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Rotation-Vibration Interaction in Scattering of Slow Neutrons by
Spherical-Top Molecules
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The scattering of slow neutrons from spherical-top molecules of point group Tz is analyzed and discussed,
taking into account the rotation-vibration interaction. After the introduction of the general formulation
for the partial differential cross section, the Hamiltonian of the spherical-top molecule is discussed, and
the contribution of the rotation-vibration interaction is considered in detail. By using group-theoretical
methods, the rotational-vibrational wave function, and then the total wave function, are obtained. Finally,
explicit extensive expressions for the intermediate scattering function and the partial differential cross
section are derived.

I. INTRODUCTION
" 'N papers' 4 published in recent years on slow-neutron
~ ~ scattering by molecules, the various authors assume
that the molecule is not excited from its ground vibra-
tional state, either thermally or by neutron scattering.
Indeed, the previous studies were concerned with the
case for which contributions from excited vibrational
states could be ignored and the rotation-vibration
coupling neglected.

Recently, West, Brugger, and Griping" have sug-
gested that the inhuence on the scattering of vibration-
ally excited molecules might not be negligible and
would have to be considered in making comparisons
between theory and experiments.

According to these authors, at a temperature of
306'K, approximately 3% of the CD4 molecules are in
excited vibrational states; the contribution to scattering
by the vibrationally excited molecules becomes signifi-
cant at an energy transfer of about 72 meV, and
dominates the scattering at larger energy transfer.

Thus it will be necessary to extend the method of
computation so that such contribution to the scattering
is included. To do this, the Coriolis force arising from
interaction between rotation and vibration must be
taken into account.

In this paper, using group-theoretical methods, we
discuss the scattering of slow neutrons by a gas of

spherical-top molecules of point group T~, i.e., of
tetrahedral molecules containing identical nuclei, and
we report an explicit formula for the partial di6erential
cross section, including the rotational-vibrational
coupling.

In order to derive the most general expression for the
partial differential cross section, according to the treat-
ment of Sinha and Uenkataraman' we assume that there
is only one class of identical nuclei in the molecule and
that the group of permutations (P of such nuclei is
isomorphous with the point group of the molecule.

II. METHOD OF CALCULATION

A. General Formulation

It is known' that the partial differential cross section
may be written as

d'0 i k
e '"'I(Q, t)dt,

dQdE 2xh ko

where ks and k are the wave vectors of the incident and
scattered neutrons, Puo= (hs/2//s) (ks—kes) is the gain of
energy, AQ is the gain in momentum of the neutron,
and I(Q,t) is the intermediate scattering function de-
fined by Zemach and Glauber':

I(Q,t) = (@) g A„A„expLiQ r„(t)j expL —iQ r„(0)])4)r
Vs@ s

all nuclei

+(+~ Q C„'expgiQ r„(t)j exp)—iQ r„(0)j~%')z
Vs

all nuclei

+ P (."'(+lexpfiQ. r„(t)j expL iQ r„(0—)jZ(Q) I +)r (2)
Vins VP P)

identical nuclei

The symbol ( )r indicates a thermal average at tern- vth nucleus. The operator r„(t) is a Heisenberg operator
perature T, and r„(t) is the position coordinate of the dehned by

r A. C. Zemach and R. J. Glanber, Phys. Rev. 101, 129 (1956);
101, 118 (1956).

s S. K. Sinha and G. Venkataraman, Phys. Rev. 149, 1 (1966).' A. Rahman, J. Nucl. Energy A13, 128 (1961).' G. W. Griffing, Phys. Rev. 124, 1489 (1961).

(t) = ei(/r/a)ir (0)e i(Ef/s)t (3)
where H is the Hamiltonian of the molecule. A„, C,

R. E. Nest, R. M. Brugger, and G. N. Grif5ng, Phys. Rev,
148, 163 (1966).' G. W. GriKng, Phys. Rev. 136, A988 (1964).
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denote, respectively, the coherent and incoherent
scattering amplitudes of the vth nucleus;

a(a+ 1)—&(s„+1)s„
z(D) =

S„(s„+1)))())—1)

where 5„ is the spin of each of the identical nuclei,

g is the number of identical nuclei in the molecule, and
0 is the total nuclear spin of the identical nuclei.

The last term in Eq. (2) is the contribution of the
nuclear spin correlation.

In the case of the vibrational ground state, an
expression for this contribution has been derived by
Sinha and Venkataraman. '

B. Hamiltonian of the Molecule

For molecules with tetrahedral or even higher
symmetry (for instance TP), vibrations which are
twofold and threefold degenerate may be present.

In this case the Harniltonian operator II can no
longer be written as a simple sum of the electronic,
translational, vibrational, and rotational Hamiltonians:

H =H, i+H„-i-H yH„, . (~)

In fact, an additional coupling between rotation and
vibration (Coriolis coupling) should be taken into
account. I.et us now consider the inQuence of the
Coriolis interaction and then assume that the anhar-
monics terms in the potential energy as well as the
dependence of the moments of inertia on the normal
coordinates are negligible.

The Hamiltonian which describes the rotational-
vibrational characteristics of the molecule has the form

where
(t„=((v,/h) "'Q,.

