PHYSICAL REVIEW

VOLUME 167,

NUMBER 1 5 MARCH 1968

Rotation-Vibration Interaction in Scattering of Slow Neutrons by
Spherical-Top Molecules

C. Buzano, F. DeMicHELIS, AND M. RASETTI
Istituto di Fisica, Politecnico, Torino, Italy
(Received 12 September 1967)

The scattering of slow neutrons from spherical-top molecules of point group 7' is analyzed and discussed,
taking into account the rotation-vibration interaction. After the introduction of the general formulation
for the partial differential cross section, the Hamiltonian of the spherical-top molecule is discussed, and
the contribution of the rotation-vibration interaction is considered in detail. By using group-theoretical
methods, the rotational-vibrational wave function, and then the total wave function, are obtained. Finally,
explicit extensive expressions for the intermediate scattering function and the partial differential cross

section are derived.

I. INTRODUCTION

N papers'— published in recent years on slow-neutron
scattering by molecules, the various authors assume
that the molecule is not excited from its ground vibra-
tional state, either thermally or by neutron scattering.
Indeed, the previous studies were concerned with the
case for which contributions from excited vibrational
states could be ignored and the rotation-vibration
coupling neglected.

Recently, West, Brugger, and Griffing5-® have sug-
gested that the influence on the scattering of vibration-
ally excited molecules might not be negligible and
would have to be considered in making comparisons
between theory and experiments.

According to these authors, at a temperature of
306°K, approximately 3%, of the CD, molecules are in
excited vibrational states; the contribution to scattering
by the vibrationally excited molecules becomes signifi-
cant at an energy transfer of about 72 meV, and
dominates the scattering at larger energy transfer.

Thus it will be necessary to extend the method of
computation so that such contribution to the scattering
is included. To do this, the Coriolis force arising from
interaction between rotation and vibration must be
taken into account.

In this paper, using group-theoretical methods, we
discuss the scattering of slow neutrons by a gas of

spherical-top molecules of point group 74, i.e., of
tetrahedral molecules containing identical nuclei, and
we report an explicit formula for the partial differential
cross section, including the rotational-vibrational
coupling.

In order to derive the most general expression for the
partial differential cross section, according to the treat-
ment of Sinha and Venkataraman? we assume that there
is only one class of identical nuclei in the molecule and
that the group of permutations ® of such nuclei is
isomorphous with the point group of the molecule.

II. METHOD OF CALCULATION

A. General Formulation

It is known! that the partial differential cross section
may be written as

d%* 1 %
=—— [ et (Q,))dt,
dQUE 2nh ko
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where k¢ and k are the wave vectors of the incident and
scattered neutrons, fw= (%2/2m)(k*—k¢?) is the gain of
energy, #Q is the gain in momentum of the neutron,
and I(Q,?) is the intermediate scattering function de-
fined by Zemach and Glauber!:

IQ)=(¥| X 4,4,exp[iQ-r,(t)] exp[—iQ-r,(0)]| ¥)r
all el
+(¥| X C2exp[iQ-r,(¢)] exp[—iQ-r,(0)]| ¥)r
all nuclei
+ Z;é . CX¥ | exp[iQ-r,(¢)] exp[—iQ-r,(0)1Z(D) | ¥)7. (2)

W
identical

The symbol (- - - )r indicates a thermal average at tem-
perature T, and r,(¢) is the position coordinate of the

1 A. C. Zemach and R. J. Glauber, Phys. Rev. 101, 129 (1956);
101, 118 (1956).

28S. K. Sinha and G. Venkataraman, Phys. Rev. 149, 1 (1966).

3 A. Rahman, J. Nucl. Energy Al3, 128 (1961).

4 G. W. Griffing, Phys. Rev. 124, 1489 (1961).
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nuclei

vth nucleus. The operator r,(z) is a Heisenberg operator

defined by
ry(t)=e‘i(HI’l)trv(O)e"‘i(H/fl)t’ (3)

where H is the Hamiltonian of the molecule. 4,, C,

5R. E. West, R. M. Brugger, and G. W. Griffing, Phys. Rev.
148, 163 (1966).
6 G. W. Griffing, Phys. Rev. 136, A988 (1964).
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denote, respectively, the coherent and incoherent
scattering amplitudes of the »th nucleus;

_ o Q@4-1)—n(S,+1)S,
Z(@)=
Sy(S,+1)n(n—1)

where S, is the spin of each of the identical nuclei,
7 is the number of identical nuclei in the molecule, and
{ is the total nuclear spin of the identical nuclei.

The last term in Eq. (2) is the contribution of the
nuclear spin correlation.

In the case of the vibrational ground state, an
expression for this contribution has been derived by
Sinha and Venkataraman.?

(4)

B. Hamiltonian of the Molecule

For molecules with tetrahedral or even higher
symmetry (for instance 7';), vibrations which are
twofold and threefold degenerate may be present.

In this case the Hamiltonian operator H can no
longer be written as a simple sum of the electronic,
translational, vibrational, and rotational Hamiltonians:

H=Hel+Htr+Hv+IIrot- (5)

In fact, an additional coupling between rotation and
vibration (Coriolis coupling) should be taken into
account. Let us now consider the influence of the
Coriolis interaction and then assume that the anhar-
monics terms in the potential energy as well as the
dependence of the moments of inertia on the normal
coordinates are negligible.

