
POLARIZATION OF LYMAN —0. RADIATION

assumed random spatial orientation of the proton-
hydrogen atom axis with respect to the projectile-beam
direction. This new internuclear axis, rather than the
projectile-beam axis, acts as the quantization direction
for the resultant excited hydrogen atom. While largely
conjectural, this hypothesis is substantiated by the
measured Lyman-n-radiation polarization and also the
measurement of Balmer-o. -radiation polarization from

this same reaction. " Measurements at 3- and 6-keV
projectile energy yielded zero polarization for the
Lyman-o, radiation with rms deviation of the data
consistent with that from the proton projectile re-
actions. We therefore conclude that no serious instru-
mental e6ect inQuences the polarizations reported here.

"D. H. Jaecks and F. J. de Heer (unpublished).
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The eRect of the application of a classical driving Geld on the spectrum of spontaneous emission from a
simple physical system is studied. The physical system consists of an ensemble of two-level atoms inter-
acting with a relaxation mechanism. The single Lorentzian line-shape characteristic of the power spectrum
of spontaneous emission for the undriven case is split into components by the driving Geld. This splitting
is associated with the establishment of dehnite phase relations between the corresponding components
of the Geld spectrum.

INTRODUCTION

E will investigate the spectral distribution of the
~ ~ ~

~ ~

spontaneous emission from a system of atoms
subjected to a strong, near-resonant field. The material
system is modeled by an ensemble of two-level atoms
interacting with a relaxation mechanism.

The spectral distribution of the spontaneous emission
will be unaffected by the driving Geld if the latter is not
sufFiciently large to significantly alter the state of the
atomic system in a relaxation time. ' If the driving field
is sufFiciently large we expect the spectral distribution
to be changed from the undriven case. When the fre-
quency associated with the interaction energy (of the
atomic currents with the electromagnetic field) is small

compared to the resonance frequency, useful calcula-
tional techniques are based on treating the interaction
Hamiltonian as a perturbation of the full Hamiltonian.
This technique is not valid for the present problem.
Rautian and Sobelman' have considered the situation
that the material system is coupled to many modes of
the radiation field. , but that initially only one mode of
the field is in a high™energy eigenstate. They obtained
a solvable finite set of equations for the atom fieM

probability amplitudes by truncating the infinite set to

*Work supported by U. S. Air Force Cambridge Research
Laboratories,

t This work was done while the author was at Technical
Research Group, Division of Control Data Corporation, Melville,
N. Y.' I. R. Senitzky, Phys. Rev. 119, 1807 (1960).' S. G. Rautian and I. I. Sobelman, Zh. Kksperim. i Teor. Fiz.
41, 456 (1961) /English transl. : Soviet Phys. —JKTP 14, 328
(1.962)].

correspond to a small number of multiphoton processes.
It appears to us that the validity of this procedure is
limited to relatively small initial Geld energies. Berg-
mann' has investigated the problem of spontaneous
emission from a two-level system with incident beams
of radiation which are initially either in a coherent state
or in an m-photon state. His treatment attempts to
avoid a perturbation-theory approach and uses approxi-
mations which retain only diagonal elements of the field
time-development operator. In addition to these
approximations his equations of motion are restricted
to material two-level systems which cannot develop
into mixed states. We feel it is necessary to consider the
e6ect of mixed states, and indeed the main features of
the spontaneously radiated power spectrum for large
fields are simply related to the time development of
these states.

In our work we take the large driving field to be
classical and prescribed in its time dependence. The
Hamiltonian now includes separate terms which de-
scribe the interactions of the atomic current with the
prescribed classical field and with the small quantum-
mechanical field which causes spontaneous emission.
We compute the spectral distribution of the spon-
taneous emission to second order in the small inter-
action. The general solution gives the spectral power
radiated in terms of the characteristic frequencies which
describe the problem, and the atomic and relaxation-
mechanism parameters. This solution has been used as
a basis for determining the fundamental noise properties

I
Si, M, BergInann, J. Math. Phys. 8, 159 (1967),
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of nonlinear quantum amplifiers of the type discussed
by Senitzky et al. The eRects described in this paper
have analogs in a dynamical theory of laser oscillators
developed by Barone. ' In both of these applications
significant eRects are associated not only with the
alteration of the power spectrum from the undriven
case, but also with the development of phase relations
between parts of the current spectrum.