Here Q„are the normal coordinates associated with the
normal vibration frequency co„ the label s denotes the
particular frequency co„.and 0-= 1, 2 or 1, 2, 3 depending
upon whether the vibration is twofold or threefold
degenerate, respectively. p„are the linear momenta
conjugate to q„; j4 is the n component of the total
angular momentum j4 of the molecule; j3 * is the o.

component of the internal angular momentum of the
nuclei, and is made up of a sum of Coriolis operators,
where each operator is associated with a degenerate
frequency; I &'~ are the diagonal components of the
moment of inertia I&'& about the n axis; x, y, z are the
body-ixed coordinate system; a, P, p are symbols used
to denote x, y, or z.

The Coriolis coupling factor is de6ned by

.(~)=g ($„, (P)E„, , (v) —E„, , (P)$„, (v)) (7)

where (l„„()/M„'~') are the transformation matrix
elements which relate the normal coordinates to the
displacement vector of the vth nucleus from its equilib-
rium position, M„being the mass of the vth nucleus.

In spherical-top molecules of tetrahedral symmetry
the three moments of inertia are all alike, and, in
addition, the Coriolis coupling factors are all equal.
(In order to simplify notation, we shall use I instead
of I ", and |instead of i„.;(~).)

Moreover, there are three species of degenerate
vibrational levels: E doubly degenerate, and Ii& and Ii 2

triply degenerate. However, no Coriolis splitting arises
for doubly degenerate vibrational states; indeed from
jahn's rule, ~ the product of the species of the two
interacting vibrations EXE=A i+A ~+E does not con-
tain the species of the rotation which is, in this case,
Fj. On the contrary, the Coriolis interaction does cause
a splitting for the triply degenerate vibrational states.

On the basis of these considerations, we can subdivide
the Hamiltonian B into two independent parts: the
first one containing the factors related to the non-
degenerate and twofold-degenerate vibrations (which
do not generate internal angular momentum), the
second one including terms connected with the three-
fold-degenerate vibrations and rotations.

I et us then write the Hamiltonian in the following
form:

H=H '+H „
where II ' describes the nondegenerate and twofold-
degenerate vibrations of the molecule, and H, de-
scribes the rotational-vibrational modes (threefold-
degenerate vibrations).

We can now write the unsymmetrized total wave
function as a simple product of the electronic, transla-
tional, vibrational (for the nondegenerate and twofold-
degenerate frequencies), rotational-vibrational, and
spin functions, f,), Pt, f ', P „and f, respectively:

I+&= I4 )) I& &lf-'&I&-)& (9)

Since the molecules are normally to be found in their
electronic ground state both before and after the
neutron scattering, the function P.) is invariant under
permutation of the matrix elements.

The above assumptions being granted, the transla-
tional wave function P& transforms according to the
identity representation of (P.

Since H ' and H, are invariant under 6' we can
classify the wave functions f ' and f, in terms of the
irreducible representations of O'. We write these func-
tions as

S (or M) signifies which particular representation of a
given type V (or I) the wave function belongs to; and

7 (or E), the row of this representation. Finally, the

7 G. Herzberg, Infrared and Eaman Spectra of I'olyatom&c
Molecules (D. Van Nostrand, Inc. , New York, 1946).
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spin function $ is simply the product of the spin func-
tions for each of the nuclei.

C. Rotational-Vibrational Wave Function

To evaluate the function lf„,) let us write Hamil-
tonian II, as a sum of two nonindependent parts:

where
H„,=H3+H4, (10)

H3= 33"g &~ I

—
I

+31~3

H4= —(J4—i J3) ~

2I
(12) Fro. 1. Eulerian angles relating molecule-axed axes x, y, s

to space-axed axes X, F, Z.

Lv-v-"j=Lp- p-"j=0,
$gzappm'a' j &k~uu'~ ' ~zz (13)

j4 is an angular-momentum operator defined by the
commutation rules

Here 31„ is the vector with components g„, (0=1,2,3)
associated with the threefold-degenerate oscillation of
frequency &u„. The p„are the components of p„.

In quantum mechanics the components p„„q„,must
satisfy the commutation rules

The operators H3„, j3„', and js„„the last being the
component of j3„along the k axis, form a complete set
of commuting observables.

The eigenvectors le„j3 k3„) common to these three
observables are described by the quantum numbers

z„, j3, k3„, and the corresponding eigenvalues are

H3 le j3„k3„)=k40 (v„+', ) Iv„j3„k3—),
j3-'I ~-j3.k3-)= &'i3.(j3-+1)I ~-j3-k3-)

j3„,I v„j3„k3„)= kk3„ I e„j3„k3„),

(14)
Wllel e

Ej 4-i, 4s)=3& Z 4-~~i 4. 0 (v„even)
v„=0,1,2, , j3„——v„,e„—2, , 1 (('v~ odd

e p~ is the antisymmetrical unit tensor of rank three.
Clearly the commutation rules (14) must also be
satisfied for the component of j4, in the space-fixed
coordinate system (X,V,Z).

The vector j3*——t j3 is made up of a sum of Coriolis
operators and is given by

k3u j3&s j 3++1, ,j,„—1,j3„,
and I takes the values N,=3 and I=4.

