

Q ~ ~ico ~l& &jco

V
~ M

8
8 I

O
Q O

N

I

0
~ M I8

O

o

I

O

~ O ~ O

V
~ I%I

CP

8
8
Vl

05

~ M

0
V

~ IW

8

(V)
' O

O

I

O

O

O

~O ~
hioo ~

O

co/~

O
wico

O

O ~

2/2(2/+ 1)'

(/+m)(l —m+1) "' 2/ —1

l(2/+1)
(89c)

R

OOOO gOOOO
03 OQ OQ OQ

I

t/I

O 8
~ e, CO

U
ta

CV

OOO
c9 c9 c9
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CD O

O
CD

CD

CDO CD

O
O
h4

CD
CDO

CD
fV)

o(o
O

g
~ A

O

V
~ A

8
2

~ A

cj

CP
~ W

0
~ W

2
O O

I

CD

W[C%

O
CD

I

O

R

O

V
~ W

V
8
8

~ ~

a5

~ IH

0
~ ~
8

O
CD

O O

c

O
O
C4fA

O

O

O
CD

+
O

O

OQ

I

CD

CD

o)o

O O
I

O
AJC%

I I

O O
I

O
O
w feo

O

I

I

O

I

O O

I

O O

a O

R =
O

O O
O
O

I

C/l

O
O
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We see that

(l+m) (l—m+ 1)
(nlm —1~K' (nlm)=

2

XZ ~u& 3,z', (&10)
J

where the 3 /g are the same as those for (nim
~
Kr'

~

nlm)'.

3. Expansion of (n'l'm
I X'Inlm) for the

Case I'=1&2; n'=n&1

Here, we must have J=l&1:
(n'l'm

~
(2Ktz "+Ktr' ) ~

nlm)
= (2(l'1m1~ i&1 m+1)(lSm1~ i&1 m&1)

+(l'1mO~ l&1 m)(lim0~ i&1 m))
X(n'i'1 i&1 IoIIKrI«1 i&1 ~). (&11)

TABLE XV. Spin-flip coefflcients for 33, l, m'= 022 (symmetric).

(022 I E,f I 021) (021IE,r I020) (020 I E,r I
02 —1) (02 —1

I
E I

I
02 —2)

(022; 000 IStE,S I 021; 000)

(022; 011IStE,S
I
021; 011)

(022' 010IStE,SI021i 010)

(022; 01 —1 ISE,S I021; 01 —1)

( 11(
& v2)& ~i

( 1)(

Sum 3 (Esf) 322 (1/V'6) (E.f) o 1 (I/2V'6) (Esr) 321

TABLE XVI. Spin-flip coefficients for 33, I, 3/3'=022 (antisymmetric).

(011IE,rI010) (010IEsr Iol —1) (IC,f)033 (Es )032 (Es )331 (Es )111

(022; 000
I
C~E,ro

I
021; 000)

(022; 011
I
StEs/8

I 021; 011)

(1)]-
kv2j

(3)1/2 (1 1/2

(o22; olo
I
31'E"tt

I
o21; olo)

1 (2) '/'

(022; 01 —1
I
Sold, /tt

I
021; 01 —1)

Sum

( 1) 1 ( 1 ( 1)
E &6j v'»

(2/V2) (E's/) o»

1 ( 3 ) 1/2

v'20 (20)

TABLE XVII. Spin-flip coefficients for 33, 1, m'= 021 (symmetric).

(021; 000IStE.SI020; 000)

(021; oil
I
StE,S

I
020; 011)

(021' 010 IStIC S
I
020' 010)

(021; 01 —1
I
StE,S I 020; 01 —1)

Sum

(Esr) o22

1/v'6

(1/V'6) (E.r) on

(&sf)o2&

3 (&sf) 021

(&s~)o2o

1/v'36

1/v'36

—,'(X,f),

(Esr) o2

1/2v'6

(~i2v'6) (&')o
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T/tssLE XVIII. Spin-flip coefficients for ss, l, //s' =021 (antisymmetric).

(&j)oss (&er) oso (Ifc )oss (&a )os/ (&J)oso (&e )/ss (&s )uo

(021; 000i CtE 8i020; 000)
+12

(021; 011
~
ntXoe l 020' 011)

(021; 010i t1tE ai020; 010)

(021; 01 —1
i
CtfCo 8

i 020; 01 —1)

+-
6v3 3VS

—1
+-

3/12 6%3

(9)1/s

(50)

10@2

( 2p 1/s

E150i

10%3

Sum
3—(&er) os/

V3
(&~r) oss

2+15
(I&or) os/

10%2
(&or)&/s

10VS

(n/m(Kr'~n/m)—=K„s '
The coefficient in brackets is zero, for all /, m, as can

be verified by direct substitution. (& rm+8/. ~)k s J t (813b)

4. Expansion of (n'l'm —1
~
X~~nlm) for the

Case l'=l&2; n'=nW j.

In this case also, we must have J=/&1:

(n'/'m —1~ {Ktr"+Ktr' '}~nlm)

= {(/+2 1 m 11~—/+1 m)(/1mo~/&1 m)

+(/+2 1 m —1 O~l&1 m —1)(/1m —1~/+1m 1)}—
X (n'/'1 /+1 M ) Kr I nl1 /+1 M). (812)

The coefficient in brackets is zero, for any l,m, as can be
seen by direct substitution.

5. General Form AEJ ——

1+1
21+3

(1+1)(2l+ 1)

1

l(l+1) l(2l —1)

(nlm —1~ K,l
~
n/m) =K„,.r

(l+m)(-l m+1)—'" +
Asgk s, g' (813c)

2 J l—I

(n&i/&2m~Kr ~n/m)=0

= (n&1/+2 m —1

~Kryoin/m),
(814)

where A~J and B~J are given in Table XIX.
TABLE XIX. Values of A/q and 8/J 1n Eqs. (813a)—(813c).

(n'/'m
( K,o) n/m)= K...o= k—, ,o (813a)

From the above, we see that we can write the (n'l'm'
~

XK~ nlm) in terms of the k /, gs as follows:
21+1

21—1

21+1


