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A Thomas-Fermi theory of large, finite nuclei is developed. Realistic nuclear forces with repulsive core
are assumed, and maximum use is made of the theory of nuclear matter. Simplifications are introduced
wherever permissible. The local-density approximation with a certain correction is found to be valid. Tensor
forces are replaced by a density-dependent, effective central force, the repulsive core by a density-dependent
8-function interaction. The Thomas-Fermi expression for kinetic energy is shown to be good whenever
the density is at least 17% of nuclear-matter density; under the same conditions, the Slater approximation
to the mixed density o(r&,rs) is valid. From the total energy of the nucleus, an integral equation is derived
for the density o(r). This is approximated by a differential equation which is solved analytically. The re-
sulting density distribution has both similarities with and differences from the conventional, Fermi-type
distribution. Our density agrees as well with electron-scattering experiments as the Fermi type does. The
thickness of the nuclear surface comes out about 10'Po too large from our theory; the surface energy is in good
agreement with the semiempirical value. So far, the number of neutrons and protons has been assumed
equal, and the Coulomb force has been neglected.

1. INTRODUCTION

~HE use of the Thomas-Fermi (TF) method for
nuclei is an old idea. ' All the attempts before

1955, however, used pure exchange forces between
nucleons and thus achieved saturation automatically.
Actually, as we know since 1949, nuclear forces are of
Serber type rather than pure exchange, and saturation
is achieved by a strong, short-range repulsive core of
some sort. In nuclear matter, such forces are best
treated by the Brueckner-Goldstone method, ' which
describes the strong correlations between two nucleons
at short distances. The theory of finite nuclei, and the
TF theory in particular, should use the nuclear-matter
results as a starting point.

A Hartree-Fock (HF) theory using nuclear-matter
theory was developed by Brueckner and collaborators'4;
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it will be discussed at the end of Sec. 2 and in Sec. 3.
On the basis of this HF theory, statistical (TF) theories
were developed by Haras and by Kumar, Lecouteur,
and Roy. ' These will be discussed below.

This work was preceded by several more phenomeno-
logical theories which, however, used some fundamental
ideas of nuclear-rnatter theory. These include the work
of Skyrme and of Berg and filets. The latter authors
define an "energy density of nuclear matter" e(p),
which is a function of the density p. This function
contains an attractive and a repulsive part, plus
kinetic energy, each represented as a suitable power of
the density. CoeS.cients are chosen to give the correct
binding energy and equilibrium density. In many re-
spects, our theory in this paper is similar, except that
we try to fix constants as far as possible from the
theory of nuclear matter, and rely less on empirical
data.

In addition to e(p), Berg and Wilets introduce a term
which takes into account the e6ect on the energy of
the variation of nuclear density with position. They

' Y. Hara, Progr. Theoret. Phys. (Kyoto) 24, 1179 (1960).This
paper contains extensive references to the work preceding nuclear-
matter theory.

6 K. Kumar, K. J. LeCouteur, and M. K. Roy, Nucl. Phys. 42,
529 (1963).This paper contains references to earlier work.

r T. H. R. Skyrme, Phil. Mag. 1, 1043 (1956).
8 R. A. Berg and L. Wilets, Phys. Rev. 101, 201 (1956); L.

Wilets, ibid 101, 1805 (1956); .Rev. Mod. Phys. 30, 542 (1958).
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choose for this the form

—O,pV'p (1 2)

follows more naturally from the structure of the
theory. Integration by parts converts {1.2) into (1.1).

With these largely phenomenological assumptions,
and fixing the constants in agreement with observa-
tions, Berg and Wilets obtain the density distribu-
tion near the surface, and several interesting constants.
They 6nd that the potential extends about 0.7 F
farther, and falls off more slowly, than the density.

Hara makes much more use of nuclear-matter
theory. He takes from that theory the idea that there is a
long-range attractive potential, and a 8-function repul-
sion at the surface of the core. The latter is assumed to
depend on density as p'", the former is independent of p.
There are also nonlocal terms, similar to but more
complicated than (1.1). He chooses specific analytic
forms for the attractive potentials, either square wells
or Yukawas, and 6xes parameters to give the correct
density and binding energy of nuclear matter. The
density is assumed to fall o6 linearly at the surface, and
the surface thickness is determined by a variational cal-
culation. It comes out 10—20 j~ too big, the surface
energy is found to be 23-28 MeV (observed value about
18 MeV, see Sec. 10).

Kumar et al. have even closer contact with the work
of Brueckner et al. ' 4 on 6nite nuclei. Their expression
for the energy density has somewhat similar form as
that of Berg and Wilets, but they attempt to connect
the parameters to those found by the Brueckner group.
They 6nd that the attractive force used in Brueckner's
work does not have enough density dependence (see our
Sec. 3) and accordingly determine their own parameters
for this. Otherwise, they make a minimum of assump-
tions on the nuclear interaction, and 6nd good agree-
ment with experimental data.

Seyler and Blanchard' use a TF theory with a
velocity-dependent interaction, 6tting parameters in
this interaction to observed data on specific 6nite
nuclei. They find the radial distribution of neutrons
and protons separately from two coupled integral
equations, similar to our Sec. 7. The result is also
similar to our (7.15). The velocity dependence gives
the saturation; the potential is only used in 6rst order
which, from other experience, may not be justihed.
The potential is not connected with two-nucleon forces.

In recent years, the theory of nuclear matter has made
much progress. Binding energy and density have been
calculated in fair agreement with experiment by Sprung

9 R. G. Seyler and C. H. Blanchard, Phys. Rev. 131,355 (1963).

which had also been chosen by Skyrme. ' We have a
similar term, in the (approximate) differential form of
our theory (Sec. 8), but we find that

and Bhargava' and by Dahlblom. " The detailed
study of the contributions of various two-nucleon
states LSJ to the nuclear-matter energy has given us
much insight into the mechanism of saturation of
nuclear forces. The general theory of 6nite nuclei has
been advanced especially by Brandow. "" Many
authors have done speci6c calculations of finite nuclei
which will be discussed in Sec. 2 of this paper, insofar as
they inQuence our considerations.

In this paper, we outline a theory of finite nuclei
which makes maximum use of nuclear-matter theory.
We attempt to make this theory as simple as is con-
sistent with realistic assumptions about nuclear forces.
Our chief aim is to develop a sta, tistical (TF) theory.
However, as a 6rst step, we have to discuss some
general simplifications which can be applied to any
theory of finite nuclei, and could be used as a basis for
a simplified Hartree-Fock treatment (Sec. 2). We find
that the local-density approximation (LDA) should be
good, even in the nuclear surface, provided a certain,
easily applied correction is made.

In Sec. 3, we consider the various complications in the
nuclear force and devise simplified treatments: the
tensor force is replaced by a central, density-dependent
force, the forces in the various D states are replaced
by suitable approximations, and consideration is given
to the fact that the attraction in two-particle S states
is stronger than in D states.

In Sec. 4 we show that the momentum dependence of
the nuclear force arises mainly from its exchange
character, rather than from the repulsive core. Itis
shown that the simplest way to ensure Hermiticity is
to take exchange forces explicitly.

The total energy of the nucleus is expressed in terms
of attractive ordinary and exchange forces, repulsive
forces of 5-function character, and kinetic energy (Sec.
5). The Thomas-Fermi-Slater approximation is used for
the kinetic energy and the exchange term (Sec. 6); this
is justified by numerical calculations of a model in

Appendices B and C, respectively. By variation, an
integral equation for the density as a function of posi-
tion is derived (Sec. 7) and it is shown that far inside
the nucleus, the density may be represented by

p/p
—] ez/u (1.3)

where x is the distance from the surface. The relation of
(1.3) to the conventional Fermi-Woods-Saxon dis-
tribution is discussed.

The integral equation is then approximated by a
differential equation (Sec. 8) which can easily be solved,
giving an analytical expression for the density, (8.23).
At large r for a spherical nucleus, this is replaced by an
expression resulting from the exponential decay of the

0 P. N, Bhargava and D. %.L. Sprung, Ann. Phys. (N. V.) 42,
222 (1967)."T. Dahlblom (private communication)."B.H. Brandow, Phys. Rev. 152, 863 (1966)."B.H. Brandow, Rev. Mod. Phys. (to be published).
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wave functions, (8.29). The combined distribution is
compared. with electron-scattering results (Sec. 9). The
agreement seems to be as good as for the conventional
"Fermi" shape. The surface thickness derived from
theory tends to be larger than that from electron-
scattering experiments, and is quite sensitive to the
details of the nuclear force. Luckily, our best assump-
tion on nuclear forces agrees with experiment within
about 10%, considerably better than the earlier attempt
of Hara. '

The surface energy is calculated from our incomplete
integral and the more complete differential theory; both
calculations give excellent agreement with the experi-
mental value of 18 MeV. Previous calculations'
tended to give too high surface energy.

The density distribution obtained from our theory
divers significantly from the conventional Fermi"
distribution. Our density approaches full nuclear-
matter density only very slowly as we go toward the
center of the nucleus (Fig. 5). This tendency is opposed
by the well-known tendency of the Coulomb force to
concentrate protons near the surface; if both are taken
into account, the result may be a rather Qat distribu-
tion. This was actually found in some preliminary cal-
culations but a reliable result has not yet been obtained.

We intend to pursue this theory in three directions:
(1) to include the "symmetry energy" which tends to
make neutron and proton density to go in parallel, and
the Coulomb energy, (2) to use a better quantitative
representation of nuclear forces, and (3) to apply the
same principles to a Hartree-Fock calculation.

W= P (~n)G)mn)+ ",
m(n

(2.1)

where the sum goes over all occupied states m and rl, and
represents two-body interactions, while the ~ denotes
all interactions involving more than two bodies. The G
matrix satisfies the equation

(ns'n') G (
nrn)= (rn'n'

j v ( rnn) P(ns'n—'
(
v [ ab)

Q(ab)
X (ab(G~mn),

E(a)+E(b)—E(nr) —E(n)
(2 2)

where the Pauli operator Q(ab) =1 if a and b are both
unoccupied, Q=O otherwise. In principle, (2.2) can be
solved; in the process, the energies of all occupied and
all empty nucleon states can (and must) be determined,
as well as the one-particle wave functions g . The
Pauli operator is probably best considered as one minus
the projection on occupied states.

The reader who is not interested in theoretical detail needs
only to read Sec. 2 D @nd may otherwise omit Secs. 2 and 3.

2. LOCAL-DENSITY APPROXIMATION

The energy'4 of a finite nucleus, in the Brueckner-
Goldstone theory is given by

While the solution of (2.2) is possible in principle, it is
very diKcult in practice, except perhaps for light nuclei
for which oscillator wave functions are a good approxi-
mation for the P(ns). In general, it is desirable to replace
(2.2) by a more manageable approximation.

GC =e@=e(C t), — (2.3)

where C is the unperturbed wave function of the two
nucleons (product of two shell-model orbitals), and t
is the "wave-function defect. " This defect is most
important'6 ' near the surface of the repulsive core,
r=0.4 or 0.5 F, then rapidly falls to zero close to the
separation distance d, and then is negative and small
for larger r The im. portant point is that t is large only
for small distances r; this behavior, known as "rapid
healing" of the wave function, is the main reason for
the success of the MS method. The largest contribu-
tions to G, come from the inside and the surface of the
repulsive core."These contributions obviously depend
very little on the long-distance behavior of the two-
nucleon wave function C but mainly on its local magni-
tude when the two nucleons are close together. There-
fore, to a very good approximation, G, should be
determined by local conditions alone, in particular by
the local density. For a given pair m, e of interacting
nucleons, G, depends of course also on their energies

+g
The importance of the density is shown by the

theory of nuclear matter. The easiest way to see this is
the formulation of MS themselves, who show that G,

"S.A. Moszkowski and B. L. Scott, Ann. Phys. (N. Y.) 11,
65 (1960)."H. A. Bethe, B.H. Brandow, and A. G. Petschek, Phys. Rev.
129, 225 (1963)."M. W. Kirson, Ann. Phys. (N. Y.) (to be published)."G. Dahll, E. Pstgaard, and B. Brandow, Nucl. Phys. (to be
published).

A. Short-Range Forces

Such an approximation is suggested by the Mosz-
kowski-Scott (MS) theory, "which has been thoroughly
investigated in the case of nuclear matter, i.e., con-
stant density. In this theory, the interaction e is sepa-
rated into a short- and a long-range part by a separation
distance d which is about 1 F. It can then be shown'5

that the long-range potential e~ can be treated in the first
Born approximation; the second Born approximation
for central forces contributes less than 1 MeV per par-
ticle (tensor forces will be discussed in Sec. 3). The
short-range part, r&d, gives a repulsive contribution
G, (called the dispersion term by MS) which increases
with density p. There is also an interference term be-
tween short and long range which is small, again
about 1 MeV at normal nuclear density for central
forces.

Whether we use Moszkows¹iScott or not, the inter-
action matrix G is related to the two-body wave func-
tion 4' by
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is nearly proportional to the diff erence

e—ep
——U(a) +U(b) —U(m) —U(N), (2.4)

in general be nonlocal, cf. Sec. 4). Then we may write

Gc „(rr,rs) = v)(~ rr —rs )y (rr)y„(rs)

where e is the denominator in (2.2), es the same de-
nominator for free particles of the same momenta, and
U(a) the potential energy of a particle in state a. Recent
work on the three-body problem" " has shown that
the "particle" potential energies U(a), U(b) are quite
small; the "hole" potential energies U(m), U(e) are of
the order of the average potential energy of a nucleon
and therefore nearly proportional to the density, with
some saturation setting in near normal nuclear density.
Thus we conclude that approximately

(2 5)

with X somewhat less than 1; —, is probably a reasonable
choice. ' Greater accuracy can be achieved by using
numerical results from nuclear matter, " and this pro-
cedure will be followed in most of this paper.

B. Unyerturb ed Wave Functions

We have been led to the conclusion that the main
part of the interaction in nuclei can be treated by the
Born approximation while most of the remainder de-
pends only on the local density. We shall now consider
this problem in more detail. The interaction depends
(1) on the unperturbed wave function on which it acts,
(2) on the energy denominators in Eq. (2.2), and (3) on
the Pauli operators. We shall consider these points
separately. We may consider G as an operator, operat-
ing on the two-particle wave function

~me)—=4 =P (rt)g (rs) (2.6)

where P and. P„are one-particle waves in the Hartree-
Fock (HF) potentiais4 chosen for the nucleus. (Since
the HF theory includes exchange, the HF potential will

's H. A. Bethe, Phys. Rev. 138, 805 (1965); 158, 941 (1967).
ms M. W. Kirson, Ann. Phys. (N. Y.) (to be published).