The rate of change of the field Hamiltonian can be
found from the Heisenberg equations of motion:

(d/dt) Ht (1——/ih) LHt~H j.
Using the commutation relations for the field operators
(Ret. 6), we obtain

(d/dt)Hr= —j E= —j 8(A/c.

FORMULATION

The system to be considered consists of an ensemble
of two-level atoms interacting with the quantum field,
a prescribed classical field, and a relaxation mechanism.
If the dimensions of the atom can be taken to be small
compared to the scale of spatial variations of the
electromagnetic Geld (dipole approximation), the
Hamiltonian takes the form

8=H,+Hr jA/c —j—A, (t)/c j.F. —

The terms H and H~ represent the free atom and field
Hamiltonians. The term j A/c represents the inter-
action between the material current operator j and the
quantum field described by the vector potential
operator A. The term j A, (t)/c represents the similar
form of interaction with the prescribed classical field
represented by the vector-potential c number A, (t).
Despite the fact that the magnitude of this field is not
required to be small, the quadratic term A,2(t) (which
would otherwise appear) may be dropped in the dipole
approximation. In this approximation it merely adds a
time-dependent term to the phase of the wave function.
The last term j.F in the Hamiltonian represents the
interaction between the material current operator and
a relaxation mechanism coordinate F. The atomic
current operator j has the matrix elements

ihe
)at=—

in the representation in which the Hamiltonian of the
free atom H is diagonal, i.e.,

H Pi=&i4i

The Hamiltonian for the free quantum field is given by

where E and H are the electric and magnetic field
operators. In terms of the vector potential operator A

we have the relations

H= vXA, E= —a,A/c.

'B. Senitzky, G. Gould, and S. Cutler, Phys. Rev. 130, 1460
(1963).' S. R. Barone (to be published).

This relation may, of course, also be obtained from
Maxwell's equations. The average power radiated by
an atom at the time t, when the interactions are turned
on in the distant past, to= —~, is given by the quantum
and thermodynamic ensemble expectation value:

P(t)= (to
———~ IHr(t) Itp ———~)g. (6)

SECOND-ORDER PERTURBATION

We now exploit the fact that the interaction energy
H~ of the atom and the quantum field,

Hr —j.A/c, ——

is small compared to the unperturbed Hamiltonian Ho..

Ho=H —Hr

The Hamiltonian Ho includes the terms describing the
current interactions with the classical field and the loss
mechanism.

The time development of the transformation func-
tions under the full Hamiltonian can be formally
related to quantities which develop under the un-
perturbed Hamiltonian Ho by the expression~

«14) =«II expI —— Hr(t')«'
I I4), .

The subscript + on the exponential means that the
integrands in the formal expansion of the exponential
are positively time ordered (operators with later time
arguments appear to the left of those with earlier time
arguments). The subscripts H and Ho on the trans-
formation functions mean that the time development
of each function is determined by the corresponding
Hamiltonian. To first order in the interaction energy
we have

&tI to)ir= &t I to)ao+ — dt'&tI)(t') .A(t')
I to)pro,

ck g,

W. Heitler, The Quantum Theory of Radiatioe (Oxford Univer-
sity Press, New York, 1954).

7 J. Schwinger, Lecture Notes, Brandeis University Summer
Institute in Theoretical Physics, 8randeis University, 1960
(unpublished).

The subscript 0 in Eq. (6) signifies the average over the
thermodynamic ensemble representing the relaxation
mechanism. This averaging will be chracterized more
precisely later.
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and the complex-conjugate expression

«pit&H= «olt)~.—— «' (tol A(t') j(t') It&~o.
ch t,

Under the Hamiltonian Hp A(t) develops as a free
quantum field, and j (t) develops as a current coupled to
a classical Geld and a relaxation mechanism. These
expansions may be inserted into expression (6) for the
thermodynamic expectation value of II'y when the
states (to I

in the latter expression are represented by a
complete set of states (tl at the time t. We thereby
obtain for the power radiated at time t, P(t), to second
order,

2 '
t

i~—
P(t) = lim —Re dt'

I I(tolA, (t)A;(t')
I to)ap"c'

(p (he
X (to I j;(t)j;(t') I to)a, , p (9)

where the subscripts (i,j) label the spatial vector
components, and the convention is used whereby a
summation over repeated indices is understood. We
have assumed that the initial state of the uncoupled
field is the vacuum, hence (tpl A

I
tp)~v=0.