The Hamiltonian which describes the rotational-
vibrational characteristics of the molecule has the form

2 y fa— . ¥)2

r=p o (2 4z i,

8,0 P/ « (e)

aa

where
Jse= (ws/h)1/2Qsa .

Here Q,, are the normal coordinates associated with the
normal vibration frequency ws; the label s denotes the
particular frequency w,; and o=1, 2 or 1, 2, 3 depending
upon whether the vibration is twofold or threefold
degenerate, respectively. p,, are the linear momenta
conjugate to ¢s¢; j4o is the o component of the total
angular momentum js of the molecule; 7s.* is the a
component of the internal angular momentum of the
nuclei, and is made up of a sum of Coriolis operators,
where each operator is associated with a degenerate
frequency; I..‘® are the diagonal components of the
moment of inertia 7(® about the « axis; «, y, z are the
body-fixed coordinate system; a, 8, ¥ are symbols used
to denote x, y, or 2.

The Coriolis coupling factor is defined by

g‘ss’od’ (@)= E (lu:r(ﬂ)lva’c' ™ —lvs’nr’ (ﬂ)lusv<7)) 3 (7)
v
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where (l,,,(®/M,!/?) are the transformation matrix
elements which relate the normal coordinates to the
displacement vector of the »th nucleus from its equilib-
rium position, M, being the mass of the »th nucleus.

In spherical-top molecules of tetrahedral symmetry
the three moments of inertia are all alike, and, in
addition, the Coriolis coupling factors are all equal.
(In order to simplify notation, we shall use 7 instead
of I,,®, and ¢ instead of (g5 0 (¥.)

Moreover, there are three species of degenerate
vibrational levels: £ doubly degenerate, and F; and F,
triply degenerate. However, no Coriolis splitting arises
for doubly degenerate vibrational states; indeed from
Jahn’s rule,” the product of the species of the two
interacting vibrations EX E= 414 A4+ E does not con-
tain the species of the rotation which is, in this case,
F1. On the contrary, the Coriolis interaction does cause
a splitting for the triply degenerate vibrational states.

On the basis of these considerations, we can subdivide
the Hamiltonian H into two independent parts: the
first one containing the factors related to the non-
degenerate and twofold-degenerate vibrations (which
do not generate internal angular momentum), the
second one including terms connected with the three-
fold-degenerate vibrations and rotations.

Let us then write the Hamiltonian in the following
form:

H=Hv,+Hvr, (8>

where H,’ describes the nondegenerate and twofold-
degenerate vibrations of the molecule, and H,, de-
scribes the rotational-vibrational modes (threefold-
degenerate vibrations).

We can now write the unsymmetrized total wave
function as a simple product of the electronic, transla-
tional, vibrational (for the nondegenerate and twofold-
degenerate frequencies), rotational-vibrational, and
spin functions, Yer, ¥1, ¥+, Yvr, and £, respectively:

()= [} [¥) [¥4) [¥r) £ )

Since the molecules are normally to be found in their
electronic ground state both before and after the
neutron scattering, the function ¥ is invariant under
permutation of the matrix elements.

The above assumptions being granted, the transla-
tional wave function ¢, transforms according to the
identity representation of .

Since H,’ and H,, are invariant under @ we can
classify the wave functions ¢,” and ¥, in terms of the
irreducible representations of ®. We write these func-

tions as
l‘/’v,>"" [Wy7e), ) — I¢KJM>'

S (or M) signifies which particular representation of a
given type V (or J) the wave function belongs to; and
v (or K), the row of this representation. Finally, the

7" G. Herzberg, Infrared and Raman Spectra of Polyatomic
Molecules (D. Van Nostrand, Inc., New York, 1946).
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spin function £ is simply the product of the spin func-
tions for each of the nuclei.

C. Rotational-Vibrational Wave Function

To evaluate the function |¢y,) let us write Hamil-
tonian Hy; as a sum of two nonindependent parts:

Hvr= H3+H4, (10)
where
Pu\?
m=1rZ o (%) +as], (11)
1 . -
Hi=—(a—{35)2. (12)
2I

Here q. is the vector with components ¢, (¢=1,2,3)
associated with the threefold-degenerate oscillation of
frequency w,. The pu, are the components of pa.

In quantum mechanics the components pus, ques must
satisfy the commutation rules

[ussquor ]=[Puorpwa 1=0,
I:Quﬂ,pu’o’] = ihauu’&m’ . (13)

j+ is an angular-momentum operator defined by the
commutation rules

[Jsesjas]=11 2" €apyjay- (14)
Y

€xpy 1S the antisymmetrical unit tensor of rank three.
Clearly the commutation rules (14) must also be
satisfied for the component of js in the space-fixed
coordinate system (X,Y,Z).

The vector j5*={js; is made up of a sum of Coriolis
operators and is given by

i3*=2 ?u(quXDu)=§'Z (QuXPu)=§j3- (15)

In the following procedure it is convenient to use the
system of Euler angles shown in Fig. 1. The Eulerian
angles ¥, ¢, and ¢ correlate the orientation of the set of
coordinates x, ¥, and z, fixed with respect to the molecule,
to the set X, ¥V, and Z, fixed in space. Z is the direction
of the momentum transfer Q.

Spherical-top molecules of point group 7'g, satisfying
the assumption that the permutation group of the
identical nuclei is isomorphous with the point group of
the molecule, have at most one nondegenerate vibra-
tion w;, one twofold-degenerate vibration w,, and two
triply degenerate vibrations w; and wa.