In the (31„)representation the eigenvector
I v„j3„k3„)

is represented by the wave function

(15) . 2Ll(~-—j -)3!
Iv g3 k3 )=P

I'P3(~-+i 3-)+3'j
j3*=Z l.(41-&&J1-)= |'Z (q.&& 13-)= l j3.

In the following procedure it is convenient to use the
system of Euler angles shown in Fig. 1. The Kulerian
angles P, 4J, and &p correlate the orientation of the set of
coordinates x, y, and k, Axed with respect to the molecule,
to the set X, I', and Z, 6xed in space. Z is the direction
of the momentum transfer Q.

Spherical-top molecules of point group lz, satisfying
the assumption that the permutation group of the
identical nuclei is isomorphous with the point group of
the molecule, have at most one nondegenerate vibra-
tion co~, one twofold-degenerate vibration A&2, and two
triplv degenerate vibrations co3 and co4.

The operator

&&p„'3"exp( ——'p )L& 113&1z;» Uz '+~ &3(p 3)

&& I';,„,3,„(4J„,X.„), (18)

where L,„~"&(3) is the associated Laguerre polynomial of
degree n,

e'k ~ C"
(19)1„(&)(s)=- (e zsn+3)

nt Ck"

and I', (4J,X) is the spherical harmonic of degree L

Instead of the linear coordinates q„~, q„2, q 3 we have
introduced the spherical polar coordinates p„, 8„, and
X„delned by

q„~=p„sin8„cosX„,
q»= p„sin8„sinX„,
/~3= p~ cosB~.

H3 H33+H34

is the Hamiltonian of a system of two independent
three-dimensional isotropic oscillators having total
angular momentum

J3 J33+J34 ~

We can thus form a complete basis of eigenveetors of
(16) the Hs, miltonian H3 wlgch should be simultaneously
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Dz, z&~'(&)

eigenfunctions of commuting observables j33 j342, where'

js', js, (Ref. 8):

which is just the Hamiltonian for a rigid rotator.
+4, j4e, j4z form a complete set of commuting ob-
servables; therefore the wave function described by the
three quantum numbers j4, k4, m4 will be the matrix
element of the irreducible representation of the rotation
group

l J4k4m4)= [(2j4+1)/83r'$'I'Ds ~ &"~(p,ei&so), (22)

where

with

B4l j4k4m4)=(hs/2I)j 4(j 4+1) Ij 4k4m4) ~

j4, l j4k4m4)= hk4l j4k4m4),

j 4zlj 4k4m4)= hm4lj 4k4m4),

j =Oi2.
m4= —j4,—j4+1, ,j4—1,j4,
k4= —j4,—j4+1, ,j4—1,j4.

(23)

lvsv4jssj34jsks)= g (jssjs4kssk34I jsks)lvsjsskss)

X l v4j34k34) ~ (21)

On the other hand we observe that, if we neglect the
Coriolis coupling factor, the Hamiltonian H4 takes the
form

(j sj 4 ksk—4l JE)&j sj 4 k3—k4'( JE')
k3', k4', kg, k4

X (—)'4'—'4D3;, 33 &'4~(R)D3;, 34&~'4~(R)

=g (j j kk —
l JK)(jj k'k—'l JE')

X (j»j34k»k34I jsks) &jssjs&33'k34' l
jsks')

XD3„,3„""(&)Ds„,s„""'(&)Ds,, s,""(&) (26)

The symbol X' stands collectively for k3', k4', k3, k4,

k33 k34 k33 k34. Dz, z&r&(R) are the irreducible repre-
sentations of the rotation group; R is the pure ro-
tation associated with the point-group operation E.

The eigenvalues of the Hamiltonian H are

vsv4m4jsj 4JE I
H

I
vsv4m4j sj 4JE)

= h&os(vs+ ,')+h4o-4(v4+ ,')+(h'-/2I)
XLj4(j4+1)+1'j3(j3+1)$ (i/I)&vsv4mj43j ~El js

x j4l »V4m4 jsj4JK) (27)

The last term of the right-hand side of Eq. (27) may be
obtained by applying the Wigner-Eckart theorem. We
6nd

(Vsv4m4 jsJ4JE i )3
' 14l V3 V4 mj43j'4'J'K')

, , j3 1 j3'
= 4z ~zz ( 1)'+'"+'"—

j4' J j4
Since js and j4 are commuting observables, if we

follow the same procedure as for the case examined
earlier, we obtain a complete basis of eigenvectors of
the operator H=H3+H4 which are simultaneously
eigenfunctions of the commuting observables j4', j3',
Js, J„where

x &»v4 jslljsll»'v4' js') (m4 j4llj4llm4' j4') (28)

where
jl j2 j3

Jl J2 J3

J=34—js

and J, is its z component in the body-axed system.
Ke have

(24) is the Wigner 6-j symbol. ' "
The reduced matrix element for the angular mo-

mentum is given by

l fv, )= l vsv4m4js j4JE)
= ~ &jsj4—ksk4I JE&l»V4j»j34js —ks) I j&4m4)

k3, k4

&~jlljll~'j'&= ~- br~'hl j(j+1)(2j+1)]"3 (29)

Therefore, the rotational and vibrational energy has
the form

ka, k4; keg, k34
(jsj 4 ksk4I JK)(j j 4k k 4I jsks)

X l vsj33kss) l v4j34k34& l j4k4m4) . (25)

E„=h&o (v +ss-)+h&o (v +3)
gg2

+—l:J 0+1)+f'j 0+1)j
2I

Equation (25) transforms under the operation of
pure rotation R of the proper group 6, isomorphic to the
improper group T~, according to

erelvsvem4jsj 4JE)=Q Dz, z&~~(P) lvsv4m4j sj 4JE'),

' WVe use for the Clebsch-Gordan coeKcients the notation of
A. Messiah, Slecaueyue Quau&iyue (Dnnod Cie., Paris, 1965).

