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Bulk and Local Elastic Constants of Imperfect Crystals~
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The inQuence of point defects on the elastic properties of crystals is investigated by means of the T-matrix
method. Both bulk and local elastic constants are expressed in terms of the local changes of central and
noncentral force constants. The local elastic constants are also obtained by means of a simple phenomeno-
logical model. Numerical applications are given for the Ii center and some weakly bound impurities in
alkali halides. The stress coeKcients for either ultraviolet or infrared absorbtion bands as corrected for
local strain effects are reported.

I. INTRODUCTION

I 'HE inQuence of defects on the elasticity of crystals
has been the subject of many theoretical investi-

gations. The early works concern the bulk elastic
properties of imperfect crystals, and the problem was
approached in a phenomenological way, based essen-
tially on the continuum model. ' ' More recently, the
use of stress4 ' and ultrasonic7 techniques in the experi-
mental investigation of Inany defect-induced response
functions has made it necessary to have a detailed
knowledge of the local elastic behavior in the region
around the defect, where it is well known that the
discrete structure of the lattice plays an essential role.
Starting from the recent development of the lattice
dynamics of imperfect lattices, we give here a micro-
scopic evaluation of the bulk modi6ed elastic constants
(c;s, in Voigt's notation) in terms of the defect parame-
ters, such as the local changes in central and non-
central force constants, and of the T matrix at zero
frequency (Sec. II). The attention is focused on defects
in alkali halides. The T-matrix method includes in a
natural way the peculiarities of the discrete lattice
structure. It allows us to evaluate not only the vibra-
tional properties of a defect, but also the local strains
around the defect as produced by a given external
stress' (Sec. III). We emphasize (Sec. III) that the
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quantity which has physical meaning around the defect
is actually the local strain and not the local elastic
constant. However, because of the extensive use that
has been made of the latter concept in the interpretation
of the experimental data, we think it useful to present
a simple phenomenological approach for the local
elastic constants c;~ themselves. The local elastic
constants introduced in such a way enable one to 6nd
the local strain as deduced by the T-matrix approach.
Numerical applications are reported (Sec. IV) for P
centers and weakly bound impurities in alkali halides,
and are discussed in connection with recent experi-
mental data.

II. BULK ELASTIC CONSTANTS

Up to the first order in the fractional concentration
p of defects, the dispersion relation of randomly
distributed defects of the imperfect crystal reads'

~ P=~ ts+P(ail T(~ a+so+)
I tU), (1)

where co~, and ~„are the host-lattice and imperfect-
lattice eigenfrequencies, respectively, for wave vector q
and branch index j.

In Ref. 10 we have given the definition and properties
of the T matrix for the system constituted by a substi-
tutional defect and its six nearest neighbors in alkali
halides. As usual, we describe this 21-dimensional system
by means of the set of 21 symmetry coordinates (as
given in Ref. 9) which transform according to I' t, I'ts,
r»', r»', r„, and F», irreducible representations
(irr. rep. ) of the Os point group. In the present problem
we wish to treat symmetric strains only. Then we shall
use the symmetrized combination for the T matrix,
i.e., T= ,'(T++T ), where -the subscript + or
denotes the sign of the eventual rotational component
of the strain. As this component transforms according
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to the F15' irr. rep. , it turns out that

TmLE I. Group velocities along symmetry directions. ' of Ti & are involved in Eqs. (6); they are' "
(qjI T""'

I «j) = —(~M+/M)~22'

(q LA
I
T'"'

I q I A) =
g

2

3M 1+X/ft

(q,I Ai T&r"&i«,LA)

2 1 P 1.'4c,'+c.p.

)33II 11K/f12(

gee tfOO +C.P.(2) 2
«,LA

I
T&"25'

I q LA) =-
M 1+X'/f25'

LT+'""'+T-'""'jiqj)=o,
go

so we shall not consider any F»' component in the
symmetrized T matrix. 1 A,

'
00TA T&~»') 00TA = 2

Consider now the group velocities for the imperfect 2M 1+V/f 'go q

lattice
v„=Bio„/c&q (3) (qOO, TAI T&r»

I qOO, TA)

It can be shown that just three independent elastic
constants, i.e., c11, c», and c44, are required to give a
complete account of the group velocities in any direc-

tion, according to the usual relations. "In Table I these
relations are given for the symmetry directions; p
denotes the density of the imperfect crystal which is

related to the host-lattice density p by

p= p(1+phMg/M), (4)

pt7 '=ps& 'I&+p(i)/4)o& )(«2 IT(toe+20+) Iqj)
+p(aM, /M) j, (5)

where M=M++M is the mass of the host-lattice
unit cell, and 635+ is the local change of mass; the

upper (lower) sign is to be used in (4) when positive

(negative) defects are considered. To first order in p,
we can write

= (ttoo, TAI T&r"&
I goo, TA) =0,

(qji Tl"»& Iqy) =0(q'),

where by c.p. we denote cyclic permutations. «X and
—,'X' are the local changes of the nearest-neighbor
central and noncentral force constants, respectively.
Note that the F» symmetry coordinates transform like
the components of a vector, so that they must not
enter the elastic strain; indeed the F15 matrix elements
cancel out with the change-of-density term LEqs. (4)
and (5)j.Also, the I"25 term Lwhich is O(q') j does not
contribute to the elastic constants. These facts are
consistent with the group-analysis assignment of
irreducible representations to the components of the
fourth-order elastic tensor:

c» may contain F1, F2, F» irr. rep. ,

c12 may contain F1, F2, F» irr. rep. ,

c44 may contain F1, F12, F25' irr. rep.