R. Rajaraman and H. A. Bethe, Rev. Mod. Phys. 39, 745
(1967)."A similar conclusion is reached on the basis of the BBP
reference spectrum method. According to their Eq. (5.28), the
contribution of the repulsive core volume is proportional to (a)
(v'+ko')c', where c is the core radius, ko the relative momentum
of the two interacting particles, and y a measure of the separation
in energy between occupied and unoccupied states, BBP (3.8).
Vsing BBP (2.5), (8.22)—(8.24) one easily shows that (b)
p'+k' =2k+'6, where 6 has been shown, by several numerical
calculations (Ref. 11) to be nearly independent of density and
about 0.8. Thus (a) is proportional to k~'~p'". The core surface
term in 8BP (5.28), which is usually several times the volume
term, depends less on k~, a linear dependence on k~ being reason-
able. However, the repulsive contribution of the core is partly
compensated in 0, by the attractive force acting between core
radius and separation distance, and this does not depend much on
density. The net repulsion 6, will therefore have a stronger rela-
tive density dependence than the core (volume+surface) con-
tribution alone, and (2.5) with ) = -, is reasonable also from this
point of view."J. Nemeth has drawn the same conclusion from a study of
the numerical results in Ref. 10.

'4 For a discussion of the construction of the HF potential,
see Ref. 12.

+ E(rtrs rl rs)$ (rl)$ (ls)drl ufrs (2 7)

where the kernel K is given by (2.2), i.e.,

E= v(r r rs)—8(rr rr',—rs rs')—v(Q—/e)G. (2.8a)

r= ly —r2
/ I

(2.8b)

is the relative coordinate, we may write'7'

where
~-(")~-(")=~-(R)~-(R),

R= —',(rt'+rs')

(2.9a)

(2.9b)

"J.C. Slater, Phys. Rev. 81, 385 (1951).' Similar arguments have been used by B.D. Day, Phys. Rev.
136, 31594 (1964).

2' B. Brandow, thesis, Cornell University, $964, University
Microfilm 64-8090 (unpublished) ."' Strictly speaking, the right-hand side is equal to

(ri')Pn(rs )+s@n(rl )0 (rs').

K contains the short-range reaction matrix G„ the MS
interference term which is of medium range, the second-
order Born term from the long-range forces, the cor-
responding terms from the tensor force, etc. The most
important central, long-range force has been removed
as the first term in (2.7), so most of K is short or medium
range. This effectively minimizes the part of E which
acts on states of relative angular momentum L&0: this
is true even for the tensor force, which is really im-
portant only in its action on the 'S state. (The tensor
force on the 'P state is large and may be of some im-
portance for spin-orbit splitting, and hence for HF
energies. But its effect on the binding energy of nuclear
matter is negligible "")

Two situations may now be considered, the interior
and the surface of the nucleus. In the interior, the
density changes slowly. Then it is a good approximation
to replace @ and @ in the integral in (2.7) by plane
waves, just as in the Thomas-Fermi theory or the
Slater approximation" to the HF exchange term. Doing
this reduces the wave functions P (rt')P„(rs') to the
nuclear-matter case. Of course, in many cases, an in-
dividual wave function @ may have a node in the
spatial region rr in which the kernel E is large: then g
should be considered as the sum of two or more plane
waves. "2~

In the surface, the density p changes rapidly, and
the wave functions are not close to plane waves. We
may in particular look at the region near the classical
turning point of states m and e. Here we use the facts
(a) that the S-state part of P g„ is by far the most im-
portant, and (b) that the wave functions P„P do not
have large curvature. Neglecting terms of order r'
where
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is the center of mass. The corrections of order r' are
small, due to the small curvature of the $. Hut also
the density is small, so that the plane waves which
would be used in nuclear-matter theory at the local
density, could also be approximated by (2.9a). So for
any position R, we may replace P~(rt)P„(rs) by a
product of plane waves which have the same value of
~.(R)e.(R).

In (2.2), there also occur the intermediate states G,

b. Kong" has pointed out that there is great freedom in
their choice; they only need to be a complete set.
Therefore it is certainly permissible to choose @„Pbto
be locally plane waves —this is in fact a much better
approximation than the same assumption for P, @„
which we have justi6ed. Then the matrix elements
(G,b~ e

~ m, m) will be the same as in nuclear matter.

depends essentially only on the local density at R.
Further re6nement is unjustified because (2.12) is
already such a good approximation.

With the simplest assumption (2.12), the energy
denominator now becomes

e = (A'/2sl) (P'+k') —E~—E. (2.14)

where P=sr(k, +ks) is the average and k=s(k, —ks)
the relative momentum in the intermediate state. In
the HF method, the energies E and E„are determined
by self-consistency. (As we shall show, no great. ac-
curacy is required in this. ) The relative momentum k
in (2.14) is variable, and in the end is integrated over.
The average momentum P, on the other hand, is
dined as being identical with that in the initial state,
&.e.,

C. Energy Denominators
P=-,'(k„+k„), (2.15)

We turn now to the operator e in (2.8a), viz. ,

e =E(G)+E(b) E(ass) E—(N) . — (2.10)
(A'/2nz) k„'(R)=E U(E,R—) . (2.16)

where k, k„are the local wave numbers of @,g .These
depend on the local one-particle potential U, thus:

The hole energies E(sN), E(N) must be obtained by
solving the HF equation in the potential of the nucleus
as a whole. " The intermediate-state energy is, in
accord with Brandow's proposal, "

E(G,R) = (is'/2')k '+ U(G, R) . (2.11)

The potential energy U(G, R) is calculated in the
Brueckner-Goldstone theory by calculating the inter-
action of the particle a with all the nucleons present in
the neighborhood of R, and depends on the local
density at R. Of course, since G is a "particle state, " its
interaction with the Fermi-sea nucleons must be cal-
culated off the energy shell, as described in BBP. It
should be noted that we have made full use of Kong's
freedom" to choose the intermediate states: Instead
of taking constant E(G) and following the change of
wave number with R due to change of U(G, R), we
consider a state of definite k, at R and determine its
energy by (2.11).

According to the latest calculations"" of the three-
body correlations, the potential U(G) of intermediate
states seems to be very small so that U(G, R) in (2.11)
could well be neglected. This procedure of setting

The construction of the one-particle potential is one of
the subjects of this paper; it depends of course on E
itself, as well as on E.This latter dependence makes the
characteristic parameter of the reference spectrum
method,

y'= I" (2m/A') (E—~+E„) (2.17)

dependent on R. The defect wave function g will then
also depend on R, not just on r, and the theory be-
comes somewhat unpleasant. To escape this complica-
tion, Wong, in his recent paper, "has replaced p' by an
average, and has given prescriptions to calculate this
average. He has shown, in Ref. 32, Table 9, that the
value of y' has very little influence (a few tenths of an
MeV) on the binding energy of the nucleus, or on the
HF energies of the various single-particle states. In
the LDA, no such averaging of y' needs to be done at
all.

We shall show in Sec. 2 D that LDA, with a certain
correction, is probably quite a good approximation. In
the LDA we can use the argument of MS," which
shows that G, depends only on the difference in Pofem-

tial energy between particle and hole state, viz. , on

U(G, R) = 0 (2.12) AU= U(k„,p)+U(ks, p) —U(k, p) —U(k, p). (2.18)
has been recommended by Kuo and Brown. "But even
if we do not assume (2.12), the method of constructing
U shows that

U(G, R)= U(k. ,p(R)) (2.13)
"C. W. Wong, Nucl. Phys. A104, 419 (1967).
'9 This has been emphasized by S. Kohler, Nucl. Phys. 32, 661

(1962) Lsee especially Eri. (27) of this paper j; also Phys. Rev. 137,
81145 (j.965).

'0 B. H. Srandow, in International School of I'hysics "Enrico
Fermi, " Cogrse 36, edited by C. Bloch (Academic Press Inc.,
New York, 1966), p. 528."T.T.S.Kuo and G. E. Brown, NucL Phys. 85, 40 (1966).

This expression is entirely known from nuclear-matter
theory, and does not require the determination of P,
which is always tedious. "

When calculated. from (2.16), the potential U(k )
depends, of course, only on k '. If k is to be de-
duced from a real wave function @ (e.g. , the radial
wave function), this function must be approximated by
sin(k r+n), with n a phase.

"C.W. Wong, Nucl. Phys. 91, 399 (1967).
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U(E„,R) &E„, (2.20)

k is negative. But these regions are of little im-
portance, and it should suSce to approximate AU
by (2.19).

D. Extension of the Local Approximation

So far, we have assumed that the bound-state
energies E, E are the HF eigenvalues. This procedure
is satisfactory for a HF calculation. For a Thomas-
Fermi (TF) thoery which we want to develop in this
paper, a further approximation is useful. We are here
interested mainly in the total energy of the nucleus,
and in the spatial distribution of the total density. Thus
we must sum over all pairs of nucleons m, e. Ke then
make the Thomas-Fermi assumption that at any point
R, all states are occupied which have a momentum

k (k~——(-,'s'p)'". (2.21)

In many cases it is sufhcient to replace (2.18) by its
average over k and k„:

(AU), =2kssh(p), (2.19)

where 6 is the quantity de6ned in BBP,'s Eq. (73).
In the surface region where

written

er p= to(k. ,p)+w(ks, p) —w(k„,p) —w(k„,p)

2m)(k 2+kbs k 2 k 2)+U(k p(R))
+U(k s,p(R))—U(k„,p(R)) —U(k, p(R)) . (2.25)

This is exactly the value of e for the same rnomenta in
nuclear matter of constant density p(R). If we assume
that all states of local wave number up to kp are
occupied, (2.25) has reduced the problem to a purely
local one from which all reference to the "global"
energies E, etc. , has disappeared.

The question now arises of the accuracy of the TF
assumption (2.22). For this purpose, we use the results
of Sec. 7. According to (7.2),

3
Es ——ws{p(ri))+- drsoi(ri rs)Q—(rs) p(ri—)j (2..26)

4

Here the second term" represents the effect of the
long-range, ordinary forces (see Secs. 4—6). Since these
do not depend on momentum, we have also for an
arbitrary nucleon

3
E = to(p(rt), k )+— «sot(ri —rs) Lp(rs) —p(ri)$

This assumption will be investigated in detail in Sec. 6.
Thus we assume in effect that the energy of the highest
occupied state is

Eg ——ws (p(R)), (2.22)

tos(p(R))= (As/2m)kss(R)+ U(tos, p(R)), (2.23)

where U(E,p) is the potential energy of a particle of
energy E in nuclear matter of constant density p.
tos(p(R)) is, of course, the total energy" of the most
loosely bound nucleon in nuclear matter of density p(R).

Later on, we shall find a correction to (2.22). For the
moment, we assume (2.22) to be correct; then the
energy denominators e become exactly the same as for
nuclear matter at density p(R). Indeed, consider the
interaction of two nucleons of local momenta k, k„.
Then, in analogy to (2.23),

(2.27)

For constant density, the last term D&(rt) is absent, as
is to be expected. If the density curves downward, the
last term is positive since the average of the bracket,
and o, are both negative. Sections 7 and 8 show that
downward curvature is the normal situation (Fig. 5),
valid for p&4po, where po is the normal nuclear-matter
density; in this case then,

(2.2g)

Only for very low density, the inequality is reversed,
and these low densities contribute little to the average
potential energy of nucleon m, or the total binding
energy of the nucleus.

We may now compare'4' the correct energy denomi-
nator (2.10) with that of the LDA, (2.25):

E = (i''/2m)k '(R)+U(k„,p(R))=—w(k„,p). (2.24) e= er F—2Di(R). (2.29)
The potential energy U is the interaction of particle m
with all nucleons present near point R. In the present
approximation this is determined. by the local density
p(R); of course, it also depends on k or E . For given

E, k (R) can be determined from the implicit Eq.
(2.24). The energy denominator (2.10) can now be

3g It is the self-consistent energy in the sense of the Brueckner
formalism. It di6ers from the physical removal energy by re-
arrangement terms. Some of the terms denoted by this name by
Brueckner and Goldman LPhys. Rev. 116, 424 (1959lj are in-
cluded in mz, viz. , those denoted as "saturation potential" by
Brandow, Ref. 27. See Ref. 27 for a discussion of the remaining,
"proper" rearrangement energy.

Now consider a G matrix element which involves e,

"The factor r' in (2.26l arises because only even states con-
tribute. For the other basis of (7.2), see Sec. 6. Equation (7.2)
is of course based on many assumptions; in particular, the form
of the integral in (2.26) assumes that only the direct, long-range
forces at r1 depend on the density at other points, r2, while all
other forces are determined by the local density at r1. However,
this is easy to modify: e.g., long-range exchange forces can be in-
cluded in D, (2,27), except that they depend of course on k, so
that in the end an average has to be taken. Deviations of the
short-range and tensor forces from I.DA are treated below, in
(2.37)—(2.W).

'4' In making this comparison, we assume that U(a) and U(b)
are both zero.
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e.g. , G,. From the general formula, Ref. 16, Eq. (A14),

G=Grp+GTp(Q/erp —Q/e)G, (2.30)

changed from its TF value only by the long-range
force. In reality, there is the additional change AU,
(2.35), so that (2.27) should be replaced by

where the operators without symbol refer to the
"correct" situation in the 6nite nucleus. Now the
defect function is

E =Erp+D(+DU.

