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An analysis of three- and four-atom interactions of exchange type in first and second orders of perturba-
tion theory is presented, on the basis of an effective-electron model with a Gaussian distribution of charge.
The results are then applied to a determination of the three- and four-atom components of the crystal
energy for close-packed rare-gas solids. It is found that both the three- and four-atom interactions favor
a fcc crystal structure. The magnitude of the four-atom energy relative to the three-atom component for a
given atomic species and a given crystalline configuration is essentially a function only of the ratio be-
tween the second- and first-order pair interactions for nearest neighbors in the solid. For the most probable
range of values of this ratio, the four-atom crystal energy is relatively unimportant. The sum of three- and
four-atom crystal energies is found to vary little with the ratio. Calculated values for the stacking-fault
energy in solid argon and xenon agree reasonably well with those obtained from observations on thin films

of these solids.

I. INTRODUCTION

HE possible importance of simultaneous inter-
actions between more than two atoms or ions for
the interpretation of macroscopic properties of dense
media (solids, liquids, and compressed gases) has in
recent years become a subject of considerable interest
in the literature. We have analyzed in previous publica-
tions the problem of crystal stability and polymorphism
for molecular and ionic solids along these lines, on the
assumption that three-atom and three-ion interactions
of exchange type in these solids constitute the essential
structure-sensitive short-range component of the crystal
energy. The solids considered were those formed by
rare-gas atoms,! alkali halides,? and II-VI and III-V
compounds,? as well as those formed by ionic compounds
of composition 4X,* All ions considered are iso-
electronic with rare-gas atoms. In adopting an effective-
electron approximation with a Gaussian charge dis-
tribution for the electrons and in carrying out a per-
turbation treatment for these interactions in first and
second orders, it was found that all observed crystal
stability relations can be given a quantitative explana-
tion. General stability rules were formulated for the
occurrence of each of a large number of possible
structures.

As for a general classification of many-particle (atom
or ion) interactions, the above exchange forces refer to
the short-range part of the many-atom or many-ion
potential. These forces occur already in the lowest orders
of perturbation theory, both for atoms or ions with
closed and with open shells of electrons in the ground
state. In case of open-shell ions, the so-called ‘“‘super-
exchange” forces in solids of certain d-electron oxides
belong typically to this category. In addition to these
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many-particle interactions, also those which are not of
exchange type occur in principle. The best-known
example is the classical induction energy for an atom in
a field of electrostatic point charges. Further, the third-
order so-called “triple-dipole” interactions suggested by
Axilrod and Tellers® and by Kihara” are representative
for this class of nonexchange, long-range, many-atom
forces. Such long-range interactions between atoms are
expected to dominate over the short-range components
in case the density of the system is relatively low, e.g.,
in the analysis of third virial coefficients for gases.

The effect of (long- or short-range) three-atom inter-
actions on different properties of dense rare gases has
recently been discussed by many authors. Among these
we mention, in particular, an analysis of solid-state
properties of argon by Gotze and Schmidt,® by Rossi
and Danon,® and by Klein and Munn'?; of the stacking-
fault energy in solid argon by Plishkin and Greenberg"
and by Bullough, Glyde, and Venables'?; of the vacancy
energy in solid argon by Glyde® and by Peterson,
Batchelder, and Simmons!; of the third virial coefficient
of argon by Graben, Present, and McCulloch'® and by
Sherwood, De Rocco, and Mason'®; and of the isotopic
separation factor of liquid argon by Rowlinson.'” Dis-
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cussions of more general aspects of many-atom contribu-
tions to the intermolecular potential in dense media
are given in recent review articles by Mason and
Monchick,'® and by Sinanoglu,'® as well as in a forth-
coming book by Margenau and Kestner.?* A particular
component of many-atom forces of the charge-transfer
type has been analyzed by Murrell, Randi¢, and
Williams®* in connection also with rare-gas crystal
stability.