ELECTROMAGNETIC STRUCTURE

where the spectral density B is a real dyadic which
characterizes the Green's function. The spectral density
may be related to the modal properties of the electro-
magnetic structure. Thus, if we label the proper modes
of the structure by the resonant frequency co and the
degeneracy parameter n, viz. , A((d, n, r), we have, by the
requirements of completeness and orthonormality,

dp) dn p, (p))A(p), n, r)A( pn), r') = f')((r r—'), (13)

8;,(r,r'; p)) =
2'

dn p. ( p))A, ( pn), r)A, ( pa), r') (14).

In terms of the electromagnetic Green's function the
power radiated is given to second order by

2
P(t) = lim —Re dt'G, , (r, t; r, t')

tQ~&+ c2

x «, I j,(t)j,(t ) lt.),„(13)

where p is the mode density. The expansion of the
Green's function in terms of these proper modes leads
to the relation between the spectral density and the
mode density:

c2

where r is the location of the radiating atom. Using the
spectral representation of the Green's function, we
obtain the spectral resolution of the power,

The role of the electromagnetic structure is made
explicit by recognizing that the vacuum expectation
value of time-ordered field operators can be identified
with the Green's function dyadic, namely, 2GO

P((d, t)= B„(r=r—', (o) Re lim
c2 tp~oo

dt~ &
—i~(t—t')

X (tpl j,(t)j,(t')
I to)H, p,

(vac, tpl I A, (r, t)A, (r', t') I+I vac, tp) =G,;(r,t;r', t'),
)'a'''')

(10) where
where G satisfies the differential equation

1
I

v'—8,')G(r t; r', r') =5,(r r')5(& —r'), O 1)
c2

P(t) = dp) P(p), t).

DRIVEN MATERIAL SYSTEM

(17)

with Gt representing the transverse delta-function
dyadic. This identification may be verified by sub-
stituting the expression (10) for G in Eq. (11) and using
the equal time commutation relations:

iLA, (r, t),A, (r', t)g= Ac'(8, (r,r')),;.
The spatial boundary conditions on the Green's function
are the same as those on the vector potential. The
temporal boundary conditions are determined, accord-
ing to Eq. (10), by the state of the uncoupled field at
time to, in this case, the vacuum. This implies that
G(t, t ) is causal, that is, the spectral distribution con-
sists of only positive frequencies for t&t', and of only
negative frequencies for t&t', i.e.,

We will now be more specific regarding the nature of
the driven material system and discuss a particular
situation which is of interest for the determination of
the noise properties of a nonlinear quantum amplifier. '
Here a gas of molecules, subjected to relaxing collisions,
is contained in an externally coupled cavity. The cavity
is excited by an applied field whose spatial distribution
is determined by a monochromatic excitation of the
cavity near a resonance. Two levels of the molecule are
separated by a near-resonant energy spacing and are
connected by a Am= 0 electric-dipole transition. Within
the frequency range of interest the spatial behavior of
the spectral density B can be taken to be the same as
the excitation field. The classical field is monochromatic
and plane polarized at the location of each molecule:

G(r, t; r', t') =i A. (t) =eA p cosopot. (18)
dho B(r,r'; o))e '~(' '( (12)

Only the current component parallel to the local
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polarization axis radiates in the Am=0 transition. If
we understand by the scalar operator j, the component
of the current vector operator parallel to the local
polarization axis, we have

2G)

P((o,t)=—e B e Re lim
Q2 tp~—oO

d~i&
—~~(t—t')

x(t. l j(t)j(t') lt.).... (»)
For the purpose of this calculation, the important

property of the relaxation mechanism is as follows: In
the absence of the coupling to the fields it causes the
population of the energy levels of the uncoupled
material system to relax, in the time v, to a thermal
distribution corresponding to a temperature T. %e
model this mechanism as follows: Each molecule seers
collisions of instantaneous duration, the times between
collisions being distributed randomly according to a
Poisson distribution with the mean 7-. The eGect of a
collision is to throw the molecule into a superposition
of energy eigenstates such that an ensemble average
leads to a thermal mixture. This is accomplished by the
unitary time-development (under Hp, including j F)
operator U);(t, tp) which acts on the initial state of the
system In, tp), to give