Accordingly, (2.35) now becomes

(2.37)

(Q/e)G=i =i», (2.31) d, U= —(D,+AU)2s= —D((2s/(1+2s)), (2.38)

so we have (since Qs=Q) E =ETp+D(/(1+2s). (2.39)

= —2D((E) f'Tpsdr. (2.33)

The result (2.33) is extremely simple. The two chief
components of G which depend on the energy de-
nominators are (1) the short-range force G, and (2) the
effect of the tensor force (cf. Sec. 3) Gs, rf. Their sum is
therefore to be corrected, as compared to the LD ap-
proximation, by

G—GTp ———2D((R) (f,s+tes)dv, (2.34)

where m is the D-state admixture into the 'S state
caused by tensor forces. The effect on the potential
energy of an occupied state is obtained by" multiply-
ing Gby 4 p so that

hU= ——,sDtp (t,s+w')dr= 2Dt&. ——(2.35)

The integral is the "wound" in the wave function. For
a soft-core potential and normal nuclear-matter
density, the contribution of t', to s is about 0.05, that
of the D function m is about twice as great. Dahlblom
6nds, "for Reid's" soft-core potential, and for kg= 136
F—1

7

a= 0.14. (2.36)

This is the value we shall use. For the hard-core Reid
potential, Dahll, Pstgaard, and Brandow" find for
nuclear matter" ~=0.17&0.01.

Equation (2.35), then, is the error made in estimating
the hard-core and tensor contribution from the LDA.
However, we should remember that in (2.27) we
assumed that the potential energy of a nucleon is

"R.Reid, thesis, Cornell University, 196/ (unpublished).
For 0, Wong (Ref. 28) finds ff;=0.25. This might be con-

nected with the lower average density of this nucleus. indeed,
Dahlblom (Ref. 11) finds that s has a minimum of 0.12 at about
kg=1.0, and then increases again to 0.14 at kJ =O.T, but he does
not find any k as high as 0.25.

G—Grp ——(t Tp( e—eTp(i'). (2.32)

Thanks to our assumption of vanishing U in inter-
mediate states, e—eTp is independent of the inter-
mediate state k'; thus we can effect closure and obtain

G—GTp=(e —8Tp)(ks~f Tpf. ~ks)

The effect is therefore that D& is reduced by the factor
1+2', i.e., to about 78% Lcf. (2.36)$. This will be
used in Sec. 8.

Equation (2.38) indicates that the potential energy,
due to short-range and tensor forces, is decreased by
about 0.22D~. Since D& is mostly positive, this gives
added binding. This is the effect found by Kohler29 and
Wong. "They point our that the use of the self-consistent
particle energies E +E„in (2.10) increases the binding
of 0"by 1 to 2.5 MeV per particle. We shall similarly
show in Sec. 10 that the effect of the correction factor
1+2' in (239) decreases the surface energy of a large
but finite nucleus by about 12% which, for 0", gives
about 1.0 MeV per particle. We have thus shown that
the LDA must indeed be modified for the Kohler-
Wong e6ect, but also how this modi6cation can be
achieved without deviating from the spirit of the LDA.
The factor (1+2') ' is just the damping effect due to
the self-consistency of G and U. A similar result was
obtained by Brandow" for the case of an in6nite system.

E. Pauli Operator

It remains to discuss the Pauli operator Q, or better
1—Q. This is the projection on the occupied states.
Here again we make the TF, or Slater, "approximation
of replacing the occupied states by local plane waves.
This is justified because the function standing to the
right of 1—Q,

(2.40)s-'Gy„y. ,

is well localized because it is equal to i" We thus .ex-
clude, as in nuclear matter, all Fourier components of t
in which the momentum of one (or both) nucleons falls
within two spheres of radius kp(R) whose centers are
displaced by 2I'.

In the surface, where plane waves are not a good
approximation, the Pauli operator 1—

Q is small.
Moreover, the important thing in this limit of low
density is the volume in momentum space which is
excluded; the exact shape of the functions in 1—

Q is
not important )they all are reasonably constant over
the region in which (2.40) is largej. Thus also in this
region the result is essentially the same as that of the
LDA.

The Pauli aspect of the LDA has recently been in-
vestigated by Wong, "who compares it for 0" and 0'6
with a "global method" in which 1—Q is the projec-
tion on the actual HF functions, assumed to be oscillator
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functions. In general, the LDA gives too much binding,
by about 0.4 MeV per particle" for 0".The sign of
this effect can perhaps be understood as follows: The
operator (2.40) has a certain spread in r, so that we
should actually take the Pauli operator at R+r and
R—r, rather than at R. Since the eRect of 1—Q on the
energy per particle is more than linear in p, the average
result from R+r and R—r is likely to be greater than
the result by taking the density p(R).

The global Pauli effect is seen to have the opposite
sign of the effect discussed in Sec. 2 D, viz. , of taking
the "global" (i.e., correct) E in the energy denominator
rather than the TF approximation. The global Pauli
eGects seems less important than that of the energy
denominators. We have not found any simple method to
approximate the global Pauli effect.

and then let this operate on the two-body wave function

P P„. Expression (2.41) is a nonlocal potential which
embodies the velocity dependence of nuclear-matter
theory, i.e., the fact that U(m) depends on the mo-
mentum k . This is a complicated procedure. Since the
important effects (at least for central forces) are of short
range, it should be satisfactory to replace them instead
by a 6-function interaction. That is, we replace the
entire short-range interaction" between nucleons m
and e by

(242)

This has the correct dimension (energy). Expression
(2.42) can of course be integrated over rs and summed
over e, and the result may be written

F. Comyarison with Brueckner ef al.

The principle of the LDA was previously proposed
and used by Brueckner, Gammel, and Weitzner. ' lt
has been repeatedly attacked because the results4
obtained by Brueckner et a/. were only mediocre. These
disappointing results we attribute to the following
factors:

(1) Brueckner e1 al. did not take into account the
strong density dependence of the equivalent central
force in the '5 state which is generated by the tensor
force. This was erst pointed out by Kohler" and will
be discussed in our Sec. 3. The need for stronger density
dependence was also pointed out by Kumar et a/. 6

(2) They assumed that nuclear matter has a density
determined by r&=1.00 F, while a more correct value
is 1.12 F.'~ As a consequence, their 6nite nuclei had
too high central density.

(3) The "saturation potential"'r " was not suf-
6ciently understood.

(4) One of their results, the very gradual decrease of
density from center to surface, was probably correct
(see Sec. 7 of this paper) but was considered wrong at
the time.

(5) Some approximations had to be made in the
application of the theory.

We do not believe, therefore, that any lack of success
in the Brueckner theory of 6nite nuclei should be held
against the LDA as such. The salient point in our
justi6cation of LDA is that the part of the nuclear
interaction which cannot be treated by Born approxima-
tion is of short range and therefore very suitable for a
local approximation. This being so, we wish to push
the LDA much beyond that of Brueckner et a/. These
authors transformed the G matrix of nuclear-matter
theory at density p to coordinate space, obtaining

drG. (p(r)) Il-(r) I p(r)

(2.43)

This de6nes a potential U, (r) due to short-range forces.
This is, in our approximation, independent of m; in other
words, not velocity-dependent: This is reasonable since
the momenta involved in the short-range forces are of
order 1/c, much larger than the momenta of the nucleons
in the Fermi sea. 4s Equation (2.43) may 6nally be
summed over ns and divided by 2 to take each pair into
account only once; this gives

W,=- drG, (p(r))p'(r)
2

(2.44)

for the contribution to the energy from short-range
forces.

In practice, G, (p) is rather ill-de6ned because the MS
separation distance is somewhat arbitrary, e.g. , it may
be questioned whether the same d should be used for
all mornenta and all states I.SJ. More important, the
use of just the G. of MS in (2.44) is inaccurate because
there is also the MS interference term, and the second. -

order Born term for long-range forces. Instead of this,
we may use the following procedure: We consider the
separation distance d as well as G,('Ss) as free parame-
ters, to be chosen so as to get a best 6t to G('Se,p) for
all relevant densities which is both simple and accurate.
The simplicity consists in using the Born approximation
for r)d and having a simple dependence of G, on
p. The accuracy is obtained by fitting an explicit
nuclear-matter calculation, such as that of Sprung
and Bhargava" or Dahlblorn. " Similar procedures
may be used for the 'S state (see Sec. 3).

(rt, rs
I G(p) I

rt', rs'),

s" C. W. Wong (private communication).
's S. Kohler, Phys. Rev. 157, 81145 (1965).

(2.41) 3' This contains all the terms enumerated below (2.8a).
"The origin of the main velocity-dependent forces is discussed

in Sec. 4. There it is also shown that the velocity dependence of
the short-range force is indeed very small.
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G. Summary

In this way, we have greatly simpli6ed the LDA of
Brueckner et c/. without, in our opinion, impairing its
accuracy. On the contrary, we believe that we can
achieve greater accuracy by using, to the greatest
possible extent, results already obtained in nuclear-
matter theory. Numerical inaccuracies are minimized

by calculating a series of simple problems, well within

the capacity of computers, such as the nuclear-matter
problem, rather than one problem of enormous com-

plication, like the solution of the Hartree-Fock equa-
tions for a complicated nucleus with a nonlocal effec-

tive potential (2.41), which varies very rapidly with the
arguments. By going back to the nuclear-matter re-

sults, we have much better insight into the possible
errors, and we keep the effect of the non-Born term
small; in fact, we find that 8', is only about 20% of
the total potential energy. Without the intermediate

step of nuclear matter, the enormous repulsions and
attractions inside and just ourside the repulsive core
can easily make large errors in the result, just by the
numerical procedure.

3. SPECIAL COMPONENTS OF THE
HUCLEAR FORCE

A. Tensor Force

The smallness of the second-order Born approxima-

tion, pointed out in Sec. 2, does not apply to the tensor
force. In fact, it contributes nothing in 6rst Born ap-
proximation, and a lot in second. Hence, Scott and
Moszkowski" concluded that their separation method
was poor for tensor forces. The modi6ed separation
method" (MMS) must be used instead of the original

MS method, but even this is numerically in error by
about 20%."

However, without using MS separation, it is possible
to de6ne an effective central force to replace the tensor
force. This has been done by Brandow. '~'p The result-

ing effective central force depends on the state, e.g., for
infinite nuclear matter on k, 8, and ki . A useful approxi-
mation, based on Brandow's theory and somewhat on
MS separation, has been proposed by Brown and Kuo."
They point out that a long-range tensor force

ep(r)Sio (3.1)

gives rise, in second-order Born approximation, to an
interaction which is approximately

v « — fo r (r)/e, 5(8—2S») . (3.2a)

Here e, , according to their calculation, is about 220
MeV for nuclear-rnatter density. Only the effective
central-force part, the 8 in (3.2a), is important for
nuclear binding.

41 3. L. Scott and S. A. Moszkowski, Ann. Phys. (¹T.) 14,
107 (1961).

Equation (3.2a) is an oversimplification of Brown and
Kuo's result: The short-range tensor force mixes 'Di
state into an unperturbed '5 state, and there is there-
fore added to (3.2a)

esv= cavo(1+~4")/(1+nki, p), (3.4)

where e, p is Brown and Kuo's 220 MeV, and ~ and g
are two parameters which may be determined- kp is
the Fermi momentum, and kpp is kg for nuclear-matter
density (to which Brown and Kuo normalized).

Rather than pursuing this line of reasoning in detail,
we merely take its general features: The effective central
force v,«has a fixed shape (dependence on r), but its
magnitude depends on k~. Leaving aside the shape for
the moment, we wish to determine the density depend-
ence as much as possible in accord with nuclear-matter
theory. Noting that v.« is to be used in Born approxima-
tion, we wish to make its expectation value for an un-
perturbed two-particle wave function equal to the G
matrix. We can do this, of course, only on the average
over all pairs of nucleons, i.e., we want it,«(p) to re-
produce the contribution of a triplet state to the bind-
ing energy of nuclear matter at given density p.

W'e consider the effect of the tensor force on the '5
state. Recent results of Dahlblom " using Reid's soft-

(3.2b)

where w, (r) is the 'D-state wave-function admixture
arising from the short-range forces (range less than MS
separation distance d); of course, only the tail of w,
for r) d contributes to (3.2b). The term (3.2b), accord-
ing to Brown and Kuo, is a fraction (perhaps ~i) of
(3.2a) and does not change the general behavior.

The effective central force in the 'S state is then the
sum of the central parts of (3.2a) and (3.2b), plus the
basic long-range central force between free nucleons,

(3.3)

Brown and Kuo point out that this is of the same order
of magnitude as the long-range, central force in the
singlet even state, and has a similar shape (r depend-
ence). Therefore, just like the singlet force, e,«, acts
essentially only in 6rst Born approximation, higher
orders being small.

We shall adopt these ideas with one important
modification: The energy denominator in (3.3) repre-
sents the average difference between the energy of an
intermediate state and that of an occupied one. With
increasing density, the Pauli principle forbids the low-
lying intermediate states; therefore e, will increase.
Another inQuence in the same direction is the difference
in potential energy between intermediate and occupied
states which becomes increasingly positive with in-
creasing density. If e, increa, ses, the effective attraction
(3.3) will decrease; in other words, there is saturation
of the tensor-force contribution. We may then write
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ALE I. Ratio of triplet to singlet even interactions, and
comparison with empirical formula (according to Dahlblom').

TABLE II. Contribution of states to potential energy
(according to Dahlblom') (MeV).

kg
3g/lg
1.85—0.67k~
1,46-0.28k~'
3D /1 jig

All 'D/'D
1.48-0.055k@
All L &1/'D

0.7
1.41
1.38
1.32—0.66
1.43
1.45
1.41

0.9
1.25
1.25
1.23—0.645
1.43
1.435
1.48

1.1
1.12
1.11
1.12—0.62
1.41
1.41
1.32

1.3
0.985
0.98
0.985—0.595
1.39
1.39
1.08

1.5
0.85
0.85
0.83—0.56
1.35
1.355
0.78

1.7
0.68
0.74
0.65—0.52
1.29
1.32
0.56

k~
S
1P
3P
D
1&3
L&1
%L&1

0.7—8.81
0.11—0.05—0.24
0.04—0.14
1.6

0.9—14.70
0.33—0.15—0.89
0.17—0.54
3,5

1.1—21.5
0.86—0.27—2.32
0.45—1.28
5.6

1.3—27.2
1.98—0.23—4.88
0.93—2,20
7.2

1.5—34.0
4.03

+ 0.27—8.97
1.68—2.99
8.1

1.7—37.8
7.24
1.43—15.0
2.7—3.6
8.7

a See Ref. 11. a See Ref 11~

core potential of April, 1967, may be represented by~

(R= U(sS)/U('S) =1.85—0.67kp. (3.5)

Nearly equally good is the interpolation formula

g,'=1.46-0.28k ' (3.6)

Table I shows that (3.5) agrees within 0.01 with
Dahlblom's results between k~ ——0.9 and 1.5, the im-

portant range for finite nuclei, while (3.6) agrees
within 0.02. The density dependence of (3.6) is more
reasonable than (3.5) on the basis of the energy de-
nominator (3.4); also, it gives a more reasonable
(smaller) value for ks =0.