where v~; is the host-lattice group velocity. From
Table I the bulk elastic constants are seen to be related

tO (Vst)s~s by

C11 PV 100,LA )

&4= P& 10O,YA,

C12= 2pV'110, ~A —C11—2C44.

(6)

Consider now the components T& ) of the symmetrized

T matrix which transform according to the irr. rep. F.
When we consider the limit qo =—2m.roq~0, where ro

is the interionic distance, only a few matrix elements

Note that F2 irr. rep. does not appear in our defect
~odel. ' In Eqs. (7), fl, f», and f»' are the effective
force constants for the F1, F», and F»' modes: They
are de6ned in terms of the zero-frequency Green's
functions g„+(0), and can be approximately related to
some macroscopic quantities (in our case the host-
lattice elastic constants c;se), in analogy to what we have
done for the F15 modes in Ref. 10. We obtain

f1=M+I 414+(0)+2/5+(0)) '—4rs(cti +2clso),

f12 M+584 ( ) 85 (0)3 —4 ll( 11 C12 )
f25' ——M+Lcts+(0)+2/5+(0)g '—Srpc44'.

The definitions of g„+(s) are given in Ref. 12. Use of
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Eqs. (5)-(7) gives

pX) 1 2
Cll=c» +

6ro&1+Xlfl I+X/f»&

pX 1 1
C12 C12 +

6r, I+a/fl I+a/f»i
pX'

C44=C44 j
4rp 1+X'/fop'

(9)

The change in the bulk modulus hE= 3l4l(1/p) (where

P is the compressibility) turns out to be

AK=
2ro I+&/fi

III. LOCAL ELASTIC CONSTANTS

The problem of calculating the local strain around a
defect, as produced by an external stress, is similar to
the elastic-relaxation problem around the defect itself
without external stress. According to the Green's-
function method used by Elliott, Krumhansl, and
Merrett, ' the displacement Geld u can be written as

where u' is the host-lattice uniform displacement Geld,
C is force-constant tensor matrix for the host lattice,
and y is the change of C due to the defects. We consider
a single defect; then group analysis greatly simplifies the
calculation of u for each irr. rep. When we are interested
only in the nearest-neighbor displacement, say I, we
can work in the subspace of the perturbation y and get
in a trivial way the results for each irr. rep. involved:

The above equations solve the local problem. We
give now a simple phenomenological approach, which
can be alternatively used, particularly when we are
concerned with extended perturbations. Denote by 8
a suitably chosen volume associated with the one-defect
perturbation q, and assume the perturbed strain Geld
o,z(l) to be uniform inside 11 and equal to o for each
defect, while it equals e in the remaining lattice, i.e., in
the remaining volume X(o—p8) = V(1—p8/o). V is the
crystal volume, and @=V/E=2rpo the cell volume.
This assumption enables us to write the bulk average
strain o(1'), which is defined by

(o +o„„+o.,)(c +2c )—=3 'i'c(r )c(r ),
(o oo„)(c»—c»)=—2 '~'o(r» rhombic)c(r»),
(2ozx oyo og4) (Cll C12)

—=6 '~'o(r12 tetragonal)c(I'»),

o oc44: o(roo', z)c(r»') .

(15)

Defining the local elastic constants c(I') in such a way
that the equilibrium condition for the lattice reads

(16)

for each r, from Eqs. (14) and (16), to first order in p,
we obtain the following nonlinear relation among c, c,
and c:

c(r) =co(r)+p(e/o)! c(r)—c'(r)1C'(r)/c(r). (17)

for each irr. rep. I' in terms of the external stress 0.,„~,
in the following way:

(I')= (1—pv/o) '(r)+pv/o (I'). (14)

For each irr. rep. we specify elastic constants and
strains as follows:

+nn +nn I'I & & I'y

1+X/fl

(N.„/N„„')r„——(o/oo) r„——
1+h/f»

(12)

In the particular case of a substitutional impurity in a
NaCl-type lattice with short-range perturbation p, we
can associate with every defect a volume 8 with the
shape of an fcc Brillouin zone, centered at the defect
site and with the nearest neighbors at the centers of the
six square faces. For this choice we have 8=2v. Then
the use of Eqs. (8), (9), and (17) gives

u~ l &p& jt

N.p(/) op„o(l)I
(13)

where x(l) denotes the lattice vector for lth ion.
oo (I) is the perturbed strain field; oz (l) = op when I is
one of the ions involved in the defect perturbation.