The operator

Hz;=H3s+Hs,

is the Hamiltonian of a system of two independent
three-dimensional isotropic oscillators having total
angular momentum

Js=JsatJas- (16)
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F1c. 1. Eulerian angles relating molecule-fixed axes x, y, z
to space-fixed axes X, ¥, Z.

The operators Hsy, j3.?% and js.., the last being the
component of Js, along the z axis, form a complete set
of commuting observables.

The eigenvectors |2,73.k3.) common to these three
observables are described by the quantum numbers
Vu, J3u, k3w, and the corresponding eigenvalues are

Hg, I 'quSuksu>= hwu(vu‘i'%) | vuj:iuksu) )
j3u2]vuj3uk3u)= h2j3u(j3u+1)l'vuj3uk3u>, (17)
jauz ! vuj3uk3u>= hk3u l vuj3uk3u> )

where

0 (vue
2a=0,1,2,*, fou=Duu—2, ", { (v. even)

1 (vy odd)
k3u= _j31¢,_j3u+17‘ * ',j3u_1yj3u y
and u takes the values =3 and u#=4.

In the {q,} representation the eigenvector |v.7zuksu)
is represented by the wave function

23 (u—Fsu) 11 12
F[%(vu-!—jau)-l-%]}

X pu™ exp(—3pu®) L a/2) (vumis @2 (pu?)

XV s kaa@uXa) ,  (18)

where L,®)(z) is the associated Laguerre polynomial of
degree #,

! vujaukliu)E‘p‘Du.iM.kw:

25—k ar
' d—(e“Z"+"), 19)
n! az™

L,®(z)=

and YV n.(8,X) is the spherical harmonic of degree I
Instead of the linear coordinates qu1, guz, gus we have
introduced the spherical polar coordinates pu, ¢4, and
X, defined by
Gu1= pu SINY,, COSX, ,

Gu2= pu SINY,, SiNX,,, (20)
Gus= Pu COSPy, .

We can thus form a complete basis of eigenvectors of
the Hamiltonian Ha which should be simultaneously
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eigenfunctions of commuting observables jis2, Js?,
32, J3: (Ref. 8):

lvaﬂ4jasj34jzka)= kZ (jssjuksskuljaks) l vsjaakss)

33,Kk34

X |vajsskas). (21)

On the other hand we observe that, if we neglect the
Coriolis coupling factor, the Hamiltonian H, takes the
form

1 .
H4='— 14,
27

which is just the Hamiltonian for a rigid rotator.

4 J4z, jaz form a complete set of commuting ob-
servables; therefore the wave function described by the
three quantum numbers 74, k4, 74 will be the matrix
element of the irreducible representation of the rotation

group
Ij4k4m4>—=—[(2j4+1)/871'2]”2Dk¢,m4(j4)(¢;0; ‘P) ] (22)
where
Ay jskams)=(32/2D)j(jut1)| jakeams),
J1z| Jakama)=tks| jikams),
j4z| j4k4m4>= hm4lj4k4m4) ,
with

(23)

j4= 0)1)2)' ]
ms= -'j4:_‘.7'4+1" : '7.7'4_—1:].4:
ks=—jo,—jotl, - ja— 1 g
Since j; and j; are commuting observables, if we
follow the same procedure as for the case examined
earlier, we obtain a complete basis of eigenvectors of
the operator H=Hz;+H, which are simultaneously
eigenfunctions of the commuting observables ji?, js?
J2, J., where
J=3:—13s (24)
and J, is its z component in the body-fixed system.
We have

[¥vr)y=|vsvamajs o K)
= ¥ (jsja—kska| JK)|vsvagssjsago—ka)| jukams)
k3,k4

-

k3,kq; ka3, kas

(Jaja—kaka| TK)(jasjaskaskss] joks)

X |v3fsskas)|vagsekss)| jakama). (25)

Equation (25) transforms under the operation of
pure rotation R of the proper group 0, isomorphic to the
improper group T4, according to

07| vsvamajs i K)=3 Dgr,x P (R) |vsvemsjsjJ K'Y,
K'

8 We use for the Clebsch-Gordan coefficients the notation of
A. Messiah, Mécanique Quantique (Dunod Cie., Paris, 1965).
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where?
Dx x(R)
= 2

k3’ kq’; k3,k4

X (= )ks=ksD)y s 4 % () ( R) Diwr a9 E)
=3 (jaja—kska| JK)jsji—ks'kd | JK')

:K’I

(jaja—tkska| TK)(jsje—ks'kd | JK')

X {Jaafaakaskss| jska)(Faagsakas’ksd | Jaks)
xDkaa’.kas(jsa)(ﬁ>Dk34’.ks4(ja4)(R)Dk4’,kA(jg)(R)- (26)
The symbol &’ stands collectively for &', k4, ks, k4;
kss', ksd, kss, kss. Dxr,xP(R) are the irreducible repre-
sentations of the rotation group; R is the pure ro-

tation associated with the point-group operation R.
The eigenvalues of the Hamiltonian H are

(vgpamajaji K| H |vsvamagsja] K)
= hws(vs+35) + hwa(vat-3)+ (4%/21)
X (7t 1)+¢27:(Gs+1) 1= §/D) vsvamsjsjo ] K s
Xj4['l)3'l)41ﬂ4j3j4]K> . (27)