A few words should be said concerning the informa-
tion on many-atom interactions which can in principle
be obtained from an analysis of various properties of
dense media and from comparison with experimental
data. The analysis of most properties directly involves
two-body as well as many-body components of the
energy; a separation of many-atom components neces-
sitates, therefore, accurate knowledge of the “pure”
pair potential between the atoms. Generally, however,
the assumed pair potential is already an ‘“effective”
interaction between the atoms, determined from a
combination of low- and high-density data (e.g., from
second virial coefficients together with solid-state
properties). Consequently, the analysis of such data
does not provide a direct source of information regarding
many-atom interactions. To this category belong third
virial coefficients, isotopic separation factors in the
liquid, vacancy energies in the solid, etc. Although the
analysis of these data appears to indicate that many-
atom interactions must be explicitly taken into account
for their interpretation, details of the many-atom
components are difficult to obtain in this manner.
Notable exceptions are data on the stacking-fault
energies in the solid and those on crystal stability,
where many-atom components of the interaction play
a more direct role. For the following analysis we will,
consequently, limit ourselves to crystal stability and
stacking-fault energies.

The analysis of crystal stability which we have
previously given was based on a cluster expansion for
the crystal energy of which, besides the pair inter-
actions, only three-particle components were considered.
Although it may be expected that physical significance
is attached primarily to the three-particle term, the
convergence properties of the series should be in-
vestigated. Following our formalism, Margenau and
Stamper® have undertaken a preliminary analysis of
four-atom exchange interactions for certain isolated
configurations of four rare-gas atoms in the solid, in
first-order perturbation theory. They find that for a
tetrahedral configuration of nearest-neighbor Ar and Xe
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atoms the four-atom energy amounts to 179, of the
total triplet interaction and that it is of opposite sign.
For a square configuration, on the other hand, first-
order four-atom interactions are of the same magnitude
as the triplet energy, and again of opposite sign.

In this paper, we present an analysis of three- and
four-atom exchange interactions in first and second
orders of perturbation theory, on the basis of an
effective-electron approximation with a Gaussian dis-
tribution of charge. On the same basis, we will estimate
the stacking-fault energy in solid Ar and Xe.

II. FORMALISM

We consider an arbitrary configuration of three rare-
gas atoms (abc) or of four such atoms (abed) ; each atom
is characterized by an effective-electron charge density
p(r) of Gaussian form,

p(r)= (B/m')* exp(—p%?), €Y
where 7 is the distance from the effective electron to its
nucleus and where 8 is a characteristic parameter,
different for different rare-gas atoms. Values of the
parameter 3 for rare-gas atoms are determined in such
a way that they fit the long-range (van der Waals)
part of a pair potential ; typical values are 0.623 A~ for
Ar and 0.454 A1 for Xe. The ground-state wave func-
tion ¢(r) for each isolated atom is the positive square
root of Eq. (1). A perturbation calculation including ex-
change is then carried out to determine the interactions
between the atoms in first and second orders; the
zeroth-order wave function is a Slater determinant, i.e.,
for a configuration (abc) of three atoms

Wo(abe)=[31(1—Aaps’) I det{a(1)$5(2)$:(3)}, (2)

where 1, 2, and 3 denote the effective electrons and
where Agp? is expressed in terms of the overlap
integrals Ags, etc., for the different pairs of atoms.
In the case of a four-atom configuration (abcd) we have,
correspondingly,

Wo(abed)=[4!1(1—Agpea?) ]2
Xdet{p.(1)¢s(2)p:(3)pa(4)}, (3)

with Agped® again expressed in terms of overlap integrals
for different pairs. The perturbations H s’y Haped' and
the unperturbed Hamiltonians H,5.?, H,3.¢® can be
written as an additive sum over pair contributions;
their operations on symmetrized functions are defined
elsewhere.?