+( )&+&+is+S4 j3 i j3
hsf

I j4 J j4

xt js(js+1)(2js+1))'Isl j4(j4+1)(2j4+1)3&'3 (30)

' M. Hamermesh, Group Theory used its A pp/ication to I'hysical
Problems (Pergamon Press, Ltd. , London, 1962)."E. P. Wigner, Group Theory (Academic Press Inc., New
Yerk, 1959),
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and
gv 2"vi!

—t/2

exp( ——,'qi') H.,(qi) (31)

I v l )—={ I l(v +l )3!Ll(»—l )1!2"}"'
XexpL ——',(q2i'+ g2z') j
X+(iii+4) /2(qm1)+ (~I-4) /2(q22) i (32)

whe~e l2 V21 V22 V2 V21+V22 l2 V2 V2 2 V2

and v~~, v22 may be regarded as the quantum numbers
introduced in the two-dimensional isotropic oscillator
of frequency rom in the representation {qz}.Ii„(z) is the
Hermite polynomial of degree v. The wave function
lvi) in Eq. (31) describes the nondegenerate state of
frequency cui, and the wave function

I
v2l2) in Eq. (32)

describes the twofold-degenerate vibration of fre-
quency a2.

Finally, the rotational and vibrational energy of the
molecule, i.e., the eigenvalue of the Hamiltonian in
Eq. (7), will therefore be

E= h(0i(vi+-,')+ ha)z(v, +1)+E,. (33)

The wave functions (31) and (32) each define a repre-
sentation of the symmetry group of the molecule and

D. TotaI Wave Function

As stated above, the wave function If,') describes the
nondegenerate and the twofold-degenerate vibrations;
therefore it is the product of the wave functions

transform independently under the operations of the
group. The representation realized by both functions is
then the product of the representations of the single
functions. Actually we can see in Eq. (32) that the
exponential factor is invariant under all group opera-
tions, while the representation generated from the
product of Hermite polynomials is the symmetric
product vg-fold by itself of the irreducible representa-
tion generated by qz (o=1,2)." Analogous considera-
tions are true for Eq. (31).

The reducible basis I)|/t)l)l ')lf, ) transforms under
the operations R of group (P, according to

o~(l&~& I4 "&l4'x'"&)

= Z D/r, z")(R)Dv.v( '(R)
K, 'y'

where D„,,(")(R) denotes the irreducible representa-
tion V associated with the twofold-degenerate vibra-
tion (y=—lz) .

E. Intermediate Scattering Function and
Partial Differential Cross Section

According to the procedure followed by Sinha and
Venkataraman' we now introduce the total symmetrized
wave function into Eq. (2) and perform the integration
and the average over the spin parts. Ke obtain

1(Q,t)= 2 Zx*"'(R) r, «(0)Q(lexpl:iQ e(t)]expL —iQ Ip(0)1IA&r Z ZP~(T) Z —D4i.'"(R)
388~234 cA

XZ 2 Dx', K (R){(vlvzlz I (vzv&ivi4 j()jul 2 (a„a,+t)„„C„')
Vip,

XexpLiQ (r„(t)1 expI —iQ (r„(0)jlvzv4m4jz j&E'&Ivivzlz')

+ Q C (vivzlzl (v3v4m4j zj 4JE I expLiQ (r(t)j expL iQ c„(0—))Z(Q) I v()v4m4j aj &E') I vivzlz')} . (35)
V,P, ', t'v P',

identical nuclei

The symbol M stands collectively for (vivzv)(V4jzj4J).
The position of the vth nucleus is here given by

g+ (rv i (36)

where y is the position of the center of mass of the
molecule which describes the translational state only;
e„ is the vector from the center of mass to the equilib-
rium position of the vth nucleus in the molecule;
X'")(R) is the character of R in the irreducible repre-
sentation X; and «(0) denotes the number of times the
representation A is contained in the basis of spin func-
tions corresponding to total nuclear spin Q. lt is A= X*

if the identical nuclei are bosons, or A= (—)~ X* if the

identical nuclei are fermions. I' is the order of the
permutation n of (P; 3'. is the order of group 6'.

P~(T) is the I!oltzmann factor for the rotational-
vibrational part of the wave function and is given by

( jp
P~(T)=expl-

xi)T ~ k X~Tj
'

where Xg is the Boltzmann constant, T the temperature
of the gas, and n~ denotes the total multiplicity of the
energy level M =—(vivzvzv4 jlj4J).

The translational matrix element has been evaluated

"L. Landau and E. Lifchitz, Mdcaeique QNaetique (Mir,
Moscow, 1966).
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by Zemach and Glauber' and is given by

8'4 I expLiQ. p(t)] expr —iQ. t)(0)] I&tbs&r

= exp — (iht+t2X&gr), (38)
2M

where M is the mass of the molecule.