The last term of the right-hand side of Eq. (27) may be
obtained by applying the Wigner-Eckart theorem. We
find
(vvamagsjo K |3 Ja|vs'vi'md 7' §/ T K')
(g 1 gd
=5JJ,5KK,(_—1)J+13’+14’{ . ] ]
_74' J J4

X (vsvazallisl|vs'vd 7o) - magallidlmd 5y, (28)

{ J1 Je ]a}
Ji J2 Js
is the Wigner 6-7 symbol.%-10

The reduced matrix element for the angular mo-
mentum is given by

(agllille 5} = baw 8 R F(j+1) 25+ 1) ]2, (29)

Therefore, the rotational and vibrational energy has
the form

Evr= hws(”a‘f‘%)‘f‘ hw4(‘l)4+ %)

where

52
+5;[j4(]'4+ 1427545+ 1)]
+(__)J+1+J-;+J'4h2§ { ja 1 js}
I ja J Js
X [7s(7s+1) 275+ 1) ]V ja(fat+ 1) (274+1) ]2 (30)

9 M. Hamermesh, Group Theory and its A pplication to Physical
Problems (Pergamon Press, Ltd., London, 1962).

WE. P. Wigner, Group Theory (Academic Press Inc., New
York, 1959),
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D. Total Wave Function

As stated above, the wave function |¢,’) describes the
nondegenerate and the twofold-degenerate vibrations;
therefore it is the product of the wave functions

1/2
O e e LI
™ 1

and
[valo)= {w[F(vat1o) ] 1[5 (va—1s) ]122) /2
Xexp[—3(ga1?+¢22%) ]
X H (o1)12(q20) H (o191 12(q22) ,  (32)
Where lz= Vo1 V22, V2= 1)21+'v22; lz= Vg, VU2 2, ter, U2

and vg;, 792 may be regarded as the quantum numbers
introduced in the two-dimensional isotropic oscillator
of frequency w, in the representation {q»}. H,(z) is the
Hermite polynomial of degree v. The wave function
|v1) in Eq. (31) describes the nondegenerate state of
frequency wi, and the wave function |vls) in Eq. (32)
describes the twofold-degenerate vibration of fre-
quency ws.

Finally, the rotational and vibrational energy of the
molecule, i.e., the eigenvalue of the Hamiltonian in
Eq. (7), will therefore be

E= iuol(vl—}—%)-i—hwg(vg—i-l)—}-E vre (33)

The wave functions (31) and (32) each define a repre-
sentation of the symmetry group of the molecule and
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transform independently under the operations of the
group. The representation realized by both functions is
then the product of the representations of the single
functions. Actually we can see in Eq. (32) that the
exponential factor is invariant under all group opera-
tions, while the representation generated from the
product of Hermite polynomials is the symmetric
product ve-fold by itself of the irreducible representa-
tion generated by gz,(¢=1,2).1! Analogous considera-
tions are true for Eq. (31).

The reducible basis |¢:)|¥+')|¥v:) transforms under
the operations R of group @, according to

Or(|¥e) [¥275) [¥x"™))
= ¥ Dr/gV(R)Dy 4V (R)

K,y

X (¥ ") ¥x ), (34)
where D, ,(R) denotes the irreducible representa-
tion V associated with the twofold-degenerate vibra-
tion (y=1).

E. Intermediate Scattering Function and
Partial Differential Cross Section

According to the procedure followed by Sinha and
Venkataraman? we now introduce the total symmetrized
wave function into Eq. (2) and perform the integration
and the average over the spin parts. We obtain

1Qn)= Z Zx*("’(R) Z na(2)We|exp[iQ-o() ] exp[—iQ-0(0)][¥)r 2 X PA(T) X —Dlz’lz(V)(R)

2 e

333,734 A

XY ¥ Dgr,x P (R){{v1vals| (vsvamags i K | Z(AMA.-HWC %)

my K/ ,K

Xexp[1Q-a,(f)] exp[—1Q-0,(0)]| vsvamsfs jaT K )| v1v2ls")

+ X

vy vFER
|dent1ca1 nuclel

The symbol 4 stands collectively for (vwovsvsjsja]).
The position of the »th nucleus is here given by

=o+ o,, (36)

where g is the position of the center of mass of the
molecule which describes the translational state only;
¢, is the vector from the center of mass to the equilib-
rium position of the »th nucleus in the molecule;
X®™(R) is the character of R in the irreducible repre-
sentation \; and #4({) denotes the number of times the
representation A is contained in the basis of spin func-
tions corresponding to total nuclear spin {. It is A=)\*
if the identical nuclei are bosons, or A= (—)Z«\* if the

CX(v1vals| (vavamajz juT K | exp[Q - 0,(2) ] exp[— Q- 0,(0) 1Z(Q) | vavamags o K') | v1vals’)} .

(35)

identical nuclei are fermions. P, is the order of the
permutation « of ®; 3C is the order of group @.

P _,(T) is the Boltzmann factor for the rotational-
vibrational part of the wave function and is given by

w)/ T ), @

where & 5 is the Boltzmann constant, 7" the temperature
of the gas, and #.4¢ denotes the total multiplicity of the
energy level A = (vavsvsfafa]).

The translational matrix element has been evaluated

P (T)= CXP(

11, Landau and E. Lifchitz, Mécanique Quantique (Mir,
Moscow, 1966).
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by Zemach and Glauber! and is given by
(e|exp[iQ-e(2)] exp[—7Q-0(0) ] [¥e)r

= expl:—gz—(iht—FﬁIKBT)] , (39
oM

where M is the mass of the molecule.