The formal expressions for the first- and second-order
energies of interaction have been given previously';
their derivation in case of exchange interactions is
presented in detail in Ref. 23. To evaluate the second-
order energy, use is made of the Unssld averaging pro-
cedure; then the second-order energy contains the
expectation value of the square of the perturbation
Hamiltonian Hgpe' or Hgped'. The zero-order wave
functions are those of (2) and (3), respectively.

% L. Jansen, Phys. Rev. 162, 63 (1967).
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Since the unperturbed wave functions are of Gaussian
form, all occurring many-center integrals can be readily
evaluated, following methods developed recently by
Zimering® and by Roberts? In either order, the
analytical expression for the interaction energy is a sum
of contributions depending upon the distances between
two atoms, and between three atoms simultaneously,
whereas for any configuration of four atoms an addi-
tional term appears, involving simultaneously the
coordinates of all four atoms. These different terms
define what we mean by two-, three-, and four-atom
components, respectively, of the perturbation energy.

Given any triplet (a¢b¢) or quadruplet (ebcd) of atoms;
we denote the sum of pair interactions by E1©@ in first
order and by E,® in second order, the three-atom
component by AE; and AE,, respectively, and the four-
atom interaction term by A4E; and AsE,. Of direct
interest are the relative many-atom energies AE/E,©,
AE,/E,® (three-atom relative to pair interactions) and
ALE/E1 @, AyEo/ E@ (four-atom relative to pair inter-
actions). Because these ratios are found to be small
compared with unity for any triplet or quadruplet, we
may in the second-order expressions AE;/E,©® and
ALE,/E,® cancel the Unsold average energies in
numerator and denominator, to a good approximation.
This has the advantage that the Uns6ld energies need
not be known or estimated.

The reasons for determining relative, instead of
absolute, many-atom energies are, firstly, because the
relative quantities are found to vary in a simple way
with the geometry of the configurations considered;
secondly, relative quantities are less dependent upon
the details of the approximations used. In particular,
we have found that different types of perturbation
expansion for exchange interactions yield approximately
the same results for relative many-atom energies; these
results will be published separately.

Explicit expressions for the three-atom first- and
second-order energies for an arbitrary triplet (abc) have
been given previously!; they are not reproduced here.
The analytical expressions for the first- and second-
order four-atom interactions for an arbitrary quadruplet
(abcd) are of enormous complexity, although their

%'S. Zimering, J. Math. Phys. 8, 1266 (1967).
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derivation is straightforward and no new types of
many-center integrals occur beyond those encountered
for the three-atom energies. It is not feasible to write
these terms in explicit form in the context of the present
paper (the first-order expressions are reproduced ex-
plicitly by Margenau and Stamper®). All terms are
linear combinations of seven types of basic integrals
listed by Zimering?; we refer to this article for further
details.

We now describe the method used for evaluating the
three- and four-atom components of the crystal energy
for rare-gas atoms in the (fcc) and (hep) configurations.
First, for the three-atom energy, we select any triplet
(abc) and write the total (first- plus second-order) three-
atom energy AE as AE=AE;+AE,, or, relative to the
total pair energy, E@=E;@+E,®,

AE AE; E©® AE, E,©

1
- T .
E® E,0 EO4LE,0 FE,0 FO64LEO0

Let us write E;@/(E,@4-E;®)=—p, where p>1;
otherwise rare-gas crystals would not exist. Substitution
yields

AE AEll P [AE, AEl:I

E® E© ' 5 1lE0 EO
AE, | 1 rAE, AEl
= . 4
E®  p—1L 0 El(o):l @)

Except for the quantity p=|E,®/E;©@|, the relative
total three-atom interaction AE/E® is herewith ex-
pressed in terms of the relative first- and second-order
three-atom quantities AE;/E1@ and AE,/E,©, for an
arbitrary triplet of rare-gas atoms. It follows from (4)
that if AE,/E,©>AE;/E;®, the value of AE/E® is
larger than AE,/E,©@; if AE:/E,®<AE;/E:©®, then
the value for AE/E® is smaller than AE,/E,®. With
increasing p, on the other hand, AE/E® approaches
AE,/E,©,