On the other hand, taking into s,ccount Eq. (3), the
time dependence of the rotational-vibrational matrix
elements can be made explicit, introducing a complete
set of eigenfunctions of the Hamiltonian H between the
two factors of the operator in (35). Let us denote these
eigenfunctions by using double primes attached to the
usual symbols.

(»1&vgt21(»v4m4 jgj4JE I expl gQ (1„(t)]expl gQ—42 '(0)]
I
»v4m4jgj4JE'&1»t2')

I »)

=g" exp 2 t &»1(vgtgl &»v4m4 jgj4JE
I expl gQ a„(0)]I»"v4"m4"jg

'j4"I E")
I
vg"t2"& I»")

A

&& &»"
I
&vg"t2"

I
&»'"4"m4"jg"j4"J"E"

I
expt: —gQ ~.(0)]l»v4m4jgj4~E'&

I
vga. ') I»& (»)

where P" denotes the summation over all the indices
with two primes, and E"is the energy given by Eq. (33)
when the quantum numbers vl", e2", . , J", E" are
introduced.

To obtain the final expression for the intermediate
scattering function we have to evaluate some matrix
elements of the following type:

&vil (v241&vgv4m4j3j4JE I expLgQ'42 (0)]
I ' ll ' lgllE I&

I

Ilt II)
I
v Il) (40)

For this purpose we write the position. O„of the
nucleus with respect to the center of mass as a sum of
two terms:

&rs= us+ bs s

where b„ is the equilibrium position of the nucleus in the
molecule-6xed system with origin at the center of mass
and the s axis directed from the center of mass to one of
the identical nuclei; and u„ is the displacement of the
nucleus from the equilibrium position, due to molecular
vibrations.

According to Zemach and Glauber, ' u„can be

written as
3N—6

n.= Q c„(")())„ (4l)

where Q&, are the normal coordinates, c„(1) is the ampli-
tude vector of the vth nucleus in the 5,th vibrational
mode and co& the frequency of the mode; and E is the
number of nuclei in the molecule.

By using our formalism we have

tg& 1/2 2 /s/g)1/2
u =c &'&

I qi+P c &"'I —
I q2

&Oij s=i E&O2)

2 ( j'Zy 1/2
/r tgq 1/2

+Z c"'I —
I

qg+c"'I —
I q4. (42)

r=1 E&O2/ E&O4I

If one puts
(s, s) —(h/~ )1/2Q. C (s,s) (43)

and takes into account the fact that the components of
b„commute with the normal coordinates and that the
latter commute with each other, then the matrix ele-
ment (40) becomes

&»1&vgt21(vgv4m4jgj 4M'
I exptgQ b„]expl gX."'qi]

2 3 3

x P exp(ix„(2 ')
q2 ]g exprix„(")qg,]g exp f gx„/4 &q4,]I

vg"v4"m4"j 2"j "J"E")
I
v2"l2"& I vi")

p=l

= &v I expl. gX "'g ] I
v "&&v t

I II expl. gX." 'q ]I
v "t ")

&(&v v m j j4JElexpl iQ b 7 g expLiX„" 'g ]g exp(iX„(' )q4,]Ivs"v4"m4"j 2"j 4"J"E"& (44).
p=l

Performing the explicit calculation of the matrix elements (44), we will assume in the following that. X„(' ') can
be replaced by the constant value

P/ .)'"&Q

obtained by taking its expectation value in the dynamical state defined by the molecular wave function 1)tr&.

Using Eq. (31) we find"

(v, I exppiX &'&q,]l v,")= (i/v2) ~1 "fmr!/m,—&5'/'pX (')]~1—"r expl ——,'(X ('))']I.- ("4—"»I 1(X ('))']F, "'&(v),

"H. Bateman in Tables of Integral Transforms (McGraw-Hill Book Co. , New York, 1954), Vole. I, II.
(4S)
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where

ml —Illax{VI Vl } ml miI1{V1 'Vl }
and the constant F„;"'(v) is defined as

J „,-"i(v)=1, vl+vl" even

„~~(v)=%2/X (I) V+V," pdd.

By an analogous procedure we obtain from Eq. (32)

2

(v,l, I g exp[ix„(")g,.]IV,"l,")=(i/v2)"2+" -" -~" [2)2, !2)2»!/m, !m !711'[x&' ')]" -" [x &' ')5~2~~

Xexp{ 1[(X (2 1))2+ (X (2 2))2]}I (0421 tR21 )[1(X (2 1))2]L (m22 tR22) [I(X (2 2))2]P ll2I2(v) (4l)

where

m21 ——max{2(V2+l2)) 2(V2"+12")}, m21=min{2(V2+ls), 2(V2"+l2")},
m22 ——max{'2(V2 —l2), —',(V2 —l2 )} m22=min{2'(V2 ll) 2(V2 l2 )}

and the constant F„;.I; ""(v) is defined as

F„»,,i i "2'2(v) = 1, ',[.,+v,-"+l,+l,"]even
=2/(X &'"+X &")) —',[v2+v2"+l2+l2"] odd. (4S)

Taking into account Eq. (25), the rotational-vibrational matrix element which is the third term in the right-hand
side of Eq. (44) can be written as