Tensor forces work, of course, also in the 'D and the
'I' states. The total contribution of 'I' states to nuclear-
matter binding is, however, very small (see Table II);
it will be discussed later on in this section. The con-
tribution of 'D3 is also very small. In the 'D2 state, the
tensor force contributes strongly, but there is no cou-

pling to another state; thus we have in effect a central
force with radial dependence di6erent from 'D. The
'D1 state is complicated by its coupling to 'S, but the
ratio of its contribution to 'D varies slowly with

density, both according to Dahlblorn (see Table II) and

to Sprung and Bhargava. " The same is true for the
'D2 and 'D3 states. Table I gives the ratio of the con-

tribution of all 'D states to 'D; it varies only from 1.43
to 1.29 and may be well represented by

(Rs——U('D)/U('D) = 1.48—0.05ok p'. (3.7a)

The eGective interaction in D states may then be
taken as

e ff(D) = e('D) (1+(Rs) . (3.7b)

Equations (3.5) and (3.6) represent concisely the
effect of saturation in the tensor force for the 'S state.
This is a very important effect; in a subsequent paper,
with Nemeth, "we shall show that it is at least as im-

portant as the eGect of the repulsive short-range forces,
(2.27). If we use (3.6), the tensor saturation depends
on Ass, the same as the short-range forces (2.27); this
is another advantage of (3.6) over (3.5). From Table I
it is seen that at kg= 1.28 the binding from the 'S state

4'The results of Sprung and Bhargava for Reid's hard-core
potential could be represented by %=2.56—0.96kJ. This leads
to larger S than Dahlblom's.

4' J. Nemeth and H. A. Bethe (to be published).

has decreased to being equal to the singlet contribu-
tion; at normal density (ks =1.36), it is less than 'S.This
result depends somewhat on the nucleon forces used,
and especially on the potential energy in intermediate
states: In the calculations of Sprung and Bhargava, ""
in which that potential is strongly negative, the 'S
interaction becomes equal to 'S only at &&=1.6 I'—'.

The tensor saturation is probably the main con-
tributor to the density dependence which Kumar ef at. '
required to get agreement between their statistical
theory and observations. Brueckner et a/. '' failed to
get a strong density dependence of their long-range
forces.

Ii. should be noted that (3.6) is purely empirical, and
only valid in the density region kp ——0.9 to 1.5 F '.
Accidentally, extrapolation to k+=0 gives the fairly
reasonable ratio 1.46; the ratio of the Blatt-Jackson44
strength functions for triplet and singlet is about 1.3
to 1.4. Most other interpolation formulas, like (3.5),
give too high a ratio" at kg=0.

We have compared the triplet to the singlet inter-
action, in terms of their contribution to the binding
energy of nuclear matter. This is the most important
quantity, and the shape of the interactions is relatively
less important. Therefore, for a 6rst approximation, it
should be permissible to use the shape of the long-range
'S force also for the triplet state, thus writing

e&(sS) = (Re,('S,r). (3 8)

A better approximation would be the following: We
solve the nuclear-matter equation for the coupled
triplet states 'S, 'D1. In the reference spectrum approxi-
mation (which may not be sufficient for these states,
according to Sprung and Bhargava, " and to Dahll,
Pstgaard, and Brandow's), the equation for the 'S-state
defect function is, in the notation of BBP (see their
Eq. (6.9)],

(7 —d /if» )Xoi= '4goi+ergsi,

where v, and e~ are the central and tensor potential,

44 J.D. Jackson and J. M. Blatt, Rev. Mod. Phys. 22, 77(1950).' A possible explanation for the excessive contribution from 3S
states at low kz (which also appears at kz ——0.7 in Table I) may
be the behavior of the term v(Q/e)G in the integral equation.
For scattering, the Q/e is replaced by 1/eo, which has a pole for
k'(k~. In nuclear matter, the operator Q removes this pole so
that all contributions are positive, while for free-particle scattering
positive and negative contributions partly compensate.
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and ust, usi the S- and D-state components of the wave
function. Asymptotically,

IO-

uei ~ gs(kr) —=sinkr r ~ao,

N2g —+ 0. (3.10)

We postulate the existence of a MMS separation"
distance d; and for r&d, we de6ne the eGective, long-
range potential by setting

v usl+vru21 V ff(r)$0(kr) ~ (3»)

(3.12)&off &c

for large r. (Siemens4' has suggested a procedure of
averaging over k which avoids the zero more elegantly. )
The effective potential as defined by (3.11) is identical
with the proposal of Brandow. '0 A similar procedure
may be used for the state in which 'Dj, is dominant but
this is probably not warranted because its contribution
to the energy is so small.

This v,ff automatically gives for the long-range G
matrix

(k ~G&('S) ik)= pcs(kr)v, ff(r)dr, (3.13)

The separation distance d itself is determined by making
the G matrix agree with that from a more exact cal-
culation, such as that of Dahll et a/. ' A slight difhculty
arises in (3.11) because of the zeros of gs which in
general do not coincide with those of the left-hand side.
The first zero occurs for kr=v. If k=(0.3)'"kr and
kg=1.36 F ', this is at r=4 F. At this large distance,
uoi= bio and vrust is negligible in comparison, so that
we may put

rD

a -IO
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FIG. j.. Contributions to nuclear-matter energy from S, P, and
D states, according to Dahlblom. Energy in MeV/particle versus
kpinF '.

surprisingly, the repulsion in 'I' increases rather faster
with kr than the attraction in the D states; the states
L)3 are about 18% of the D states (repulsive) at all

kp, the 'I' states change from very slight attraction to
repulsion; therefore, all states L&1 together give an
attraction which is a decreasing fraction of the D
states and of the 'D state (last line of Table I). This
result is welcome because it ensures saturation.

To some extent, the results bear out the old idea
that the forces are nearly of the Serber type,

'v= sv (1+Psr), (3.15)

which is the desired behavior. It is probably sufhcient
to consider an average of ~.ff over the momenta k in the
Fermi sea. We may then calculate V.« from (3.1) as a
function of k~ and represent it in the form

V,H(kr, r) =v,it i(r) —kr'v, rr s(r), (3.14)

where the dependence on kr is modeled after (3.6). This
calculation has not yet been carried out.

B. Even and Odd States

In Table II and Fig. 1, we show the results of Dahl-
blom" on the contributions of various two-particle
states to the binding energy of nuclear matter, using
the Reid hard-core potential of April, 1967. Clearly the
main contribution comes from the S states. Indeed, the
second-to-last line in Table II gives the contribution of
all states other than S, and the last line gives the same
as a percentage of the total potential energy. This
quantity never exceeds 9% up to kr ——1.'/. This small
contribution of the higher-L states results from a sub-
stantial cancellation between the attractive D states
and the repulsive 'I' and 1.&3 states. Somewhat

4' P. J. Siemens (private communication).

where I'~ is the Majorana exchange operator. In other
words, the forces act essentially only in even states. In
order to include the 'I' state (and the states L&3), we

only need to choose the exchange force a bit larger than
the ordinary one.

~S~S p (3.16)

which acts on S states only. Here I', is a projection

P. Noyes, ProceeChngs of the Conference on Nuclear Forces and
the Fmr-Nucleon Problem, IPSE, edited by T. C. Grif5n and E. A.
Power (Pergamon Press, Inc. , New York, 1960).

C. S-State Forces

Noyes4~ pointed out already in 1959 that the potential
in 5 states is stronger than in D (and presumably other
even) states. This fact is embodied in the "quadratic
spin-orbit term" in the Hamada-Johnston and the Breit
potentials. It was con6rmed again by the recent work
of Reid's who found the attraction in 5 states Lapart
from the one-pion-exchange potential, (OPEP)) nearly
twice as strong as in D.

To take this fact into account, we may consider the
force as made up of the Serber force (3.13), which acts
generally in even states, and an additional force
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operator which selects the 5 component of the wave
function. Writing the unperturbed wave function of
two nucleons as

C =p„(rr)p„(rs)=g„(R+-',r)p„(R—-', r), (3.12)

we have

P,C =(4s.) ' dQ4, (3.18)

where dQ means an integral over the direction of the
relative coordinate vector r, keeping its magnitude r
and the center-of-mass coordinate R fixed. This pre-
scription is somewhat cumbersome in practice; it will

be applied to simplified wave functions C in the forth-
coming paper by the author and Nemeth. "

We may even go further: As we showed in Table II,
the S states contribute over 90% of the total potential
energy. This suggests that, for approximate calculations
in 6nite nuclei, the entire force be chosen to be an
S-state interaction"" $(3.16) and (3.18)j without any
Serber force at all. The '5 force may then be taken to
be a realistic (e.g., Reid) potential, and the 'S of the
form (3.8). A correction factor may be applied to give
the observed binding energy.

forces), the exchange term Psr is small; for small rela-
tive momentum, it is as large as the "direct" term, 1 in
(4.1).Thus (4.1) automatically contains momentum de-
pendence of the potential energy of a nucleon, which is
one of the prominent features of nuclear-matter theory.

We wish to show in this section that (4.1) is a better
way to include momentum dependence than the effec-
tive-mass approximation of nuclear-matter theory. In
that theory, the total energy for momentum p is
written" 4'

E(p) =p'/2rN*, (4.2)

where m* is the effective mass and the factor A'/M
has been omitted. The potential energy is then

U(p) = —,
'p'(1/m* —1) . (43)

——',(1/m* —1)V'P. (4.4)

Such a term would be easily acceptable if no* were
constant. Actually, for full nuclear matter density, the
calculation of U(p) for states in the Fermi sea by
Dahlblom" gives

If we wish to use this in coordinate space for a Qnite
nucleus, this gives a term

1/rl* —1=0.6, m*= —', , (4 5)
4. EXCHANGE FORCES, SELF-ADJOINT

HAMILTONIAN

Ke shall assume in the remainder of this paper that
the forces between two nucleons in the nucleus may be
written

()(1+P )+G.(p)&(), (4.1)

where r is the relative coordinate, v~ the long-range
force in even states, and I'~ the Majorana operator.
The last term was just. ified in Sec. 2, with p the density
at the center of mass of the two nucleons. The expres-
sion for the long-range force (first term) is obviously
not the best in the light of Sec. 3, but is chosen for
simplicity. A better treatment will be given by Nemeth
and Bethe. 4'

The term P~ in (4.1) implies an exchange force of
the same sign (attractive) as the ordinary force e(r). An
exchange force is essentially nonlocal, like the exchange
term in the Hartree-Fock (HF) equai. ion. This implies
a momentum dependence of the effective force: If the
two interacting particles have large relative momentum
k (i.e., mrs))1, where rs is the effective range of the

s This suggestion was erst made by K. A. Brueckner /Phys.
Rev. 97, 1353 (1955)g. Moszkowski and Scott (Refs. 15 and 41),
who investigated this problem most thoroughly, have suggested
that the saturation of the 'S force may be compensated by the
attraction in D states. Table II shows that the total contribution
of states I.&1 is weaker than the 'S saturation. It is therefore not
possible to consider the total potential energy as just a constant
coeKcient times the S interaction. However, it might be possible
to write the total as

V('S) (A —Bkr'). (3.19)

But we are not sure whether this will reproduce the radial and
exchange dependence of the force su@ciently well.

while for zero density, of course, 1/m* —1= 0. Therefore,
m* is a rapid function of density and varies with r, the
distance from the origin, in a 6nite nucleus. Then a
term of the type (4.4) in the Schrodinger equation is not
self-adjoint but must be replaced by"

—lV Lo/ *()—1)VS], (4.6)

which is more complicated.
A further complication arises from the fact that the

potential energy of occupied states is not always well
represented by (4.3). It is true that in Dahlblom's cal-
culations (4.3) is a good approximation to U(p). But
in some other calculations (for different potentials),
and especially for large kr, U(p) increases rapidly for
low p, but for p approaching kr, the increase becomes
much slower. Therefore a more general function U(p, p)
should be introduced, and this is very diKcult to ex-
press as a differential, self-adjoint operator on f. We
have not been able to find a manageable expression
of such a, general U(p, p) operator.

The chief reason for the deviations from (4.3) is the
exchange force. As was pointed out before, it is large
for low relative momentum k, small for high k. But in
the limit k —+ the exchange goes to zero; so the
diGerence in potential energy between 4=0 and high k
tends to a limit, rather than increasing indefinitely with
k as (4.3) implies. The potentia, l energy of a hole state p
increases with p because a particle of high p tends to
have higher rt,'lative momentum k relative to an average

"We use p for the momentum of a particle, reserving k for
relative momentum, (4.7).
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potential energy of a nucleon; this is

(4.22)

where the average is taken over k2, at 6xed k~. Now

contribution to the momentum dependence. They do, on
the other hand, give a major contribution to saturation.II, S, i

We conclude that, in the force model represented by
(4.1), the inomentum dependence is almost entirely
provided by the exchange term. This can be treated

k—r (k, lr,) (ks kss), = r (krs 0 6krs) (4 23) in a self-adjoint manner by the standard Hartree-Fock
procedure. If there are forces acting only in 5 states,

therefore, using (4.18), (4.20a), and (4.22), as was discussed in Sec. 3, these also imply a momentum

U(k)sad(+d)(As/M)(ks0 6ks)(424)dependence, and also can be incorporated inaself-
] = yg 3%'C C p adjoint Hamiltonian.

Using c=0.4, d=1.0 F, p=0.170 F ', this gives

U, (ki) =0.037(A'/M)(krs —0.6kr') (4 25)

On the other hand, the calculations of Dahlblom" give,
according to (4.5),

5. TOTAL ENERGY, HARTREE-FOCK
EQUATION

The total energy of the nucleus may be written in
terms of densities":

U(k )=0 30(A'/M) (ki'+const) . (4.26) W= — v~(rr —rs) fp(ri) p(rs)+ ~ p(rr, rs)
~
']dr rdrs

8
1+- G.(p(r))p'(r)dr+ 2'(r)«, (51)
2

(5.2)p(ri, ")=E 4.(r~)4-*(")

is Diracs mixed-density matrix, the sum going over
all occupied states m. Further,

Thus the short range -force accounts only for about
19/~ of the total momentum dependence of the single-
particle potential in nuclear matter. This proves the
earlier claim that the chief cause of momentum depen- where
dence is the exchange force.