U~(t to) ln to) = U(t t.)P (&P&)e'&" '" "'I&~,t )

In the representation in which the Hamiltonian H of
the two-level system is diagonal, we have

+1 01
(tlH. (t) I

t&=-', A .I

& o
(23)

0 1
&tl j(t) It& =

I j I

0
(24)

where co, is the resonant frequency of the two-level
system, and j» is the matrix element of the current
element given in Eq. (2).

The expressions (23) and (24) follow directly from
our description of the two-level system when we choose
the phase of the wave functions such that the matrix
element j» is real. It is convenient to express the
pertinent dynamical variables in terms of the Pauli spin
operators 0„0„,and 0., which satisfy the commutation
relations

where we have explicitly accounted for the relaxation
mechanism. The remaining implicit time development
is for a two-level system coupled only to a classical field.

YVe are now required to evaluate the expectation
value of the current correlation function which develops
dynamically under the Hamiltonian

H, (F'=0) =H. jA—,(t)/e. (22)

e&(e= 2'. (25)

where t, is the time of the last collision previous to t~ In terms of thespinvectoror, the Hamiltonian Hp(F=O)
Pk is the probability distribution corresponding to the may be written
temperature T,

P —g-Ek/ kT
7

and U(t, t.) is the time-development operator in the
absence of coupling to the relaxation mechanism. The
phase ot)), (n, tp, t,) is a function of the initial state of the
system, and the time of the last collision. The following
ensemble-average relation holds:

eipo(a, oo, oc)e—iso (a, oo, tc ) )—
J& &,$I t ~ I I ~ I t I I

~~
k k I I t I t ~

I ~k, k' a, a' tp, tp' t~, to' ~

AGO~

Hp(F=0) = o,—
2

lj l~(t)

The equation of motion is

ihde/dt= I or, Hp(F =0)j,
which has the formal solution

(26)

(27)

Under these conditions we have, for the thermal ex-
pectation value of the current correlation function,

(t I j(t)j(t') I
t & o,o=

dh,
&
—(t—t&) j&

X (t. I j(t)j(t')
I
t, &o, ). p, (20)

where the ensemble average 8 leads to a thermal mixture
at the time t,. The expression for the spectral power
becomes

o,(t) = U,, (t,t')o;(t') .

Using the commutation relations (25) we obtain for the
expectation value of the current correlation function

« I j(t)j(t') It & . -o=
I jl'(U**(t,t')

+i/U. .(t,t') U„.(t', t.) U.„(t,t') U..(t', t,—)j
X «. I

o.(t.) I
t.&,). (29)

The thermal expectation value (t, lo, (t,) I
t, &() is (2'h(o, ) '

times the average energy of the two-level system
immediately after a collision; thus

2' t

P(&o,t)=—e.B eRe dt'e ( '+'a)(' ")
C2

00

(t Io' (t,) It &~p~=tanh2'T (30)

t'
d~ &

—(t'-t, ) j~ The frequency E, given by=(t.
I j(t)j(t') I

t, &, ,,=„(2i)
—

QQ 7 7 X= Iq»lap/te, (3I)
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measures the additional broadening, due to saturation
by the applied field, aAO coscoot, of the response of the
material system to this field. In Appendix A we evaluate
the elements of the time-development matrix U(t, t') to
first order in the small quantities K/p&, and (p&

—p&p)/o&.