3 3

(v,v m jj 4JK
I exp[iQ b„]g exp[iX„" '(l2, 5 g exp[iX„""g4,]I

v2"v4"m4"j 2"j 4"J"K")

=2 (i2"j4"—k2"k4"
I

I"K"&(j22"j24"k22"k24"
I
i2"k2"&(j2j4—k2k4I JK'&(j22j24k»k24I ilk2&(V2 j22k22I (V4j24k24I

3 3

X (j 4k4m4I exp[iQ b 5 Q exp[iX„"')q2,5 g exp[2X„"»g4, 5 I
j4"k4"m4"&

I
v4"j,4"k24")

I v,
"

j22 k33 '). (49)
p=l

The symbol x" stands collectively for k3",k4 ~3 ~4 ~33 ~34 ~33 ~34.
The selection rules concerning the transition to the state indicated with two primes are included in the Clebsch-

Gordan coefficients.
The matrix elements in Eq. (49) can be factorized; furthermore, with the use of Eq. (20), they becpme

g (v,j2,k2,
I
exp[iX„""p, sinv2, cosX,]exp[iX„' ') p, sin8, sinX,]

a=3,4

Xexp[iX„("'p, cosX,7I v,
"j2,"k2,' &(g4k4m4I exp[iQ b„]Ij 4"k4"m,") (50).

We shall calculate separately the two factors appearing in expression (50). The calculation of the secpnd factpr
can be performed taking into account the fact that'

pL Q b.]=4 E 2 (—)"'i(Qb.)Y.-(+,()Y.-(+.,2.),
i=0m l

(51)

where b„,8„,+„are the polar coordinates of the vth nucleus in the molecule-fixed system and j„(X) is the 22th
spherical Bessel function. Ke have4

(j4k4m4I exp[iQ b„]Ij 4"k4"m4"&= [(2j4+1)(2j4"+1)]"'
X (—)"' '(+42r) P ij'i(Qb„) YI ~(8„,y„)[1/(21+1)112](j4"j 4k4"—k4

I lm)(j 4"j4m4" m4 I 10) (52—).
Now we calculate the first factor in the expression (50), which is a more complex case. It may be verified that

on introducing the expression of spherical harmonics in terms of associated Legendre functions P;„,2„(cos8,), this
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factor mill be expliritly

(2,js,ks, I exp[iX ('"p, sins), cosx,]exp[iX„""p, sins), sinX,]exp[iX ("2)p, cos8,]I 2,"js,"ks,")
[2(~.-ss.)]~[2(2."-js,")]! (js.-ks,)!(js,"-ks,")! '"

=—(-)"""""[(2i.+&)(2j "+&)]"'
2' r[-', (~,+ j„)+-;]r[-',{2,"+j„")+—;]U„+k„)!(j„"+k„")!

dPePs eXP( Pe )I (1/2) (v. is ) -(P )I (1/2) (v" is"'-) (P ) dP,P;„,A„(cosset, )

XP;„",A„-(coss),) exp[iX„' 2)p, cos0,]sins),

%e have"

d&, exp[iX„'""p, sins), cosx,]exp[iX„"')p, sin(!I, sinx, ]
Xexp[i(ks, "—k„.))(,]. (53)

exP(i[X„' ')P, sins), cosX,+X„("2)P,sinl), sinx, +(ks,"—k„)&,])d)(,

X (e,2)-
=2)risse" A" exp i(ks,"—ks,) arctan JA„. A„([(X„("))2+(X„("2))2]'/sp,sms), ). (54)x„('»

omitting from consideration the constant that in Eq. {54) multiplies the Bessel function

JA„- A„f[(X„'")'+(X (' ")']'"p,Sin8e)
the integration over 6, gives

P;„,A„(cosa,)P,„",A„"(cos8,) exP[sX„' ' P, cos8, JJAs."-As.([(X„('")'+(X„("))']'/'P,sine, ) sine, ds),

& $ (j32 —
j k~2 j) ~ 4 (j32"—

1 k32 '
j ) (2is.—2~)!(2is"-2P)!
(—)"

~!&l (j ) lU"—P)'U —
I
ks I

—2~)!(js—"—lks "I—2P)!
g {[l+( )iss+ise" I Assi I

Ass" 1]—G. —
2

iss", I Ass" I/)(p X, (s, v))

+[/ ( )1 )i sslslssel I Ass I]G ~

IA I
~ise AIAss I P(p X (ess))) (55)

—(QLsr)2-(/as%ice")

mhere
Ase

p d n/2

ise ~ I Ass I P(p X (e s')) =~ „(p v)-Ass{» v) 1

dP, " d»,"

X(($ v)2Ase(» v)n —1[(p v)2+(&& v)2]-&1/2)

f(nial)/2+Ass)

J 1)/2+2 [($ v)2+(» v)2]1/2) (56)

Ke have used the following notation:

and
Ase ( d (n—1) /2

ise", IAse"I, P(p X (s,e)) ~ „i(p v) Ase(» v)(-1—n)/2

dg, " d», "

)(((( v)2Ass(» v)n[(tv v)2+(» v)2]-(1/2) [(n42)/2+Ass) J „[($v)2+(» v)2]1/2) (57)

$
v —[(X (s, l))2+ (X {e,s)) 2]l/2P

~
v X (s,3).

p

e= j„+j„"—lk„l —lk„"
I

—2~—2p,
k .=m (I k, l, lk„"I), if k„k„")0

= lks, l+Iks."I, if ks. k„"&0;
&2 =min(lks. l lks I) if ks, ks.")0

= (—)~'(js,"+ks,")!/(js."—ks,")!,
= (-)""(i"+k .) I/(j k..).',
=( )"~""'(js+ks) (» "+ks")I/[(js.—k.)'(j "—k ")I]

W, Grobner gqcj N, Hofrejtt-r, Igtegraletufel —Best&nmte Integrgle (Springer-per&ag, Gottingen,

if ka, ~&(j, p3,"&p

if k3, &p, p3,")p
if k&,&0, k&,"&p.
1950).