This situation is not changed by the "dispersion"
term of MS. This term is approximately equal to

p(r) =p(r, r)

is the ordinary density, and= $U(a)+ U(b) U(k, )—U(k—,)]„&sdr, (4.27)
T(r) = (As/2M)y„*—Vsy„

(5.3)

where the average is taken over the "particle states, "a
and b. This average is essentially independent of k&, k2.
Averaging also over ks, as in (4.23), we find the dis-
persion contribution to U(ki):

UD(kr) =—0.018(A'/M)krs (4.30)

This wipes out one-half of the U, in (4.25). Thus
altogether the short-range forces give a negligible

Un(kr) = —
4p~ f sdr ~U(ki)+const. (4.28)j

Using the same constants as in (4.25), this is

UD(ki) =—0.060(U(ki)+const). (4.29)

We may use this result in three ways, viz. :
(1) If the short-range forces were the only contribu-

tion to the dependence of U, the dispersion term would
only change (4.25) by 6%, so that the agreement with
(4.26) is not improved.

(2) For any contributions to U, (e.g., those from
long-range, exchange forces), the dispersion effect
simply reduces the momentum dependence by 6%.

(3) Since (4.26) represents the total momentum de-
pendence, the dispersion eGect contributes in fact
about

is the kinetic-energy density. The first term in (5.1),
with p(ri)p(rs), is the effect of the "ordinary" long-
range interaction Lthe term 1 in (4.1)], the second term
that of the exchange interaction Lterm I'ss in (4.1)];the
factor 8 is made up of a factor -', which ensures that each
interacting pair is counted only once, and a factor ~3 for
the probability of having either spin or isospin (or
both) of the two nucleons different; if they are the
same, the antisymmetry of the wave function makes the
interaction (4.1) vanish. It should be noted that, ac-
cording to (4.1), the interaction in even states is 2s~(r).
The third term in (5.1) is the short-range contribution"
(2.2).

We may take the variation of (5.1) with respect to
the wave function P„*(rr) and thus obtain the Hartree-
Fock equation,

—(A'/2M) ~'0-(rr)+ U(ri) 0-(rr)+

&&4-(rs)d.s+F(p)4-(rr) =&-e-(rr), (5 5)
'2 Equation (5.1) is the simple LDA, without the modi6cation

introduced in Sec. 2(D). We use this for simplicity in Secs. 5 and 6
and then, in Sec. 7, introduce the factor (1+2tt) derived in (2.40).

"This term does not have the factor q which appears in the
erst term of (5.1) which arises from even-state interactions. In the
case of short-range forces, there are contributions from both even
and odd states, and (2.44l is the complete result.
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where
3

U(r&) =- e~( Ir~—
r2 l)p(r~)&re

The 6rst and the third term in (5.1) are straight-
forward. For the kinetic-energy (last) term, we make
the usual Thomas-Fermi approximation,

(6 1)2'(r) = 5(&'/2~) &~'(r)p(~)

kg= (37r /2) jap (6.2)

&r2IUIr&)= e&(Ir& r21)p(r»r2)~r2 (5 7)
where the Fermi momentum is related to the density

are, respectively, the Hartree direct and Fock ex-

change) potential. F(p) is given by

(5 8)

and depends only on the local density p(r&). Finally, E„
is the usual Lagrange parameter coming from the condi-
tion that the total number of particles be held 6xed;
E„ is of course the Hartree-Fock energy.

Equation (5.5) is clearly very simple since u& is a
known function of r. It differs from the usual Hartree-
Fock equation only by the short-range term (5.8). If
we make the assumption (2.6), G, p", then

(5.9)

Thus the contribution of the repulsive short-range
forces to the effective HF potential is larger than the
simple interaction of one nucleon with all others which
would be only pG, . The extra term -', XpG, is similar to
the results of Brueckner and Goldman, 33 who chose to
call this a "rearrangement potential. " The entire term
(5.9) has the eRect of keeping the density at the center
of the nucleus from becoming too high; if it is omitted,
a large nucleus will collapse. "

Of course, (5.5) is as good or as bad as the approxima-
tions made in obtaining (4.1). In our opinion, the most
serious of these is the neglect of the density dependence
of the effective central force which results from the
tensor force; this could be included as a factor depend-
ing on density4' which multiplies the two potentials U.

Another important omission is that of the spin-orbit
force. Bhargava55 has shown how an effective "global"
spin-orbit force arises from the elementary two-nucleon
spin-orbit force, and may be represented by a term

C(p)(dp/dr)l sP . (5.10)

Unfortunately, the interaction C(p) so calculated seems
too small'8 by about a factor of 2.

6. STATISTICAL THEORY

In this paper, we shall use a statistical approximation
to (5.1), rather than the (more elaborate) Hartree-
Fock approximation. The aim of the statistical treat-
ment is to get general results for the density distribu-
tion, valid for all nuclei of sufficient size, rather than
for speci6c ones.

'4This has been particularly well demonstrated by R. K.
Badhuri and E.L. Tomusiak, Nucl. Phys. 88, 353 (1966)."P. Bhargava, thesis, McMaster University, 1966 (un-
published).

For the mixed density, we make the corresponding ap-
proximation which has been used successfully by
Slater2' for a long time in treating the exchange term
in the HF theory of atoms. Namely, we consider the
wave functions in the neighborhood of the center-of-
mass point

R= —',(rg+ r2)

as locally plane waves. Then

(6.3)

V= —Ve(1—e ')', x)0

V=O, x&0. (6.7)

The wave functions are plane waves in the y and g

direction, but more complicated in the x direction,

f=e~kry+ikzzy(g) (6.8)
%'e chose V0= 40 MeV, u= 1.2 F, and the HF energy pf

'6 This calculation was done by Y. C. Lin, to whom I am very
much obliged (see Appendix C).

p(rg, r2) =x'(sinker —her coskpr)/r', (6.4)

where k~ is the Fermi momentum appropriate to R.
We have tested both (6.1) and (6.4) in conditions of

varying density. To test (6.1), we chose a one-dimen-
sional potential linear in x,

(6.5)

The wave functions are then simply Bessel functions of
order 3. We assume that all states up to a certain
energy, E=0, are filled. The density and kinetic-
energy density can then be calculated as functions of x,
and (6.1) is found to be a good approximation, pro-
vided the density is su@.ciently high, compared with F
Lsee (6.5)j.If we use the value of the slope of the poten-
tial Ii appropriate for the nuclear surface, we And that
(6.1) and (6.2) are correct within about 10%%u~, provided

p) 0.028 F-'= 0.17pp, (6.6)

with po the density of nuclear rnatter. This will be
sufficient for our purposes.

This theory is developed in Appendix B. In particular,
we show that the density is given by (6.2) with k~' given
by 2M'—'(E—V). We also develop a WEB theory in
the presence of a nonlocal potential, such as the HF
potential (5.5).

For the test of (6.4), we calculated'e numerically the
wave functions in a more elaborate and more realistic,
but still one-dimensional, potential, viz. ,
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Fio. 2. Density (solid line) versus position x (distance from
surface) according to Lin. The particles are assumed to move in
the potential given by the dashed line. For details, see Appendix C.

the mixed density —except at very large r which,
however, are unimportant because both F and v~ are
very small.

The calculations show that the Slater approximation
is quite good in spite of the rapid variation of the
density: As Fig. 2 shows, this varies by 0.45po from
a/a=1 to 2, i.e., by more than the density at the mid-
point, x/a=1. 5. Nevertheless, Fig. 3(b) shows quite
good agreement up to r/a=5, perhaps surprising in
view of the rapid variation of p. We believe this justi6es
the use of the Slater approximation for practical
calculations.

Details of Lin's calculations of P are given in
Appendix C.

Accepting then (6.9), (6.12) for the mixed density, the
exchange term in (5.1) may be written Lr= lrl —rsl,
R=-;(r,+r,)]

p'(R)C(p(R))d'R, (6.13)

3
C'(p) =- si(r)Fe2(p, r)d'r.

8
(6.14)

p(rl, r2) =p(X/a)F(X/a, x/a, t/a), (6.9)
where From (6.12) it is clear that 4' decreases with increasing

density; for realistic nuclear potentials v&, pC is approxi-
mately constant for p between about 4po and po. The
important point about (6.13) is that it depends only on
orle coordinate'" R: The function 4i is a unique function
of the density, for any given potential v&.

Inserting (6.14) into (5.1), and changing the integra-
tion variable R to r, we get

X=2(X1+Xs) y + +1 a2 y

t= L(y.-y.)'+("-")']'", (6.1o)

and p(X/a) is the ordinary density at X. For given X,
the results for F were plotted against r/a, with

r= (x2+t2)'i2= Iri —rsl ~ (6.11)

the most energetic nucleon, Er 8MeV.——Figure 2 3

shows the density p(x) for the potential (6.7). The
potential itself is also shown in the 6gure; the com-
parison bears out the finding of Berg and Wiletss that
the potential extends farther out than the density (by
about 0.6a) and has less slope. The mixed density was
calculated; we may write

Two such plots are shown in Figs. 3(a) and 3(b). It is
very satisfactory that the points fall very nearly on a
single curve, regardless of the values of x and t: in
other words, the mixed density depends essentially
only on the distance between r& and r&, independently
of the direction of the vector r~—r2, in spite of the large
anisotropy of the potential as seen from the center-of-
mass point X.

The results are then compared with the Slater
theory (6.4), in which

p(r, ,r,) siny —y cosy
F8=-

p(~)
(6.12)

with kz given by p(E) The curves in. Fig. 3 give the
Slater theory. The agreement with the calculated points
is good in Fig. 3(b), which refers to a density p= 0.35p, ,
where p() is the nuclear-matter density; the maximum
deviation Fz F is 0.07. In Fig. 3(—a), for a density
p=0.16po, the agreement is only fair (maximum devia, —

tion FB—F about 0.2). As might be expected, the agree-
ment becomes excellent for higher density, and poor for
p&0.16pp. Generally, the Slater formula overestimates

3
&l(rl r2)p(rl)p(r2)drldrs

8

+ (p'(r)l:lG. (p)+C(p)]+T(p(r))}d . (6.15)

—Us p'(r) dr,

so that

3
Uo= —— ei(r) d7,

8
(6.17)

W= jp'(r)l —Uo+2G, (p)+C(p)]+T(p(r)))d&. (6.18)

~7 This was pointed out to me by Mrs. Judith ¹meth.

Only the first term depends on the density at two
different points, all the others just depend on one p. If
we assume p to be very slowly varying, we may replace
p(r2) in the first integral by p(ri) and get
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FIG. 3. Mixed density p(r4rs) versus distance r= lrr rs l, for —6xed center-of-mass position X=xs(z&+zs). Solid line= Slater formula
(6.12). Points derived from wave functions in the potential of Fig. 2 by Lin. Symbols correspond to diGerent values of z=

l z&-zs l/o,
viz. , 0=00 or 3.5, 6=0.5 or 4.0, )(=1.0 or 4.5, +=1.5 or 5.0, V=2.0, +=2.5, &&

=3.0. (a) For density p/ps=0. 16, (b) for density
p/pp =0.35.

Now the curly bracket is the total energy per unit
volume for (almost) constant density; we write

( }=pW(p), (6»)
where W(p) is the energy per particle at constant
density p. Using this, (6.15) may be rewritten

3
P & ~7' d71P f1 &25l fl f2

8
XLp(r )—p(r )7. (6 20)

The first term in this formula contains W(p), the
energy at constant density p. This may be considered
as known from nuclear-matter calculations. In this way,
we make maximum use of our knowledge of nuclear

matter. The second term contains the variations of
density and is therefore only important near the surface.
In addition, it contains the long-range potential e~, also
presumed known. It arises entirely from the simplest
term in 8', the Born-approximation long-range inter-
action. A/l the complicated parts of the interaction,
including the saturation feature, are contained in the
nuclear-matter energy W(p).

In the form (6.20), we can now finally insert the
modification (2.39), viz. ,

3
W= W(p)p(r)dr+(1+2x) ' drip(rt)drsvi(rt -ls)

8

XLp(rs) —p(ri)7. (6.21)
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Fn. 4. The energy per particle, 8', and the Fermi energy at
constant density, w, as functions of the density p =p/pp for nuclear
matter, according to Dahlblom's calculations, with his potential
energy increased by 18.5'Po. The two curves intersect at p =1 and
at p =G (not shown). In the region f &p & I, which is important for
Qnite nuclei, m is much lower than 8'.

p(r)dr =A = const. (7 1)

This yields immediately

3—(pW(p)) +- drsst(rt rs)Lp(r2) —p—(rt) j=Ep. (7.2)
d'p 4

The first term is obviously the change of energy when
one particle is added to a piece of nuclear matter of
constant density p. By definition, this is the "local
Fermi energy" at constant density, wr(p), which we
introduced in (2.2); so we have

dS'-.(.)=—(W(.))=W()+. —.
4p 8p

(7.3)

In the following, we shall drop the subscript Ii in mg

and we call to(p) the "one-particle energy. "The second
term in (7.2) is the only remaining deviation from
constant-density nuclear matter. As was shown in
Sec. 2 D, this should be reduced by a factor (1+2') '
so that (7.2) is replaced by

3 1
~(p(r 2))+-

4 1+2a
dr2cl(rl r2)

&&( (r)—p(r)3=E' (7.4)

The right-hand side of (7.2) and (7.4) is, by definition of
the Lagrange parameter, the change of energy when one
nucleon is added to the nucleus, and hence the energy
of the most energetic nucleon, i.e., the Fermi energy

7. VARIATION, INTEGRAL EQUATION

We now vary p(r) in (6.20), with the subsidiary
condition

P= p/pp (7.5b)

will be a useful abbreviation for the following. C is
related to the usual compression modulus K,

K= rp'(d'W/dr p') =9C (7.6)

According to the calculations of Dahlblom, " E is
about 157 MeV, hence C=17.5 MeV. Using (7.3)
and (7.4),

tc(p) =Wp+C(p 1)+o(—p 1)'. —

Hence m is linear in p near nuclear-matter density,
p=1, and m&8'0 for p&1, which is the normal casein
finite nuclei. The minimum of m is at a density less
than nuclear-matter density, and is lower than I4 ().