BUZANO, DEMICHELIS, AND RASETTI
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On the other hand, taking into account Eq. (3), the
time dependence of the rotational-vibrational matrix
elements can be made explicit, introducing a complete
set of eigenfunctions of the Hamiltonian H between the
two factors of the operator in (35). Let us denote these
eigenfunctions by using double primes attached to the
usual symbols.

(01| {vals | (v3vams 5 jsJ K | expliQ - 0,(£) ] exp[—iQ-0,(0) ]| vsvama s jaT K')| vals’) | v1)

1"

=" expl:i

X (o1 | (o2 L | vs"vd"'m" §5" " T" K" | exp[—1Q-,(0) ]| vsvammafsjaJ K') | vils'}| v1),

where Y.’ denotes the summation over all the indices
with two primes, and E” is the energy given by Eq. (33)
when the quantum numbers v,”, v)”/, -+, J”, K" are
introduced.

To obtain the final expression for the intermediate
scattering function we have to evaluate some matrix
elements of the following type:

(01| Qvale| (vav4majsjJ K | exp[iQ-0,(0)]
>< [‘1)3”7)4"m(,js”]‘(,]”K“)['Uz”lz"}]?h”). (40)

For this purpose we write the position e, of the
nucleus with respect to the center of mass as a sum of
two terms:

o,= uv+bv )

where b, is the equilibrium position of the nucleus in the
molecule-fixed system with origin at the center of mass
and the z axis directed from the center of mass to one of
the identical nuclei; and wu, is the displacement of the
nucleus from the equilibrium position, due to molecular
vibrations.

According to Zemach and Glauber,! u, can be

(v1] (vels| (v3vamafajsJ K |exp[iQ-b,] exp[iX, Vg1 ]

t:|<”1| (vala| (vsvams s jsJ K | exp[Q-a,(0)] | w5 "va "md" 5§ T"K'") | vy 15" )| v1"")

(39)

written as
3N—6

=3 M0, (41)
A=1
where Qy are the normal coordinates, ¢,™ is the ampli-
tude vector of the »th nucleus in the Ath vibrational
mode and wy the frequency of the mode; and N is the
number of nuclei in the molecule.
By using our formalism we have

AN\ 1/2 2 A\ 12
uy=cv<”(—) qd—}:cy@-"’(—) G20

w1 o=1 ws

3 A\ 1/2 h\1/2
+ Z [cr (3,1)(,_) q3‘r+cv *n (_') qh—] . (42)
=1 w3 W4,

If one puts
X, 00 = (/) 12Q- 6,00 (43)

and takes into account the fact that the components of
b, commute with the normal coordinates and that the
latter commute with each other, then the matrix ele-
ment (40) becomes

2 3 3
X IT exp[iX,* 2 g5, ] IT exp[iX, @ g5, ] IT exp[iX, 9 qs, ][ 05 04" md” 55" " T K"} 051" ) | 01"")
o=1 =] p=1
2
= (v1| exp[iX, Dg1]| vy W valo| IT exp[i X, 2 qoq || 0"1:"")
o=1

3 3
X (v3v4m4j3j4JK | exp[zQ . by] H exp[iX,,“*' ’)g3,] H eXp[iXy<4’p)Q4p:I | ‘113”‘1)4“’”’!41,js’ljz;"]’lKN) . (44—)
=1 =1

Performing the explicit calculation of the matrix elements (44), we will assume in the following that X, can
be replaced by the constant value

(h/ws)1/2<Q . cy(s,a)>av

obtained by taking its expectation value in the dynamical state defined by the molecular wave function |¢).
Using Eq. (31) we find?

(or] expLiX, Dgu] o1y = (VDL X, O T expl — (X, )L, P03 (X, D) 6
12 H. Bateman in T'ables of Integral Transforms (McGraw-Hill Book Co., New York, 1954), Vols. T, I1.

45)
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where
my=max{v,11”'}, Mi=min{v,v,"},

and the constant F,;.*(y) is defined as

Fvlu”l(y) =1, ‘Z)1+1J1,/ even

Fvl,,”l(y)=0/Xy(l) ’ 1}1+'l)1” Odd. (46)

By an analogous procedure we obtain from Eq. (32)

2
(7)212' 11 exp[iXy(LV)qu:l ! vl )= (i/\/f)mzﬁmzz—ﬁm—rhzz[mm!m22!/mm!mn!]1/2[)(”(2,1)]mzl—-ﬁn[Xy@,z)]mzz—ﬁzz
o=1

Xexp{ — 1[(X, V)24 (X, @)2]} Ly, (ma—ma0[ (X, @.0)2] Ly, M2 [1( X, @), g, 22(p),  (47)

where
ma=max{3(va+1), 302" +L")}, Mma=min{F(ve+1s), 3" +1")},

map=max{3(va—lo), 3 (0" — &)}, Me=min{F(s:—1), 5"~ L")},
and the constant F .5, *2%(») is defined as

Foyrggv?2(v)=1, $[vat0y"+l+1""] even
=2/(X,®V04+X,22)  1[ve+vo" "+l 1" ] odd. (48)

Taking into account Eq. (25), the rotational-vibrational matrix element which is the third term in the right-hand
side of Eq. (44) can be written as

3 3
(vavamajsjsJ K |exp[iQ-b,] 11 exp[iX,® 7gs, ]I exp[iX, 4P qq, ]| vs" vs 'ms" js" " J"K")
7=1 p=1

=3 <j3"j4"— k3R’ [ J'/KI,><j33/Ij34'/k33'/k34"] ja”kall><]'3]'4— k3k4l ]K><jssj34k33ks4] jsks)(‘vsjsaksa I (W4j34k34l
g

3 3
X (jskama|exp[iQ-b,] 11 exp[iX,® g5, 111 exp[iX, gy, ]| 1" ks"md")|v4" jas "ksd”")| 05" jus 'kss).  (49)
7=1 p=1

The symbol &'’ stands collectively for k3"’ ks’ ks ku; kas’’ ksd’’ ks, kaa.
The selection rules concerning the transition to the state indicated with two primes are included in the Clebsch-
Gordan coefficients.