The results of this evaluation are, for the pertinent
elements of the matrix U,

U„(t,t') = -'A++(t —t')e'"o" '&

+ ', A+ (-t t') e'"—«'+'&+c.c.,
U.„(t,t') =-', iA (t, t')e'"o&' '&

——',iA~ (t—t')e'"«'+" +c.c.,

1.0

.9 h, v=0
Km~0 g

Br=0
Kr=2 &,

,

Kz=4 ~

U .(t,t') =A+, (t—t')e'""+c.c.,
U„,(t', t,) =—iA+, (t' —t,)e'""'+c.c.,
U..(t', t.) =A „(t'—t,),

(32)

where the A coeKcients are given as inverse Laplace
transforms:

l0
-16 -14-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

40 QPO) T

A (t—t') = dp a(p)e&" "
27ri

(33) I'IG. 1. Spectral distribution of spontaneous
emission applied Geld on resonance.

and the pertinent u coeKcients are given by

a = (p'+i Dp+ ', K')//D, -
a+-= (pK')/D,

a~, = (a-,'iK) (paid)/ D,

a..= (p'+~')/D,
with

p (p2+K2+g2)
and

spectrum. The resonant contributions to Pp(p&) come
from those terms in the current correlation function
which have the factor e'"0(' ') in their time dependence.
Substituting these terms from Eq. (32) into (37) we

(34) obtain (see Appendix 8)

2'
Pp(~) =—

I
jl'e 8 «e(pa++(pi)(l+l(a)a**(p ))

(35) c'
(+)a+*(pi)a—*(pp)1, (39)

+= (CO~
—Mp) . (36)

It will be noted that the time dependence of the A
coefficients in Eq. (32) is slow compared to that of the
exponentials in the same expression. In deriving this
form we have takeo coo&0.

where the a coefficients are given in Eq. (34) and

pi=Le &+i(o&—o&p)), (40)

2(0
P(o&,t)=—

l j»l'e 8 eRe
g2

dtig —(T i+st»&) ($—f )

' dt,—e &' "&~'( U (t,t')+ i(t, l
o' (t,) l

t, )p

POWER SPECTRUM

From Eqs. (21) and (29) we have, as the expression
for the spectral power distribution,

The expectation value (o) is
hco

(a)—= (t, la. (t,) l t, )p= tanh-,'
kT

by Eq. (34).
A particularly simple special case occurs when the

relaxation process tends to equalize the populations of
the two levels, viz. , (o)=0, and the applied 6eld is
tuned to the central atomic frequency, co,=coo. For this
case we have

Xl U.,(t,t') U„.(t', t.)—U,„(t,t') U„(t',t,)]). (37)
where

I'rom the form of the elements of the matrix U given
by Eq. (32), we observe that P(&o,t) is of the form

Pp(o&)= —
I jl'e 8 eRea

C2
(42)

P (p&, t) = ReLPp

(&o)+Pi�(co)

e"""].
The constant part, RePp(o&), is the measurable power
spectrum. The time-dependent part gives information
on phase relations between components of the field

a++= . +
T'+i (p&—p&p) T '+i/(o& p&p)+K]—

(43)
r '+iDp& ppp) Kj——



MAURICE C. NEWSTEIN

1.0 monochromatic according to

.9

.8

.7

hz=2
,g Kz=2

z=4

&j(t))=
dt,—~ " "'«.lj(t)l&)

dtc—e " ' 't'U, (t,t,)

.5

.4

0
H6-14-12-10-8-6 -4-2 0 2 4 6 8 1012 14 16

(Ql ula)z

FIG. 2. Spectral distribution of spontaneous
emission applied 6eld o8 resonance.

Thus, the eGect of the large classical field is to split the
single Lorentzian line-shape characteristic of ordinary
spontaneous emission into a structure consisting of three
Lorentzian components. One coniponent is centered at
the central atomic frequency and the other two, of half
the amplitude, are displaced symmetrically on either
side by the amount of the saturation parameter E.Each
Lorentzian has the width v ' characteristic of spon-
taneous emission of the undriven system. This situation
is illustrated in Fig. 1 where the spectral power is given
for several values of the dimensionless saturation
parameter E7. as a function of the dimensionless fre-
quency (ar &u,)r, wher—e ~ is the frequency of the radi-
ated photon and co is the central atomic frequency.
Since the driving frequency coo is tuned to the atomic
resonance, we have d, = (~,—coo) =0.