This difference between m and 8' will be essential in
Sec. 8.

%e have used Dahlblom's nuclear-rnatter calcula-
tions. " In order to get the correct binding energy
(15.85 MeV), we have arbitrarily multiplied his poten-
tial energies by 1.185. Then the minimum of total
energy occurs at k+=1.44 F ', as compared to the
semiempirical value'7 of 1.36 F '. The binding energy
is represented very well by the analytic formula

W = —15.85+47.5y'+32.5y', (7.8a)

y p1./2 (7.8b)

This fits Dahlblom's values, corrected by the factor
1.185, within 0.1 MeV over the range from kg=0.7

to 1.7. The use of p'" gives a much better 6t than a
similarly simple formula in p or in k& p'~'. Moreover,
(7.8a) is more convenient for integration of the dif-
ferential equation in Sec. 8. For a rough approximation
(to0.5MeVfromk& ——0.9to1.7) wemayuse

W =—15.85+33y'—=Wp+ 2Cy', (7.9)

which agrees with (7.8a) at p=-,' and 1. Inserting
(7.8a) in (7.3) gives

w= —15.85+47.5y+144y'+81y'. (7.10)

Figure 4 compares m and O'. It shows that zv has a
minimum of about —20.2 MeV at p=0.64, and m is
again equal to 8'0= —15.85 at p&=0.31. If 8' is given

by (7.9) the minimum of to is at p=0.56 and is —20.0
MeV; zv=S"0 at p&=0.25.

Near the center of an extremely large nucleus, the
density will be constant, and equal to po. Hence the
second term in (7.2) is zero, and the first term is Wp

so that
By= 5'p (7.11)

Eg. For a given nucleus, Ep is a constant, independent
of j.'y.

The one-particle energy w(p) is not identical with the
energy per nucleon W(p), as is clear from (7.3). Near
the equilibrium density of nuclear matter, po, we may
write

W(p)=Wo+lC(P 1)—'+o(0 1)—', (7»)
where
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3 pe
C(p —1)+———

4 1+2'
drst/(rt, )LP(xs) —P(xt)j=0, (7.12)

if A is very large. We may then consider small devia-
tions of p from pp which will occur near the surface of a
very large nucleus. Such a surface may be considered
as plane so that p will be a function of x only, where x
is the coordinate perpendicular to the surface. Inserting
then (7.7) into (7.2) we get the integral equation 5-

D
IP

CO

Ol
Ch

C(P(xt) —1)+ (Exp'(t xt —xs i) 0 R-4a R-Sa R-2a
Distance From Center

R-a

with
&& Lp(xs) —p(xt) j=0, (7.13)

3' peJ (s) = — — t/(r)rdr.
2 1+2K g

Equation (7.13) is a linear, homogeneous integral
equation for p

—1 with a displacement kernel Z(xt —xs).
Any such equation has as a solution an exponential, ""

1—p(x) =e- (7.15)

where the constant 0, can be determined from the kernel
K and the constant C. Mrs. Nemeth has determined
o.=0.64 F ', with certain assumptions on the nuclear
forces, using Sprung and Bhargava's" nuclear-matter
calculations, and neglecting ~. Including ~, the value
of /r is likely to be larger, about 0.7 to 0.75 F '.

The solution (7.15) is of course only valid as long as
1—P((1. It shows, however, that (in this Thomas-
Fermi model) the nuclear-matter density is approached
by a "saturation function", i—e, as we go into the
nucleus. This behavior is quaH/atieety the same as that
of the so-called "Fermi density distribution"

FIG. 5. Theoretical density distribution from the differential
theory of Sec. 8 versus r. AB is the tangent drawn at the point of
steepest slope, the distance r// r~ is b=—2a.

with
BV'p = t///(p) Er, —

13 pp
B= ——— — t/t(r) rsdr .

64 1+2'

(81)

(8.2)

B has been dehned so as to be positive; it is a constant
characterizing the long-range potential. Since

consider the density p as slowly variable compared with
the range of the nuclear force. This is not a very good
assumption because the thickness of the nuclear sur-
face is of the same order as the range of the nuclear
force, but we shall see that we have some numerical
factors in our favor. However, we must be prepared
for considerable errors in this approximation.

If p is slowly variable we expand p(rs) in (7.4) in the
neighborhood of r. The linear term in r2—r& obviously
contributes nothing, and using (73) and (7.5a),
Eq. (7.4) becomes

p LI+e(7 //) /8$ r 1 s(r z) /8 (7.16)

but here experimentally s=0.6 F, much smaller than
1//r. This will be discussed in more detail in Sec. 8.

For x approaching 0, (7.15) will cease to be valid
because U(p) can no longer be represented by
Wp+C(p —1). Then the integral equation (7.13) must
be solved explicitly. We have not considered this
worthwhile because of the very crude assumptions
about the potential. Better assumptions are made in
the paper by Nemeth and Bethe."

At still smaller x, p becomes smaller than 0.15, the
satistical theory ceases to be valid, and the density must
be derived from explicit calculation of the wave func-
tions.

8. DIFFERENTIAL EQUATION

A. Ayyroximations Made

To simplify the problem further, we approximate the
integral equation (7.13) by a differential equation. We

"No constant factor is needed on the right-hand side of
(7.15) because the zero of x can be adjusted suitably.

~9 A similar solution was found in the Thomas-Fermi theory of
Seyler and Blanchard, Ref. 9.

sspp t/)(r)dr=— Vt (8 3)

is the long-range contribution to the potential energy
per nucleon at normal density pp, we may write

B=—V/(r')/3 (1+2') . (84)

We shall now again assume a plane surface, with x
the coordinate perpendicular to it; thus (8.1) is

Bd'p/dx'=7///(p) Ep=tt/(p) W—p, (8.5—)
where in the last member we have assumed that the
nucleus is very large so that E7r Wp. Equation (8.5)
shows immediately that the curvature of p versus x is
negative if tt/(p)(Wp. A negative curvature is required
to make p drop from the central value p=1 to lower
values at the surface (cf. Fig. 5). It is therefore very
important that m indeed falls below 8"p when p&1,
as shown by (7.7) and Fig. 4. If tt/ were replaced by W,
it would always be )Wp, Eq. (7.4), and we could never
get a negative curvature of p(x). Thus it is essential
that tt/ and W are not identical, Eq. (7.3).
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FIG. 6. Density versus radius for Au. Density in units of 10"
coulomb/cm', radius in termis. F=Fermi distribution, N=our
distribution, Eq. (8.32). For discussion, see Sec. 9 C.

Equation (8.5) can immediately be integrated once to
give, using (7.3),

, t'~pl'

kdxi
~PL~(p) We j=—p(W(P) Wo) —(8 6)

tt (Pr) = Wo.

As discussed below (7.10), with the approximate
formula (7.8a), we have

pal = 0.31. (8.7b)

This is quite diQerent from the Fermi-type distribu-
tion (7.16) which has its inQextion point at Ppr=0. 5.
The distributions themselves are compared in Fig. 6.

B. Steepest Slope

The steepest slope is given by (8.6), with P=P&. It
may be used to define an effective surface thickness,

(8.8)b= (dp/dx)

To interpret this, draw the tangent to the p(x) curve
at the tnflexion point (Fig. 5); its intersections with the
lines P= 1 and p=0 have a distance Ax= b. From (8.6),

b= L~/2pr(W(pr) —Ws)3'" (8 9)

and using (8.4),

E=LI V, I/6(1+2.)P,(W(P,)—W,)j» &r ) . (8.10)

Obviously, W(P&) —Ws is not very large; for W as
given by (7.8a),

W(Pr) —We=6.4 MeV. (8.11)

By contrast,
I V&l is the main part of the potential

energy per nucleon in nuclear matter of full density.

Thus the slope of the P(x) curve is directly related to
the energy per nucleon, W(p), which follows from
nuclear-matter theory. The steepest slope occurs of
course at the inQexion point p~, which is de6ned by
Lcf (8 5)j

(8.7a)

The total potential energy per nucleon at density po
iss'42 MeV; therefore

I Vg I
should be at least" 31 MeV.

Using also (8.7b),

$—1 6(r2)l/2(1+ 2')—1 f2 (8.12)

Thus b is considerably larger than (r')'", which in turn
is a rather large measure of the range of the nuclear
forces. This conlrms our earlier statement that numeri-
cal factors make the thickness of the nuclear surface
rather larger than the range of nuclear forces, hence
giving some justification for the use of the differential
equation. The reason for this is that U(P) —We in (8.5)
is never very large, thus keeping down the curvature
of P(x).

To estimate (r') we use the Reid hard-core poten-
tial" "of 1965, in the 'S state) this is

The we get
xo= pd=0. 70. (8.14)

es*'(xos+3xss+6xo+6)+13 21(xo+xo'+ssxo+2/9)

es*'(xs+1) +13.21(x,+-',)
(8.15)

Using the entire expression, we get (r') =6.84 F'.
Inserting this and a=0.14 into (8.12),

b=3.7 F. (8.16)

This is much too large; the observed "surface thickness"
(Sec. 9) is about 5= 2.4 F.

%e believe, however, that the OPEP contribution
should be omitted. As is well known, OPEP is attrac-
tive in even-, repulsive in odd-parity states, and zero on
the average; it therefore should be considered an ex-
change force only, and does not contribute to the
ordinary force. Accordingly, we should omit the 6rst

"We take k+=1.44 I' ', the Dahlblom equilibrium value,
hence average kinetic energy= 25.8 Mev, and the binding energy
15.9 MeV.' We assumed in (5.1) that there are ordinary and Majorana
attractive forces, and short-range repulsive ones. The repulsive
energy may be about 5 MeV, the total attractive potential is then
47 MeV, and we estimate that the ordinary forces contribute twice
as much to this as the Majorana ones.

'~ R. V. Reid, Ref. 34. We should really have used his soft-
core potential, but the general conclusions are the same.

V= —(10.46 MeV/x)(e '+39.63e ' )
for x)0.296 (8.13)

x=pr, p=0.70 F '.
Here 1/p is the pion Compton wavelength. The 6rst
term in the parenthesis of (8.13) is the OPEP, the
second is an empirical approximation to the exchange
of heavier particles. For @&0.296, there is a repulsive
core. We take only the long-range part of (8.13), for
r& d, and assume the separation distance to be d = 1.0 F
so that
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term in both numerator and denominator of (8.15),
which gives

a=1.2 F. Inserting (8.19) into (7.8b) gives the densii. y
distribution

"(")=-:+ "("+1)/("+-:),
(rs) =3.007 Fs,

b=2 47 F. .
(8.17)

p/p, =p= (1—e-.&.) . (8.23)

This is plotted in Fig. 5. In a spherical nucleus, we
may identify x=E.—r, with R some de6nition of the
nuclear radius, then"

C. Radial Distribution

Until now, we did not need to make any assumptions
about the form of the function W(p) in (8.6); we merely
needed its value at p~, the inQexion point of the curve
p(st:). To determine this curve itself, we must integrate
(8.6) once more. This is a simple quadrature which
can still be done for arbitrary W(p); however, to get a
simple analytical answer, we now use the simple formula
P.9) for W, and (8.6) becomes

B(dy/dx)'= Cys.

This integrates immediately to give

(8.18)

This is in very good agreement with the observed
b= 2.4 F. This agreement, however, is probably acciden-
tal. Our assumptions about the nuclear forces are very
rough. They wiLL be improved by Nemeth and Bethe4';
unfortunately, improved forces seem to increase b

again. On the other hand, solution of the integral
equation (7.12) instead of the differential equation
(8.5) helps to decrease b.

Equation (8.12) shows that b is proportional to
(1+2') '" where ~, given by (2.36), is the probability
of 6nding a nucleon out of its model state. In accord
with Sec. 2, we have assumed K=0.14; this reduces b

by about 12'Pz. Since b tends to be too large, this reduc-
tion improves agreement with observation. This then
is an important consequence of the modification of the
LDA which we introduced in Sec. 2 D. The long-range
forces are eRectively diminished in strength, and this
makes the surface of the nucleus thinner.

p/po ——1—expL(r —R)/ajs r(R
=0 r&E. (8.24)

It can be directly veriied that the steepest slope occurs
at the point pt ——s, and that at this point dp/de=1/b
=1/2e. The tangent at the point of steepest slope is
shown in Fig. 5.

Equation (8.24) is our Gnal result, except for a tail on
the distribution, which we shall discuss later As .(8.24)
stands, the density terminates at r=E, but it does so
with zero slope. As distinct from the "Fermi distribu-
tion" (7.16), our result (8.24) is not symmetrical about
the half-density point p= —', . Indeed, as we have pointed
out, the steepest slope occurs at a Lower density, p& ——~.
This is directly related to the behavior of W(p) and
te(p) as discussed in Sec. 7. Since we believe this be-
havior to be (qualitatively) well established, we are
con6dent that our "unsymmetrical" density distribu-
tion should be closer to the truth than the symmetrical
Fermi type. Use of the integral equation (7.4) instead of
(8.5) shifts the point of maximum slope to lower
density" than p&. On the other hand, with the more
accurate expression (7.8a) for W, we have pt=0.31.We
believe that the eRect of the integral equation is
stronger, and that the steepest slope occurs at p&0.25.

In line with its "asymmetry, " (8.24) approaches full
density much more slowly than the Fermi distribution
(7.16). Comparison with electron experiments (Sec. 9)
shows that the steepest slope of (7.16) should be chosen
to be about the same as for (8.24), in order to get agree-
ment. This requires s=b/4; therefore for Z—r))s
(deep in the nucleus), (7.16) becomes

(g/C)1/s

(8.19)

(8.20)
while (8.24) is

2e—2(B~r) I 5

(8.25)

(8.26)

p= 0 for $+0j (8.21)

this joins continuously to (8.19).
The length scale u may be compared with b. Inserting

p.9) into (8.9), and remembering that with (7.9), we
have pt=s, hence y(pt)=-', , we get

(8.22)

The empirical value for b, mentioned above, thus means

The negative sign in (8.19) is supplied because by its
deftnition (7.8b), y(0, when the density is less than
nuclear-matter density. The minus sign in the exponent
is arbitrary; it means that the nucleus is in the half-
space x&0 while

The notation Ep, E~ is to indicate that the nuclear
radius must be chosen di8erentialy for the two distribu-
tions, in order to Gt experiment. Disregarding this
difference and the factor 2 in front in (8.26), we see
that the Fermi distribution approaches unity twice as
fast as ours. Figure 6 illustrates this point. The very
gradual approach to saturation density (as we go
toward the center of the nucleus) is in accord with the
results of Brueckner et al.' for 6nite nuclei.