The matrix elements in Eq. (49) can be factorized; furthermore, with the use of Eq. (20), they become

IT (vssskss| exp[i X,V p, sind cosX, ] exp[iX,(*2 p, sind, sinX, |
4

8=3,

Xexp[iX, P p, cosXy ]|, fas kas" ) jukams| exp[iQ-b, ]| ji ks 'md"). (50)

We shall calculate separately the two factors appearing in expression (50). The calculation of the second factor
can be performed taking into account the fact that?

exp[zQ . b,,]= 47T go é—l(— )m'il].l(va) Yl.m('}, ‘P) Yl.m('}h SDV) ) (51)

where b,,8,,¢, are the polar coordinates of the »th nucleus in the molecule-fixed system and j,(X) is the nth
spherical Bessel function. We have?

(jskama|exp[iQ-b, ]| ji""ks ' mi")=[(2]s+1)(27s"+ 1) ]2
X (—=)kmi(+/4) IZ Qb)Y 1m(@sy )1/ (2A-1)2(Go " jakd"— ksl Im)(js" jams' —ms10).  (52)

Now we calculate the first factor in the expression (50), which is a more complex case. It may be verified that
on introducing the expression of spherical harmonics in terms of associated Legendre functions Pj,, i,,(cosd,), this
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factor will be explicitly
(927 aekse | exp[2X,(*Vp, sind, cosX,] exp[i X, *?p, sind, sinX, ] exp[i X, *Pp, cosd, ]| vy js." ks, )

o= s M3 — 73N (Fas—has) 1(as ' — Bas”") 1) 112
F[% (vs+j3s)+%jr[%(7)3,’+j3a’,)+%] (j3s+k3s) !(j331,+k3s”) '

1
=;FWMwmm+mm#Hm%
T

o0 T
X f dpape™t 1342 exp(—ps?) L (1/2) (vamis) PP (02 L (1/2) (07 —inerry TP (p,2) / A8 5 Pjy, ka0(COST)
i) 0

2

X Pjsyr sy (c0584) exp[1X,(*Pp, cosd, ] sind, / dX, exp[iX,*Vp, sind, cosX, ] exp[iX, "D p, sind, sinX, ]
0
> "”__
We have!® Xexp[i(kss —kss)xs]. (53)
2T
/ exp{i[ X,®*Vp, sind, cosX,+ X, @D p, sind, sinX,+ (ks,” — ks X, ]} dX,
0
X, (2

X, (oD

= Qrikss’'~kss exp[i(ka,"—kss) arctan JJkasu_ks,{[(X,,“'l))z—}-(X,(”""))z:]”? .sind,}.  (54)

Omitting from consideration the constant that in Eq. (54) multiplies the Bessel function

Jk3c""k33{[(Xv(8'l>)2+ (Xv("z))ﬂm s Sinz%} )
the integration over J, gives

/ Pisr.kh(coszyl)l)jsx"JW«"(COS(?‘B) exp[in(a‘z)Ps Cosﬂa-]-fka.”—ksg{[(Xv<s']))2+ (Xy(a,2))2]1/2 N Sinﬂs} Sinﬁsdﬂs
0

C3Gu—lkal) <3G = [ka]) 1 22— 28)!
e xS (e (2jss—20) (2js"~26)
a=0 B=0 alB! (Fas—a) 1 (Jas” —B) (Fas— | Fas| — 22) 15" — k5| —28)!

X {[1+(_)i33+i3:"—l ks.sl—lksc"l](;jzhlkh['aisa”,lkss”l.ﬁ(ps’X, (s.a))
. +[1_ (—-)i23+J'ﬂs"‘lk3sl‘_|k33”|]éjah [ks.[,aig’” W1k3s’’ | .ﬂ(ps’Xy(srv))} , (55)
where

d h3s d n/2
Gjax.lkm,am”']k“”,'ﬁ(Pstv(B'c))=Mkza,kaa”(gsy)~h3“(7lav)1—"/2< ) ( )
dfay dﬂay

d X{(&)ae(n) "L (EL) - (2) P T D LA DIARAT (s oy na [ (£2)24 (97)2]V2) - (56)
an
s 1 d

d \ s (n~1)/2
Gjas.lkssl,a”'”'lk“”"ﬂ(Ps Xv(a’v))=Mkshka."i(ssy)—ha‘(nsv) (1—“)/2( ) ( >
dEs dns’

X{ (&) Pas(n2)"[(£2) () ] WD UADIZRT (o) o [ (£) 2 (0) T4} . (57)
We have used the following notation:
£8v= [(Xv(e,l))2+ (Xy(a,z))z]uzps ,
1 =X, .o,
n=Jss+ jas' — | kss| — | ks’ | —2a— 28,
hss=max{|kss|,|kss” |}, I Faks''>0