More complicated spectral distributions occur when
the driving Geld is not tuned to the atomic resonance.
These are illustrated in Fig. 2, for several values of the
dimensionless parameters hr and E7-.

j,(t) =j.(t) sincdot+j r(t) cosMpt, (46)

where j, and j~ are slowly varying stochastic functions
of t. For the case 6=0, from Eq. (44), j,(t) sinMot

represents a current component amplitude modulated
relative to the driven current (j(t)), and jy(t) cos&oot

represents a frequency-modulated current component.
For the previously discussed particular case, (0)=0,
the right-hand side of Eq. (45) is

(j(t)j(t'))= l~ I'U*.(t—t')e-"-"'
=-', l jl 'l (1+cosX(t—t')) cosa&0(t —t')

+(1—cosX(t—t')) cos~o(t+t'))e &' '~". (47)

Substituting Eq. (46) into the left-hand side of Eq.
(45), we obtain the identities

(4g)

(AX cosMpt+T X slllcoot) .
r '(r '+X'+0, ')

(44)

Nevertheless, in order to obtain a simple picture of the
phase relations, it is convenient to introduce a fictitious
classical stochastic current j.(t) whose stocha, stic-en-
semble-averaged correlation function equals the quan-
tum-mechanical-ensemble-averaged correlation func-
tion:

&j.(t)j.(t )).-=(j(t)j(t')).

Useful pictorial information can be obtained from the
derived form of j,(t) The 6.ctitious current has. a
spectrum centered near coo and hence may be written

CURRENT PHASE RELATIONS

The existence of a double frequency term in the
expression (38) for the power spectrum is indicative of
phase relations between spectral components of the
spontaneously radiating current. This term arises from
the fact that due to the existence of the driving field, the
spontaneous current fluctuations &j(t)j(t') ) are not
mereLy a function of the di6'erence t—t', but rather of
the individual times t and t'. The fact that the quantum-
mechanical ensemble average does not factor is essential
to the proper description of spontaneous emission.
Indeed, the expectation value of j(t), which is the
current driven by the classical field, 2 0 coscoot, is

We may now identify the three components bf the
spectral power distribution given in Eqs. (42) and (43)
when we consider it to have been generated by the
equivalent classical stochastic current. The central
component of the power spectrum is generated by the
current component phased for frequency modulation
relative to the driven current, and the two side bands
are generated by the current component phased for
amplitude modulation. The equivalent stochastic
classical fields generated by the currents obey the
corresponding phase relations relative to the driving
field,
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DISCUSSION

We have studied how the spectrum of spontaneous
emission from a simple physical system is affected by
the application of a classical driving Geld. The single
Lorentzian line shape, characteristic of emission from a
two-level system coupled to a relaxation mechanism, is
split into components by the driving field. Furthermore,
the splitting of the components of the power spectrum
is associated with the establishment of deGnite phase
relations between the corresponding components of the
field spectrum. These eGects become significant when
the strength of the driving field is sufBcient to appreci-
ably alter the state of the material system in a relaxation
time. The splitting of the power spectrum can be associ-
ated with the sinusoidal modulation of the population
of the upper level of the material system, between
relaxation collisions, due to the coupling to the driving
field. The establishment of phase relations between the
components of the Geld spectrum can be associated with
response characteristics of the driven material system.
Senitzky et u/. 4 have shown that the linear response to
an additional small signal depends on the phase of the
small signal relative to the driving field. The suscepti-
bility of the medium to a small signal phased for fre-
quency modulation relative to a resonant driving Geld
has a Lorentzian line shape centered at the central
atomic frequency. The susceptibility to a small signal
phased for amplitude modulation consists of the sum of
two Lorentzians, symmetrically displaced relative to
the central frequency. These three peaks in the suscepti-
bility and the associated phase relations correspond to
the same features of the spontaneous emission spectrum.
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o.+=-,'(o,+io„)e '-p',

= 2(o —glott)e+' o (A2)

The quantities 0.+, cr, and 0, are slowly varying com-
pared to the time dependence associated with the
frequency ao. The transformed spin components obey
the equations

(d/dt it)—.)o+=i(,'K)-o, (1+e ""p-')

(d/dt+it). )o = i(—,'E)-o, (1je+""p')

(d/dto, ) =iK(o+ o—)+iK(a~e"~" o—e """)
where the frequency difference 6 is given by

t) = ((a,—tap).