The radius R introduced in (8.24) is of course larger
than any reasonable deinition of a nuclear radius. %e

"A distribution of the same shape has been discussed by W. J.
Swiatecki and W. D. Myers (private communication); see also
Nucl. Phys. Sl, 1 (1966).
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may, e.g., define an eGective radius by

srrR—.ir' A——/p p,

where A is the total number of particles. Then

(8.27)

corresponds in Wilets' theory:

(Vp)' h'
dr= $ pp

p 83f
(8.35)

xRp oRs~+iRos (15/4)zp Wilets (private communication) finds that an averagen„»,n&, (8 2 )
of P= stin (8.35) is appropriate, and )=0.65. Then our
I3 should correspond to

in which the last two terms are normally negligible.
Approximately,

$(3A'/4M) =20 MeV, (8.36)

jeff 8 gC,

D. Exponential Tail

(8.29) whereas our 8, from (8.9) or (8.20), is 24 MeV. The
agreement is very satisfactory.

Wilets obtains a radial distribution

Beyond E, the TF theory is not valid. Instead, all the
nucleon wave functions have exponential tails which
are discussed in Appendix B. The asymptotic behavior
of the density is given by the exponential tail; thus

P= (P~)", (s.37)

where Pi; is the "Fermi" distribution (7.16) and e= 1.28.
Thus his distribution is unsymmetrical, but not as
much as ours.

C~&(~a)

where C is a constant and

(8.30)
9. COMPARISON WITH ELECTRON

SCATTERING

tr=( M8)e'"/ h, (s.31)

with ~ some suitable average binding energy. Taking64
~=16 MeV,

a=1.76 F '. (8.32)

As a simple approximation, we have assumed

p= (8.24) for r(R aln2-
p= (830) for r) R—e ln2,

(s.33)

E. Comyarison with the Theory of Wilets

Our theory has much similarity with the phe-
nomenological theory of Wilets. He started from the
observed surface thickness and surface energy, and then
derived a suitable phenomenological potential. This
potential turns out very similar to ours; e.g., com-
pression modulus X=175 MeV (our value 157 MeV),
radius rp ——1.07 F (Dahlblom's calculation, after in-
crease of the potential energy by 18.5%, gives rp=1.06
F) Lcf. Sec. 7 of our paper, near Eq. (7.7)j.

To our gradient term in the energy Pcf. (10.14) and
(10.15)$

supp p+ pdr= s+—po (+p) dr (8.34)

'4 At eery large distances, we should take e to be the binding
energy of the least-bound nucleon, which is 8 MeV, for an average
nucleus. At intermediate distances, say n(r —E)=1 to 2, the more
strongly bound nucleons also contribute so that i6 MeV may be a
reasonable average. For protons (which are measured by electron
scattering), the Coulomb potential further increases e. These
points will be further investigated. ~=16 MeV is probably not a
bad average.

with C fixed by continuity of p. The derivative dp/dr
is then almost continuous.

(1) R=7.56 F, a=1.20,

(2) R=7.45 F, a=1.20,

(3) R=7.56 F, a=1.0.
(9.2)

In order to bring out the maxima and minima more

' B. Hahn, D. G. Ravenhall, and R. Hofstadter, Phys. Rev.
101, ii3i (1956)."Y. C. Lin (private communication).

7 D. R. Yennie, F. L. Boos, and D. G. Ravenhall, Phys. Rev.
137, B882 (i965).

The best way to determine the thickness of the
nuclear surface is from the scattering of electronsof
100—300 MeV."Accordingly, we have initiated two cal-
culations of the electron scattering by heavy elements
(Au, Pb) by the density distribution calculated in
Sec. 8.

(a) A pproppimate calculati oN. An approximate calcula-
tion was carried out by Lin."He used the density
distribution with an exponential tail described in (8.33)
and calculated the scattering of 236-MeV electrons by
Au. For the calculation, he used the method of Yennie,
Boos, and Ravenhall, '~ which is an adaptation of WEB
to relativistic electron scattering, and avoids the
tedious summation of many partial waves which is
needed in the standard method" and which requires
extremely high accuracy of computation. Following
Dr. Yennie s advice, I.in did not compare his results
directly with experiment but with the theoretical result
for the standard Fermi-type distribution,

(9.1)

with E'= 6.29 F, a'= 0.55 F. In this way, errors inherent
in the YBR theory were thought to be minimized.

The result is shown in Fig. 7, for 3 choices of the
parameters
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Thus our nuclear charge distribution makes the nucleus
too close to a point charge; it gives too small an (r').
The Fermi distribution does much better (5.87 MeV)
because it gives a larger (r'), as pointed out above.
Elton has shown, in agreement with previous authors,
that the muonic x-ray energies measure essentially (r').

This situation will undoubtedly be improved when the
exponential tail (8.30) is included, which Elton did not
do. Unfortunately, this seems to explain at best one-half
of the discrepancy. Another eGect in the right direction
is presumably the "wine-bottle shape" of the proton
distribution, i.e., greater density of protons near the
surface, due to Coulomb interaction. Treatment of this
effect requires simultaneous treatment of the "symmetry
energy, "i.e., of the preferential interaction between un-
like nucleons.

(e) Comparison of surface thickness with theory. The
analysis of electron-scattering experiments has given
a= 1.0 to 1.2 F. In (8.17) we calculated b=2a= 2.47 F
in good agreement with the larger experimental value.
Unfortunately, attempts to improve on the assumed
nuclear forces" have so far given a larger value for b

than 2.7. Moreover, the experimental surface thickness
refers to the charge, and when allowance is made for
the 6nite radius of the proton (0.8 F), the experimental
thickness should be corrected down, to perhaps 2.0-2.2 F.

Thus the theory tends to give a somewhat too large
surface thickness. A similar res~it was found by Hara, '
but some other, earlier attempts have given too small
a thickness. Our large result is partly due to the rather
slow increase of nuclear-matter energy W(p) when the
density falls below normal nuclear-matter density po,
i.e., due to the relatively small compression modulus,
X=150 MeV, which corresponds to (7.9). LIn the
original Brueckner calculations, E was over 200 MeV.
Our more accurate Eq. (7.8a) corresponds to X=210
MeV but still gives b=2 47 F.g.

10. SURFACE ENERGY

Equation (6.21) gives the total energy of the nucleus.
V/e separate the surface from the volume energy by
subtracting (7.1) multiplied by We, giving for the
surface energy

We write this

W, = ', (E-g W—s)A+ )W(p) ,'—W—p ,'—w(—p)jpdr. (10.3)

For a very large nucleus, the surface may be considered
as plane, of area S, which reduces the integral to a one-
dimensional one over x, the coordinate perpendicular
to the surface:

The surface energy is thus proportional to S, i.e., to
2'", and we may write

W=AWe+7A'" .
From its deinition as a Lagrange parameter,

(1o.5)

Er BW/BA——=We+-'syA '". (10.6)

The last term in (10.4) is therefore -syA''s= sW„and
W, is —,

' times the 6rst term in (10.4). To evaluate this
we need to know p(x). The simplest expression for this
in integral theory is (7.15), from which

dr= n 'dP/(1 p), —
so that (10.4) becomes

(10.7)

3 pe P
LW(p) ——,'Wp —-', w(p) j- dp. (10.8)

S 2cx 1—p

Of course, (7.15) is known to fail for low p but they do
not contribute much.

From (7.8a) and (7.10) we get after some algebra

W(p) —-'Wo —-'w(p) = -'(47.5—32.5) (1—p'")
+ '32 5p"'"(1 -P) (1o9—)

Inserting this into (10.8) yields

W, = s(Sps/n)L7. 5(5/6 —In2)+8.12 ar$

=4.62 MeV(Sps/n) . (10.10)

For a spherical nucleus of radius R=rsA'",

W, =S LW(p) ——',Ws —-,'w(p) j
Xp(x) dx+ —A (E —W ) . (10.4)

W,=W—A W, = (W(p) —W,)pd.

Spp=3A/R=3A"'/rs.

Then the constant in the Keizsacker formula is

(1O.11)

+s(1+2') r drrp(rr) drsrtt(rr —rs)

X t p(rs) —p(rl) j ~ (10.1)

W,A 'is=3 4.62 MeV/nrs 17 MeV, (1——0.12)

using ys ——1.12 and an estimated n=0.73 Lcf. below
(7.15)$. This is in embarrassingly good agreement with
the empirical value~ of

Here we use (7.4) and 6nd
O',A '"=18.0 MeU. (1O.13)

LW(p) —Ws+-,'Es ——,'w(p) jp(r)dr. (10.2)

It should be remembered that (7.15) is only correct
for 1—p small, and our estimate of u is a pure guess.

r' A. E. S. Green, Rev. Mod. Phys. 50, 569 (1958), Tah1e IIL
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An alternative calculation of 8', uses the di6erential
theory of Sec. 8. This has the advantage that p(x) can
be determined analytically, at least within the frame-
work of the theory. In differential theory, we expand
p(rs) —p(ri) in (10.1) in powers of rs —ri, then using the
definition (8.2), (10.1) becomes"

W'./ps= (W(p) Ws—)pdr ',8—-pV'pdr. (10.14)

The second term "looks like" a kinetic energy but
of course it is not: It arises from the finite range of the
nuclear forces e~. We now assume again a plane surface
of area S, and integrate the second term of (10.14) by
parts with respect to x; this gives

W,/Sps= (W(p) —Ws)Pdx+ is8 (dp/dx)'dx. (10.15)

Use of (8.6) shows that the second term is equal to
the 6rst. In this picture, then, half the surface energy
may be considered to arise from the fact that the
"local" nuclear-matter energy W(p) is greater than Ws,
the other half from the nonlocality of the interaction,
i.e., the second. term in (10.1).

Next we eliminate dx in favor of dp, using (8.6),
and obtain

hope that this agreement will not be spoiled when
better nuclear forces are used. ~'

APPENDIX A: EFFECTIVE-RANGE THEORY
FOR MOSZKOWSKI-SCOTT

In the effective-range theory of Sec. 4, we require
two intergrals, (4.18), and (4.19), viz. ,

C'= (4 o' —uos)dr, (A1)
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W/Spa= (2&)'" p"'(W(p) W)'"dP— (1o 16) A = Xsdr= f'sdr/47r = Q s—ns)'dr. (A2)

Obviously, neither very small p nor p near 1 contribute
strongly; the main contribution comes from the
neighborhood of the steepest slope of p(x). Using (7.9)
for W(p) we ind

W/Spa= (28) '"(33 MeV) '"/6. (10.17)

We evaluate these, assuming

X=ps—Ns=r for r&c,
X= L(d—r)/(d —c)j' for c&r&d,
x=0 for d&r.

(A3)

(A4)

Since J3 is not well known, we evaluate it from (8.9)
in terms of the surface thickness 5, noting that with
(7.9), pi=~ and W(pi) —Ws=4rX33 MeV. Inserting
also (10.11) we get

W.A '"= (33/4) MeV(b/rs) . (10.18)

With re=1.12 I and the "theoretical" value (8.17),
b =2.47 F, this gives

O' A—'"=18.2 MeV, (10.19)

again in close agreement with (10.10). Use of the
"empirical" surface thickness b = 2.4 F gives the equally
good result

H/' A '"=17.7 MeV. (10.20)

Thus the result for the surface energy, on any of the
three calculations, is surprisingly good. We can only

r'The form (10.14) is quite similar to the theory of Wilets,
Ref. 8.

This leads to

A = (c'/15) (3d+2c), (A5)

C'= (c/30) (Sd'+4cd+ c') . (A6)

For c not too di6erent from d, these may be approxi-
mated by

(A7)A = (c'/6) (d+c),
C' = (cd/6) (d+ c) .

'4 Tabakin and Amos pNucl. Phys. 100A, 574 (1967)g also
calculated surface energy and thickness, using various interactions
between two nucleons. They Qnd that an interaction (velocity-
dependent) which gives the correct 'S phase shifts from 0 to 310
MeV, gives too much surface energy (30 MeV) and a surface
thickness t= 1.8 F.A velocity-dependent potential which saturates
at the correct binding energy gives 27 MeV and 1=3.8 I. Only
one of the potentials chosen by them gives approximately the
correct results, 22 MeV and 2.1 F. Ke believe that the large un-
certainty indicated by their results can be narrowed down by
choosing a potential which agrees with two-body scattering data
and at the same time gives the correct binding energy and density
for nuclear matter. We believe we have used such a potential in
this paper and obtained satisfactory results.
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These expressions have been used in (4.20a) and (4.20b),
For d/c= 2 or 2.5, (AS) is too large by about 3.5%, (A7)
too small by 7—9%.

which we normalize by requiring

Q ~ 2 cos(kgpx+Q) as x ~gp; (812)

APPENDIX 8: THOMAS-FERMI APPROXI-
MATION FOR KINETIC ENERGY

In this Appendix, we shall study the wave functions
and the density in an arbitrary, one-dimensional poten-
tial V(x). We assume p(x) = L2k, p/k. (x)j'I' cos~ k.(x')dx'+P)

this means that the average density inside the nucleus
goes to unity.

In the region of space where t|,'&0 we may use the
ordinary WKB formula

V(*)~ —Vp

for suKciently large, positive x,

d V/Cx &0 for all

V(0) =0.

Then, as usual, in a neighborhood of @=0we take

V(x) = —Fx for x small

(81) —= (2k.p) 'IQ&i(k. p,x), (813)

(84)

p(x) =4(2Qr) —' d'kp i&(k.p,k„,k„x) i
'

kJp2 —kp&

(814)

which is normalized in accord with (812); Pi then

(82) contains no normalizing factor referring to the interior
of the nucleus. The total density is then

(83)

with F&0. When calculating the density, we assume
that all states E(0 are occupied, all states E&0 empty.
This corresponds to a Fermi energy

Ep= 0.