(58)
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In order to calculate the right-hand side of Eq. (55) we have used the polynomial form of the associated Legendre
functions and the Fourier cosine and sine transforms of functions of the type"

f(X)=Xk(1—X')(""~~J,[(3(1—X')'"] for 0& X&1
=0, for 1&X&~.

Finally, still neglecting the constants, by integration over p, we obtain

(59)

p
jes"+jes+2 eXp( p 2)I . (/vs+1/2)(p 2)L „.„(/es "+1/2)(p 2) f[1+( )jes+jes" lkes—l [k»—"(]

)(G'. k
jsa, 'lk esl, P(p X (s.e))+[1—(—)jes+j»" lkesl l»s' I](&. ~k, s

j»" lk»' I //(p X (e.sv))}d

(1/2) (vs jee) (1/2) (vs" jes"—) (—) P~ke

h 0

rl 2(~.+ j3.+3)] r[;('"+j "+3)]
r(i,.+ +l)[-;(" i.) -]!rU-„"+j+',)[-;(..--j„-)-j]!

00 i k ( ()7 /2

[I+.( )j»+j»"—lke. l
—lk»" l] p,jes+jes"+2M2//+2 eXp( p 2)($ v)

—».(7) v)1 ss/2—
0 d(,"i kd7),"

P ((g v)2»s(~ v)ss—1[(tv v)2+(7) v)2]—()/'2) l(vs+1)/2+k»l jr( 1)/~ [((v)2+(7) )2]1/ }(EP

00 )(-)/
+[1—(—I)jee+j» —l»el —l»e" ~]2 p, j»+jee"+2k+2/I+2 exp( —p ')(g ")—»s(7) )(1 'g)/2

« "i &())g "i

x ((p v)2k»(7) v)ss[(tv v)2+(7) v)2]—(1/2) ((vs+2)/2+2»] J( )/2 [(t v)2+(7/ v)2]1/2}(fp (60)

Since $," and 7/,
" are proportional to p, [see relations (58)] the two integrals in the second part of the right-hand

side of Eq. (60), leaving out a constant A,", have the general form

I„"(Q)= (( v) v exp[ (2($ v)2][())p/(f($ v)p]f (7) v)k[dsss/(f(7/ v)svs]f(g v
7/ v)}« ~

(~.") -I [- (~.")'][&/d(r. ") ][6(~.",~.")]«.", (61)

where

7'=j 3,+j 3,"+2a+2P h3,j2, P=h—3s e

the upper index g the new integral

(We always have r~&2, r) p.) In the first integral on
the right side of Eq. (60),

k= i.—qn, m= gn.1. 1

In the second integral on the right-hand side of Eq. (60),

k= ,'(1—e), ~=-', (-n —1),
v —[(X (e,l))2+ (X (s,2))2]—1/2(jes+j» +2es+2/)+3)

= [(X,")'+(X.'")']-.

«")"»[—~«")']&(&"~ ")d&"~

In our case this integral takes the form

(7),")v eXP[-b(7),")']

=B
where

(64)

The integral appearing in Eq. (61) gives the recur~ion
formula

rl v1+ 2(2I v+1-
([(X (e,l))2+ (X (e,2))2]1/2/X (e,3)}2+1

(62) (X (e,3))—2

r=q+ke
Therefore I„"can be calculated for any value with

the lower index p, if we can calculate for any value of and q~& r—p, r~&3, r) 2/2 always.
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The integral appearing in Eq. (64) satisfies a recursion
formula analogous to that of Eq. (62):

I "=—rL-1 '+2bL-iy+', (65)

Ip"= C,

and it can be calculated for any value of the lower
index m if we can calculate for any value of the upper
index v the integral

while for the second integral on the right-hand side of
Eq. (60), we have

u=-'2(u+2)+k„,
w =v+k3, +—',(23—2),

C„=(X„(s3))y+n+1[(x (s, i))2+ (X (s,2))2]/ee

g [(vf (s, l))2+ (Q (s,2))2+ (g (s,3))2]—1/2[(n+2)/2+/e»]

The integral on the right-hand side of Eq. (66) has
the value"

where

C = [(g (s, l))2+ (g (s,2))2+ (g (s,3))2]1/2

e&r—m.

c"I'(-,' (u+w+1) )
tO—

2"+'1'(u+ 1)

&& exp( ——,'c') M(-,'(u —w+ 1); u+1; —,'c') (67)
For the 6rst integral on the right-hand side of

Eq. (60) we have where M(a; b; s) is the hypergeometric confluent func-
tion de6ned by the Pochammer-Kummer series:

u= -,'(n+1)+k3„
w =v+k3.+-'2 (23—3),

(X (s,3))s+n[(g (s,l))2+(X (s,2)2]/ese

y[(g (,1))2+(g (,2))2+(g (,3))2]—1/2[( +1)/2+/es ]

F(a+a) I'(b) s"
M(a;b;s)=P

y-o r(a)F(b+v) v!