= |k38!+|k38”| 3 if k3s'k3s”<0;

ﬁg,=min{ lkSa | 5 I kas"‘ } » if k3,'k33”> 0

=0, if k3a'k33”<0;
Mksu’csa" =1, ) if ksx> 0, ks/'? 0
= (—)k(43," + ka,”") 1/ (Gas' — k3’")!, if k3>0, k3'’ <0
= (—)ks'“(j%'{_ksx) !/(jh'_k-')‘s) ! > if k33< O, k3s”>0

= (= )laetkss(fagtkso) (Fas"+kss) /[ (Jas—kss) (Gas" — kss')!], if kg0, ks <O0. (58)
13 W, Grobner and N, Hofreiter, Integraletafel—Bestimmte Integrale (Springer-Verlag, Gottingen, 1950).
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In order to calculate the right-hand side of Eq. (55) we have used the polynomial form of the associated Legendre
functions and the Fourier cosine and sine transforms of functions of the type!?

F(X)=X*1—X2)Wrn] [o(1— XH12], for 0KX<1

=0’

for 1<X<w, (59)

Finally, still neglecting the constants, by integration over p, we obtain

00
/ psse " Hi8t2 exp(— p,?) L(1/2) vemise) PP (052) L (1/2) (oo 7—say B D (p H){ (14 (— ) owtsse "~ lkssl =l ka1 ]
0

X G lkaal el 1885 1B (py X, (00) - [1— (— Yisstias " ~lhsal=lkas 1] Gro ) 88 ke LB(p X, (0.00) N,

(1/2) (ve—ize)  (1/2) (vs’'—j3a"") (— )TBM o kaur?

I3 (vet faut-3)]

I[3(n"+ 75" +3)]

&=0 4=0 a!B!

P(j3s+d+%)[%(‘vl_ jaa) "'d‘] ! I‘(jh”’i'.é"*'%)[%(vs"“‘ .7.30”) _‘B] !

® d \"ay g \ni2
X[+ (— )J'ss+ia:”-lkz:l—lksa”l]/ psPastias " t26t2642 exp(— p 2)(§,7)"hee(n,”) l~n/2<__.> (__.)
0

dty’ ans

XL (&) (0 ) 1L ()24 ()2 T DAV IR T (1) 10 [ ()24 (1) ]2} s

A[1— (—1)7stizs""~l ksl ku"l]{/ p37'3a+:'3a”+26z+2ﬁ+2 exp(—p,2) (£7)Pea(n ) (1— n)/Z(
0

d \Fay g \ (»=D2
) G

X{(&2)He(n)"L(£2) 2+ (02)2 WD LADARNT (g o ng [ (£02)24 (0e?) 2]V z}dps} . (60)

Since £ and 5 are proportional to p, [see relations (58)] the two integrals in the second part of the right-hand
side of Eq. (60), leaving out a constant 4., have the general form

Ip;(%) =/ (Esyy eXP[—' a(scy)z:[dp/d(gav)jj]{ (m”)"[d’”/d(m")”']f(és”,m')}d‘és'

=/ (¢2)7 exp[—a(£2)? a7 /d(£2)P LT (E05me”) JdEs,

where

F= faot joa 20+ 28— hae+2, p=hs,.
(We always have 722, #>p.) In the first integral on
the right side of Eq. (60),

k=1—3%n, m=%n.

In the second integral on the right-hand side of Eq. (60),
k=3(1—n), m=3@u—1),
o= [(X, D)2 (X, (0:2)) 212 Gastise’ +2e+26+8) |
a=[(X, )24 (Xv(8,2))2]—1 .

The integral appearing in Eq. (61) gives the recursion
formula

If=—FIp 420, ™.

(62)

Therefore 1,7 can be calculated for any value with
the lower index p, if we can calculate for any value of

(61)

the upper index ¢ the new integral

Iot= / (&) expl—a(£2)? 15 (&m)dEr . (63)

In our case this integral takes the form

[oq=Bq/ (770,‘)’ exp[—b(ns,)zj

X[dm/d(n2)Tf(£7n)dny
=B, (64)
where ,
qu {[(X,(a,l)) 24 (X,,("”)z:]l/z/X,(”'s)} a+1 ,
b=(X,=9)~2,
r=q+k,

and ¢ 7—p, r2> 3, r>m always.
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The integral appearing in Eq. (64) satisfies a recursion
formula analogous to that of Eq. (62):

I, =—rIp 4261, 4™+, (65)

and it can be calculated for any value of the lower
index m if we can calculate for any value of the upper
index v the integral
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while for the second integral on the right-hand side of
Eq. (60), we have
=3(n+2)+s.,
w=0v+hs+3(n—2),
Cyo= (X, 9)rtnt1[ (X, D)2 (X, (0:2)2 Jhss
XX, 0) 24 (X, 00) 2 (X, 08 21202 [24hss]

The integral on the right-hand side of Eq. (66) has
the value!3

TG (utw+1))
24HT(y+1)
Xexp(— )M Gu—w+1); ut1; ic?),

where M (a;b;2) is the hypergeometric confluent func-
tion defined by the Pochammer-Kummer series:

o ['(a+v)T(d) 2
M(a;b;2)=Y, ————— —.
v=0 I'(a) T'(b+») »!