=(2n-') ' 2dp~p

d(kgp )(kit Q kgQ )pi~(kgp)x) ~ (815)

P= y(x) expik'. r, (37)

where k' is a vector in the y, z plane, the "perpendicular
momentum. " Then Q satisies

y"+(2E 2V(x) k'Q)@—=0— (BS)

where we have put A'/M=1. We de6ne k, and k,p by

k, '(x) =2E—2 V(x)—k", (89)

k.p'(x) =2E—2 Vp —k". (81o)

For any given energy E, k' is limited by the condition

By adding a coristant Ep to both E and V, an arbitrary
Fermi energy E& can be treated similarly.

Our aim is to find the relation between the local
density p(x) and the local kinetic energy of the most
energetic particle, E~ V(x). If —Fermi statistical
theory is valid,

p=-Qn. 'kp' ——2QI'(3~') 'M'"A '(Ep—V)'". (86)

We are interested in the deviations from this relation.
We shall use the WKB method to treat the wave

functions over most of the range of x, where V(x) is an
arbitrary function. Near the turning point we use the
explicit solution of the Schrodinger equation in the
potential (84), and the study of (86) will be made
with the help of this solution.

The wave functions in the potential (81) are

In (814), the integral is over all values of the vector
kp, up to hap. In the next equation, we have taken into
account that jf~ depends only on k,p and x which
permits, in (315), integration over the perpendicular
momentum k'.

To recover the usual TF result, we use the "ordinary
WEB" (813) and average the cos' factor in pip to give
—', as long as k,'(x))0; for k, '&0, where Qi decreases
exponentially, we set P& ——0. Now from (89) and (810)
for fixed x, k '=k, p' —const; therefore (815) becomes

d(k. ') Lkg'(x) —k.'(x)j(2k.) '

= (-'Qm') 'kP', (8.16)

kQ'(x) =—kgp'+2VQ —2V(x) =Fx,

k '(x) =k p' kgp'+Fx= F(x xi—), — —
(817)

(81S)

which is the ordinary Thomas-Fermi relation (36).
We now investigate the behavior of (315) near the

surface, where k,' is near zero and where $i can no
longer be represented by (813).As in the derivation of
the WKB connection formulas, we assume that V is
linear in x near the point k '=0. We are particularly
interested in the most energetic nucleons, i.e., the case
k,p =hap, because their wave function contributes
most to the density in the surface. Therefore we set

k,p') 0, k"&2(E—Vp) . (811) so that the Schrodinger equation for Pi is

The wave function g(x) is of course a standing wave yi"+F(x—xi)yi 0. ——(319)
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&
=F'/'(g g),—

gl= (keeps k,p')—/F.

(821a)

(321b)

If we use the asymptotic formula for J+~~~ for large
argument, (320a), becomes identical with (813) if k,
in that formula is replaced by (818). For large nega-
tive $, (820b) gives

As is well known, this can be solved in terms of Bessel
functions of order —,. Normalizing to conform with
(813), we get

~,(.) =-:(-)"~"~ u-"(-:V")+J"(-:~")1,
])0 (820a)

gi(g) = 1(zr/3)1/sz4/3F 1/4] $)1/3+1/3& &(ssz) $[ / )
((0 (820b)

where

TABLE III. The integrai in Eq . (B24a).

—1.0
—0.8
—0.6
—0.4
—0.2

0
0.1
0.2
0.3
0.4
0.5

Exact

0.0078
0.0137
0.0230
0.0381
0.0613
0.0987
0.1194
0.1471
0.1799
0.2186
0.2638

Thomas-
Fermi

0
0
0
0
0
0
C.0211
0.0597
0.1096
0.1686
0.2356

$0

0.6
0.7
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.35

Exact

0.316
0.376
0.444
0.607
0.805
1,038
1.301
1.586
1.887
2.442

The agreement is seen to be quite good for

Thomas-
Fermi

0.310
0.391
0.477
0.667
0.876
1.103
1.349
1.610
1.885
2.400

yl(g) = -', ( k. (-'/3 exp— ik.(g') id*', (822) $p) 0.5. (826b)

where

f(~)(~.—~)«,

—
F 1 /3g

f(&)=F'"~ '(*).

(824a)

(824b)

(324c).

We have de6ned f($) so as to be independent of F.
The lower limit of the integral in (824a) should actually
be the value of $ corresponding to k,p

——0, i.e.,

&
=F'/'(g kposF'), —-(825a)

but 0~0' is so large that, for the interesting values of x,
is very large and negative and hence f(P ) is

negligible small, see (822); hence the integral can be
extended to —oo. The integral in (824a) has been
calculated numerically on the basis of Watson's
tables"; the result for the integral in (824a) is given in
Table III. Ke may compare this with the result of the
Thomas-Fermi approximation which results when we
use (813), (818), and (321a), and replace cos' in
(813) by —',, giving

f (() 1Fl/sk —I 1
$
—1/2 (825b)

=0 if )o(0. (826a)
75 G. N. Watson, Besse/ Functions (Cambridge University

Press, Cambridge, England, 1952).

with k, given by (818), again conforming with the
WEB. In terms of %atson's definitions, ~'

i4 "Hi/3'"(zs) = (2/zr)E'1/3(s), (823a)

(2/%3)(J 1/3(s)+ Jl/3(s)) =&3J1/3(s) —F'1/3(s) . (823b)

In terms of $, (821a), we may write (815)

In fact, the deviation is always less than 10//r'/ from
there on. For )o(0.6, the TF method gives (of course)
too low a density; from 0.6 to 2.0, the TF density is
too high; then it becomes too low again, etc. These
Quctuations of the correct density around the TF value
were noticed and discussed by Kohn and Sham. ' But
the Quctuations are small and may be ignored for our
purposes.

To extract the physical signi6cance of these results,
we must obtain the value of the "force."Wilets' has
given evidence that the potential falls more slowly at
the surface than the density. Ke have confirmed this
by obtaining the potential from our particle density
and the nuclear forces, but these calculations are in-
complete and we therefore take filets' result. He
represents the potential by the Fermi (Woods-Saxon)
formula

V (g+e(r R)/s$ —1- (827)

At go=0, p= ps=0.0106 F '=0.062 pp, (829)

At )3=05, p=p3=00280 F '=0 165po (830)

As we discussed on the basis of Table III, the TF ap-
proximation is valid (within 10jo) for p) pi, i.e.,
whenever the density is more than 17% of nuclear-
matter density. This is a very satisfactory result. The
other result, pa, is the actual density at the point where

"W. Kohn and L. J. Sham, Phys. Rev. 137, A1687 (1963).
"See (817) for factor 2.

with s=0.65 F. We choose Vo to be the potential
energy of a nucleon at the top of the Fermi distribution
at nuclear-matter density, " Vs=57 MeV=1.37 F '.
We identify Ii with the steepest slope of" 2V, viz. ,

F=2V/4s=10. 6 F-'

Using this in (824), and taking po= 0.170 F ', we find
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the TF density goes to zero;, i.e., at the classical turning
point of the fastest nucleon; this ps is 6/z of nuclear-
matter density. These rather low values of p& and p3 are
due to the low value of the "force" F, i.e., to the rela-
tively gentle drop of the potential at the surface. ' It is
this which makes the TF approximation valid.

1 ( df dP)
2im' & dx dx i

(839)

This result follows also from the continuity equation:
The current is

and this should be conserved. This argument is entirely
general. We therefore conclude that generally (even
if the effective-mass approximation is not correct) the
WKB solution (813) may be replaced by

Velocity D-ependent Forces

So far, we have assumed an ordinary potential. We
shall now consider a velocity-dependent potential. For
simplicity, "we take one which permits de6nit. ion of an
effective mass, which seems to be a fair approximation
for the "hole states" in nuclear matter, according to
Sprung' and Dahlblom. " Thus we assume that the
potential of a particle of momentum k at position x is

y(x) = (2v„)'~'y, (E,k', x),

P (x)= Lv.(x)$ '~' cos k,(x')dx'+P, (840)

U(k, x) = V(x)+-,'X(x)k'.
where from Hamilton's equations the group velocity

(831) v, is given by

Then, setting" A'/2M=1, v.(x)= (1/A) (BE/Bk,),s, (841)

V2$+L2(E V(x))+7 (x)Vs)y=0 (832) Inserting into (815) (and setting k= 1)

where we have replaced k' by —V'. To make this
equation self-adjoint, we must replace it by" P(x) = 2'—' v.sdk. sd(k")ass(k. s,k', x)

V t:(1+&)'&+2(E—V)~t =0. (833)
d(k") dE@'(E,k', x), (842)

d/1 d$) f k "i—I+I 2E—2V——1~=0~

dxkm* dxi ~*)
(834)

We now solve (834) by the WKB method, setting

y=F(x)e*'~& ~ (835)

with F and n real. Inserting into (834) gives from the
real part, neglecting F"/Fg',

n"=2m'(E —V) —k', (836)

We may introduce the effective mass by 1+)=1/m*.
It is easy to show that (833) is self-adjoint. We use
(87) and have

where E(k') is the energy corresponding to a tota/ wave
number k=k' in the interior of the nucleus. The ex-
pression (842) is very satisfactory because E and k' are
the parameters which determine the wave function gs.

In the region where the wave function ps is given by
the simple WKB formula (840), the formula (842)
yields easily the normal Thomas-Fermi result (816).

We now consider the nuclear surface, i.e., the neigh-
borhood of the classical turning points. Obviously, only
the states of high E and low k' will have significantly
large Ps, the others will have decayed exponentially.
We are therefore dealing with only a narrow range of
energies, and. it is therefore permissible to expand the
local wave number,

which is a familiar result (prime=d/dx, except in k').
From the imaginary part,

k'(E x) =2E—2U(k, x), (M3)

so that
2F'/F = d inn'/dx+ —d 1nm*/dx,

F=const&&(m*/n')" =const&&v, '"

in powers of E Es. Moreover we a—ssume, as in (817),
that near the turning point, k' is linear in x. Finally,
also in analogy with (817), we choose x=0 to be the
point where k'(E&) =0. Then we may write'

where v, is the velocity in the x direction. ks(E x) =2~'(E—E,)+Fx, (844)

78 Already many years ago, this was pointed out by Swiatecki.
He remarked incidentally that the force on a nucleon at the sur-
face of a nucleus is about the same as the force of the earth' s
gravity on a man (75 kg weight).

We have also considered the case of exchange forces, as in
Sec. 4, and obtained a similar result. But the argument is com-
plicated, and some approximations had to be made.

where m* is the effective mass near x=o and near

"It would be more accurate to expand around a somewhat
lower energy than Ep, to represent the mean energy Lor mean
k ', see (B9)j of the states which contribute to p. This slightly
changes the best definition of m* and F but nothing else.
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E=E&, delned in the usual way. Ke introduce

k, '(E,k', x) =k'(E,x) —k", (845a)

APPENDIX C: CALCULATIOH OF
MIXED DENSITY

k,P= k '(E,k', 0) =2'(E—Ep) —k" (845b)
Lin has calculated numerically the mixed density

(5.2). He use a potential

k,'= k,P+Fx. (845c)

Then we may introduce k& instead of E as the second
integration variable in (842), thus

V= —Vo(1—e ' )', x)0
V=O, ~&0

(C1)

p(x) =m-'(m*) —' d(k") d(k.P)yg
2

&& (k.g,k', x), (846a) 6=).2 F~ (G2)

which is patterned after the density distribution
(8.23). He used.

Vo=40 MeV,

with
k '= 2m*(E(k")—Ep)—k". (846b)

Ep ———8 MeV.

This lower limit is unimportant. Now P2 must be
normalized by (840) in the region of sufficiently large
x where the "ordinary WEB" is valid. Since v, =k,jm*,
this normalization differs from (813) exactly by the
factor (m*)'"; thus we have

(~+)1/2y

This exactly eliminates the factor (m*) ' in (846a).
@~ we have the same normalization and differential
equation as in (813) ff. so that we may use the old
result (820). Interchanging then the order of integra-
tion in (846a),

p(x) =7r-' d(k.P) d(k")yP(k. g,x)

d(k ')(—k. ')qh'(k, ,x), (84»)

which is identical with (815) if we set

&.i'= &.o'—&so'. (848b)

Hence the case of a velocity-dependent force is re-
duced to the earlier case of an ordinary, velocity-
independent force, if only we accept the approximation
(844) in the surface region. The variation of m~ with x
in the interior does not rnatter, only its value near
@=0—and even this drops out in the final answer

(848a). Moreover, the effective-mass approximation
(844) itself needs to be valid only in the neighborhood
of Ep and S=O.

The earlier conclusions about the validity of the
%KB for p&0.i7po are thereby justi6ed in this very
general case.

The value for e is that derived by Lin from electron
scattering, Kq. (9.2); perhaps a larger value (by about
20%) should be used. according to Wilets' remark

Lsee below Eq. (826b)j.EI was taken to correspond to
an average real nucleus, rather than nuclear matter. Vo

might have been chosen larger, about 50-60 MeV, to
correspond t~ the potential energy of the most energetic
nucleon inside a large nucleus t cf. above (82/) j.

Lin calculated the wave functions P(x), Kq. (6.8),
by direct solution of the Schrodinger equation in the
potential (C1), for various values of

E,=E—(A'/2M) (k„'+k, ') (C3)

between Vo and Ep, in intervals of 4 MeV. The calcula-
tion of p(rq, r2) from (5.2) is then straightforward. As

stated in (6.9), the mixed density is a function of the x
coordinate of the center of mass, X=~(x~+x2), and of
the components of the relative coordinate r~—r~ per-
pendicular and parallel to the surface. All lengths are on
the scale of a in (C1). The results are plotted in Figs.
3(a) and 3(b), and discussed in Sec. 6 below Eq. (6.11).
It is most remarkable that, for given X, p(r~, r~) in fact
depends almost exclusively on the distance

~
r&—r&

~
and

not on the direction of the vector r~—r2, in spite of the
fact that the wave functions (6.8) depend on x and y, z

in entirely different ways. Points corresponding to dif-

ferent values of x=x& xf& are —marked. by different

symbols on Figs. 3(a) and 3(b), and it is seen that all
the different symbols form one continuous curve. In
fact, this statement is more accurate than the agreement
with the Slater curve (6.4). It would, accordingly, be
possible to de6ne a more accurate formula for p as a
function of r, but this would depend on the special
potential (C1) assumed, and the simplicity of the Slater
formula would. be lost.