Finally the matrix element (49) is given by

(68)

(n,v4m4j3j JK~exp[iQ 1„]g P exp[iX„' 'g„][v,"v "m "j,"j "J"K")
@~3,4 (r j

k[], k4, k33, k34',

m, l

''i'(j "j" k "k "!J"K—")(j "j "k "k "Ij "k")(jj kk!JK)(j—j k k
I j k )

(j 4"j 4k4"—k4~ &m)(j 4"j 4m4" m4! f0)(—)"4—"' (2j+1)(2j"+1) "'
j[(Qb.)I"]-(&., 3.)

(2l+1)

X (8,2)—
V

)& P ( P (—)"»"+" +»" n~/[+~ i3»" "» 2 (/»~/3 ~")[(2j3,+1)(2j3,"+1))'/' ezp i(k3," k3,) ar—Ctan.=3,4 g~, ~;P, P x (s,])

[2(v.—j3,)]![2(v."—j3")]!(j3.—k3,)!(j3 k3.")!1'[2(v.+j3.)+2]l'[2(v."+j3")+2]"'
X

(j3.+k3.)!(j3."+k3,")!

(2j3.-2~)!(2j3"-»)!
XMr ~„~3,-A."

~'~tel~'l(j3 a)l(i3" @-l(i3 lk3-I —2a)!(—j3"- lk3 "I—28)l

X{[1+(—1)'""'"" ""' """]I"(8 ~ )+i[1—(—)""""'"' """]I"(6.")} ( (69)

Equation (61) defines the integral In"; here it is

y (~ y)1—n/2(d/d~ )vn2/((( v)2/ese(~ y)n 1[(g v)2+—(~ v)2]—(1/2) [(n+1)/2+/ese] J [($ v)2+(~ v)2]1/2}

~ (~ v) (1—n) /2(d/d~ v) (n 1)/2 j (g v)2/eee()] v']—n[(g v)2+ (~ v)2]—(1/2) [(n+2) /2+/ese] J [((v)2+ (V v)2]1/2}

By using Eqs. (35), (38), and (39) and taking the Fourier transform of the intermediate scattering function as
indicated in Eq. (1), we obtain the following expression for the scattering cross section per unit solid angle and
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unit interval of outgoing neutron energy:

d'0/dna= (1/2m. A)(k/ko)(27'/Q'XsT)"' Q Q x* "'(E) Q ~g(Q) Q Q &~(T)

107

X2 (1/&)Db, l '"(&)2 2 Dx,x"'(&)rZ (~,~,+~..&,')+ c„2z(Q)$
na4 K', K P~p, &eP) &+8

nuclei identical

XP" exp[ —(u&fi+ c)'M'/(2Q'X~TA') j(v~
~

exp(iX„&'&gq)
~

v~")(eq"
~
exp( —iX„&'&gq)

(
r q)

X(~/
~
+exp(iX."'g.) ~~ "& ")&~ "& "~ IIexp( —iX,""'|7.))~A')(~ ~ ~ j j &&j

a'=1

pM. b.l II II p( X.' "'V--)
I

" "
.=3,4 ~"=&

X (~ "~ "~"j"j4"J"E"
~
exp[ —iQ b„] g g exp( —iX„"'""'g, .-) ) ~a~ ~ jj I-&'), (70)

e'=8, 4 o'"=1

g= E E" Q2jgm/—2~.—
The matrix elements appearing in Eq. (70) are ex-

plicitly given in Eqs. (45), (47), and (69). In writing
down these matrix elements, the orthogonality prop-
erties of Clebsch-Gordan coeKcients must be kept in
mind.

III. SUMMARY

The present paper presents the results of the compu-
tations on the partial differential cross section for
scattering of slow neutrons by molecules in the general
case including rotational-vibrational interaction. A
precise and explicit formula has been derived for
spherical-top molecules of point group Tq.

%hen it is assumed that the molecules are in their
ground vibrational state both before and after the
scattering process, formula (70) coincides with the

formula of Sinha and Venkataraman. This is consistent
with Eqs. (1/) and (24); indeed, if u3 ——v4 ——0, the angular
momentum resulting from the Coriolis coupling is
zero and j4——J.

Actually Eq. (70) has a complicated form, but, by
examining the Boltzmann factor, we can see that only
the vibrational terms corresponding to the very low
quantum numbers give an appreciable contribution. ln
the case of methane, for instance, where v~=2914,
v2= 1526, v3=3020, and v4= 1306 cm ', an appreciable
contribution to Eq. (70) is given only by the terms for
which all the m, 's are zero (i= 1,2,3,4), or only one of the
e; is equal to 1 while all the others are zero.
Moreover, we point out that Eq. (70) and the rota-

tional-vibrational matrix element have been formulated
in such a way as to facilitate the writing of a computa-
tion program for a high-speed digital computer. Further
studies on this subject are in progress.