(I ./I .') r» = (ol o') r» =
1+X'/ f24'

where we have introduced the notations e and &P for
the strain tensors at the defect and in the perfect
lattice, respectively. They are connected to the dis-
placement field by the usual relation

c(r 1)—c'(rl)='X/4ro,

C(r12) c (I 12):X/4rp
c(roo') —c'(roo') —X lgrp

(18)

c11 c»p+ X/4r p, —
Cy2=cy2 )

p

C44—c44'+ X'/8ro.

(19)

In the case in which the host-lattice elastic constants
satisfy the Cauchy relation, we note that the introduc-

These expressions lead to the same result for the local
strain as given by Eqs. (12). The Voigt components
of the elastic tensor are then



TABLE II. Local elastic constan ts, force constant changes,
and stress coefhcients for some uv and IR active centers, at O'K
and P'=0. f* is the j.'15 effective force constant for the host
lattice. A, B, and C are given in eV for uv and in 10"sec ' for IR
absorption peaks.

System

uv: NaC1: (F)
KC1:(F)
KBr.' (F)
KI: (F)

Cll C11
10"dyn cm ~

0.352 0.575
0.357 0.486
0.344 0.419
0.258 0.338

0.8
~0.6
~0.4
~0.5

A B C

3.12 0.10 0.89
2.17 0.31 0.60
2.13 0.22 0.32
1.84 0.25 0.37

IR: KBr.'Li+
KI:Ag+

0.227 0.419
0.246 0.338

0.985 9.05 5.88 2.71
0.933 4.25 4.64 5.03

tion of defects mak. es the Cauchy relation no longer to
hold in the whole crystal as well as locally. Notice
also that the local c's are just equal to the elastic con-
stants of our impurity —six-neighbor system, whose
nearest-neighbor central and noncentral force-constant
changes are ~X and ~~X', respectively. This shows that
Eqs. (19) could have been directly obtained in a very
trivial way.

It is perhaps worth noting that the equivalence
between the expressions (12) and (18) comes from the
particular choice 8= 2e. If we had made another
choice, a diferent result would have been obtained.
This is due to the fact that in Eq. (12) the strain refers
to nearest-neighbor ions, and this is consistent with
the choice u=2e in (18). With another choice of v,
Eq. (18) would give the average strain inside this new
volume.

IV. NUMERICAL APPLICATIONS

Recently, the electron-phonon coupling of F centers4
and the local anharmonicity of impurity ions'' in
alkali halides have been investigated by Ineans of stress
experiments on their respective ultraviolet uv and
infrared IR resonant absorption bands. Of course, the
quantitative interpretation of these experiments needs
a knowledge of the local strain around the defect. How-
ever, as the local strain depends on the local changes of
force constants, which are unknown in practice, it seems
hard to deduce it starting from first principles. We have
proceeded in the following way: under the simplifying
assumption V=0, we have 6rst 6tted X to the available
optical data, and deduced the values of c;, from Eqs.
(19).Then the values of c;, so deduced have been tested

by evaluating some other properties of the defect
and by comparing them with the experimental data.

For the F center we have 6tted X to the Raman
data"; we have then obtained from the stress-experi-
ment data4 the correct values of the stress coefFicients
A, 8, and C, which are dined in Ref. 5 (although in a
different context), and which now play the role of
electron-phonon coupling constants in the optical transi-
tion."By using these values of A, 8, and C, given in
Table II, we obtained the theoretical temperature-
dependent half-width and Huang-Rhys factor of the uv
absorption band in excellent agreement with the ex-
perimental data; these results are extensively discussed
in Ref. 13. For the systems KBr:I.i+ and KI:Ag+ we
have fitted X to the IR absorption peak" due to the
low-lying resonant mode. ' In the case of resonant
modes, the stress coefficients 3, B, and C play the role
of anharmonic coupling constants of the resonant
mode itself with the continuum modes of the lattice.
Again we have derived the values of A, 8, and C, also
reported in Table II, from the stress-experiment data
of Nolt and Sievers"' as corrected for local-strain
effects on the basis of Eqs. (19).In this case also, quite
good agreement was found between the values in
Table II and the values of A, 8, and C as predicted by
lattice-dynamic calculations based on the quasi-
harmonic approximation for the modification of the
resonance condition induced by an external stress.
Notice that the relation 2+C=28 given in Ref. 16
is fairly well satisfied by the values in Table II, while
it is not satisfied when A, 8, and C are not corrected
for local-strain e8ects.

In Table II the local elastic constants and the values
of X as obtained from the above-mentioned 6tting
procedure are also reported, in the case A.'=0 and for
zero absolute temperature.
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