(A3)

We may obtain o correctly to order (E/tap) by neglect-
ing the terms involving e+""ot in Eqs. (A3). Dropping
the double-frequency terms, we get for the equations
of motion

(d/dt ih)o~=—i(;K)o„-
(d/dt+ito)o = —i(-',E)o„

(d/dt)o, =iK(o+ o) f—or pap) 0.
We introduce the Laplace transforms

(A4)

a(p)= dt e "'o(t), (A5)

with o(t) given by

(t) = . "' (p)dp,
27ri

(A6)

where the contour c is to the right of the poles of a (p)
in the complex p plane. We may solve the resultant
linear equations for o (p) to obtain

e +gf

o+(p) = ( (p'+imp+-', E')o~(t')
p(p'+E'+tIt'

+-',E'2o (t')+-', iE(p+itIi)o, (t') },

APPENDIX A: TIME DEVELOPMENT MATRIX
FOR TWO-LEVEL SYSTEM IN A

CLASSICAL FIELD

o-(P)=o+*(P*),
gt

o*(p)= (iE(p+i~)o, (t )
p (po+.E op th, o)

(A7)

Starting with the equations of motion (26) and the
specified field A (t) =A p costa pt, we have

-'E(p-'~)=(t )+(P +~ )-.(t )}
Transforming back to the laboratory frame, we have

d0'p/dt = ppao'o t

do „/dt = (d,o,+2Ko, cots,tap.

da, /dt = 2Ea „cospppt. , —
(A1) o.(t)=.dpgz (p)e(n+ttpo)t+tr (p)e(n —ttpo)tg

2%i

where
E=

~ J(A./ac.
o„(t)=

2%i
dp( io (p)e(@+trop)t+io (p)e(~trap)t)

It is convenient to transform to a rotating coordinated
system by the transformations

1
o,(t) =

27ri
dp e o(pa)t (AS)
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We relate o(p) to o(t') by Eqs. (AS) and (A6) to
obtain

" dt,—exp[—(t' —t,)/r]{U..(t,t')+i&&r)

a;(t)=g U;, (t,t')a;(t'), i=x, y, s, j=x, y, s (A9)

where

U.,(t,t') =-,'A e'"o&'-'&+-'A+ e'"«'+'&+c.c.,
U,„(t,t') = ,'iA++-e'"0&' '& ', iA—~-e' '"+'&+c.c.,
U, (t,t') =A+,e'""+c.c.,
U»(t, t') = ,'A-+-+e'"«' '& ', A—+-e'"'&'+'&+c c.
U„,(t,t')= ,'i—A—++e'"'&' '& ',i—A-+ e'"«'+''+c c , .(A. 10)

U„,(t,t') = (—a)A+.e'""+c.c.,
U„(t,t') =-',A ~e '"0'+c.c.,
U,„(t,t') = ', iA ~e-'"o'+—cc.
U„(t,t') =A.,
The A coefhcients are functions of the time difference
(t—t') given by

U..(t,t') ~ —,'A~(t —t') 'e"o '&-'
&,

U,.(t,t') U„,(t', t,) ~ iA+, (t—t')A, (t' —t„)e'"o«-'&,

U„(t,t') U„(t',t.) ~ —,'iA++(t —t')A „(t'—t,)e'"«'-'&.

Changing to the new variables of integration,

we obtain
7

X[U.,(t,t') U„,(t', t.)—U.„(t,t') U„(t',t,)]).

For co, coo&0 the resonant contribution to the constant
component comes from the terms

A (t,t') =
27ri

dp ep&t t'&a(p—) (A11) X p[—("'/ )]{-',A„(")[1+-',& )A..( ")]
—

&o )A~, (r')A, (r")) .
The u coefFicients are given by

a~ ——(p'+it&, p+ ,'E')/D, -
a+-= (kit')/D,
a~= a+,= (-',iK) (p+it& )/D,
a.,= (p2+~2)/D,

Substituting

A (t) = dp e"a(p)
27ri

(A12)
and using the Laplace transform relations

where
D= p(p'+E'+6') . (A13)

dt e " ' dp e"'a(p) =a(p')
27ri

APPENDIX B: EVALUATION OF
POWER SPECTRUM

The integration to be performed in Eq. (37) is

dt' exp[—(r-'+i&o) (t—t')]

we obtain

I= l + (P )[1+l& )a *(P )]-& ) (P ) —(P )

where
pa= [r +i(&o &oo)]