Iy= Cv/ ps® exp(—ps?) Ju(cps)dps= C.I.» , (66)
0

where foe
o= [(X, D)2 (X, (0224 (X, (:9) 212

S>p—
v2r—m. -
For the first integral on the right-hand side of

Eq. (60) we have
u=%(n+1)+h3, y
w=v+h3,+3(n—3),

Cy= (Xy (3,3)) ﬁn[(X’(s.l)) 2+ (Xv (8,2) ZJhss
X (X, 0)24- (X, (09) 24 (X, (6 9) 2120t D 24 has] |

(68)

Finally the matrix element (49) is given by

3
(1)3‘114m4j3j4]K ] exp[iQ- b,] LI4 II] eXp[iX,(”"”gW] ’ va"w”m4”_7'3”]'4”]"K”)
= Z W3Iz’il<js"j4ll_k3"k4"lJ"K/'><j33”j34”k33"k34'/I jsllk3/'><j3j4— k3k4]JK><j33j34k33k34l Jaks)
i e e

(27:+1)(254/'+1)
(2041)

1/2
(Ga" jaked" = a| lm)(js"" jum s —ma| lO)(—)"“"“[ ] JUQB)Y 1By, 04)

X,
XTI | X (= )k theted bt ftf ghast’—kss J=instisO[ (2 j3,+1)(2 755"+ 1) ]2 exp[i(kss”—km) arctan J
s=3,4 \a,&8.8 X,,("']

% {[%(vs—jss)]![%(va"— 3" ) N Jas—kae) 1 ja"" — k) !F[%(va-l-jas)+%]I‘[%(vs”+jas")+%]} 12
(Jastkas) 1(Fas" +kss")!
(273s—20) (243" —28)!
kag,,kaa"A s . A . ; X
alalB1B(fss—a)!(fas" —B) (Fae— | kas| —20)1(fss" — | ks, | —28)!
% 1
T (fastat+3)T( s +B+3) (30— joo)+a I3 (0"~ fa,”")+8]!

XA 14 (— 1) dost dns’ "=l kasl=lkas”/ | T F(Fy,?) A-i[ 1— (— )iastiss’ '~ lkssl=lkas”" I ][ 7(Fa,?)} ) . (69)
Equation (61) defines the integral I,7; here it is

Bu= (02) 120 dn ) (£ (n2 ) L) ()T D 8 T o L6 (1)1
Far= (02 20 ) I ()L (8 (1) TP DR T (o L6+ (1))

By using Egs. (35), (38), and (39) and taking the Fourier transform of the intermediate scattering function as
indicated in Eq. (1), we obtain the following expression for the scattering cross section per unit solid angle and
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unit interval of outgoing neutron energy:

20 /dQAE= (1/2x%)(k/ko) 2rM JQ*KT)2 3. 3 x*M(R) 3 na()
REC® ) o

XY (1/3)Diy 1, (R) Y. ¥ DrrxP(R)[

Lo/, l2 my K',K

SCATTERING OF NEUTRONS BY SPHERICAL-TOP MOLECULES

> (A4,+8,00+ X
[

107

2 L PAT)

733,33u A
C2Z(0)]

vy v FER
nuclei identical

X" exp[ — (wh+ €)2M /(202K s TH?) J(v1 | exp(: X, Vg1) | o1 Yv1"! | exp(— X .V gy) | v1)

2 2
X (vala| T exp(iX,®7gz,) [v5"0" )02y | 11 exp(—iX @ q0r) [vads” Y oavamagajs K |
o=1 g/=1

3
XeXp[iQ . b,,] H H GXp(’l.X,,”"’")g“,,) ‘{ '1)3"1)4//M4,/j3/,j4"]llK”>

§=3,4 ¢/’=1

3
X (w5 "vd"'md" 5" j' T"K" |exp[—iQ-b,] IT I exp(—iX, """ qu ) |vsvsmafsjalK'), (70)

where
e=E—FE"—Q%2/2M .

The matrix elements appearing in Eq. (70) are ex-
plicitly given in Egs. (45), (47), and (69). In writing
down these matrix elements, the orthogonality prop-
erties of Clebsch-Gordan coefficients must be kept in
mind.

III. SUMMARY

The present paper presents the results of the compu-
tations on the partial differential cross section for
scattering of slow neutrons by molecules in the general
case including rotational-vibrational interaction. A
precise and explicit formula has been derived for
spherical-top molecules of point group 7.

When it is assumed that the molecules are in their
ground vibrational state both before and after the
scattering process, formula (70) coincides with the

§/=3,4 ¢’’'=1

formula of Sinha and Venkataraman. This is consistent
with Egs. (17) and (24); indeed, if v3=24=0, the angular
momentum resulting from the Coriolis coupling is
zero and j4=1J.

Actually Eq. (70) has a complicated form, but, by
examining the Boltzmann factor, we can see that only
the vibrational terms corresponding to the very low
quantum numbers give an appreciable contribution. In
the case of methane, for instance, where »;=2914,
ve=1526, v3= 3020, and »4=1306 cm™, an appreciable
contribution to Eq. (70) is given only by the terms for
which all the v/’s are zero (:=1,2,3,4), or only one of the
v; is equal to 1 while all the others are zero.

Moreover, we point out that Eq. (70) and the rota-
tional-vibrational matrix element have been formulated
in such a way as to facilitate the writing of a computa-
tion program for a high-speed digital computer. Further
studies on this subject are in progress.