An accurate determination of the values of p for
different rare-gas crystals cannot be made. If E,® can
be identified with the attractive part of an empirical
pair potential, E;® with its repulsive part, then

0.25} 8E;, /EY, x
AE/E®

F16. 2. Relative first-order three-
atom energy AE;/E,©, second-
order three-atom energy AE./E,©,
and total relative three-atom
energy AE/E® for isosceles tri-
angles of Xe atoms formed by a
central atom and two nearest-
neighbors (BR=2.0), as a function
of the opening 6 at the central
atom. For curves IIT and IV the
values of p=|E,®/E,®| are 3
and 2, respectively.
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Tasik I. Relative first- and second-order four-atom energies AsE1/E1 @ and A4Es/E,@, as a function of R, for a tetrahedral and™a
square configuration. Also given are the ratios A4E1/AE; and A4E,/AE; of the four-atom energies relative to the total three-atom energies.
Values in parentheses are the first-order ratios as determined by Margenau and Stamper (Ref. 22).

Tetrahedron Square
BR AE/E©  AEs/E,®  AEi/AE:  AE3/AE, AEV/Ee®  A4ER/Es®  AEi/AE;  A4Es/AEs
1.0 0.0716 0.1093 —0.234 —0.197 0.2732 0.5287 —1.004 —1.221
1.5 0.0847 0.1088 —0.210 —0.195 0.2674 0.3812 —1.068 —1.364
2.0 0.0744 0.0836 —0.176 —0.167 0.1771 0.1992 —1.135 —1.740
(—0.176) (—1.198)
24 0.0564 0.0591 —0.138 —0.133 0.1058 0.1050 —1.132 —2.430
(—0.138) (—0.944)
3.0 0.0332 0.1473 —0.077 —0.076 0.0495 0.6567 —0.942 —22.960

E;®/E,®=—%s for a Lennard-Jones (6,5) potential
at nearest-neighbor distance in the solid. In particular,
for s=12 we would conclude that p=2, but this value
serves only as a first estimate. In Figs. 1 and 2 we
present the results for AE/E:©, AE,/E,®, and
AE/E® for isosceles triangles of Ar and Xe atoms in
the solid, as a function of the opening angle 6 at the
central atom. The two remaining atoms of the triplet
are at nearest-neighbor distance R from the central
atom. The values of the dimensionless parameter SR
are 2.4 (solid Ar) and 2.0 (solid Xe). In both cases,
AE/EW is calculated for p=|E,@/E,®|=2 and 3 to
illustrate its behavior as a function of . The values for
the relative first- and second-order three-atom energies
were obtained using the methods of Zimering and
Roberts for the evaluation of the three-center integrals,
whereas previously! asymptotic series expansions were
employed. Qualitatively, the results are quite similar; in
particular, as shown in Ref. 1, a 6 dependence as
exhibited by AE/E® favors the fcc configuration for
rare-gas crystals.

We follow a similar procedure for the first- and
second-order four-atom interactions. For an arbitrary
quadruplet, the total (first- plus second-order) four-
atom energy A.E can be written as

AE AME E© LAAyEz E,©®
EO  F,0 F,0 4,0 ' Ey© F,04+F,0

where now E;9, E,@, and EQ=E O+ E,® are the
first-order, second-order, and total pair energies, respec-
tively, summed over all pairs forming the quadruplet
considered. The next step consists of introducing a ratio
p'=|E,®/E;®|, after which AE/E® can be ex-
pressed as

AME  AEy | P’ A, A4E1:|
EO go p—1LE,® E©
AE, 1 TAE: ALEy
oy ] ®
B0 p—1LE,0 EO

in complete analogy with the corresponding Eq. (4) for
the relative three-atom energy AE/E,

To illustrate some general characteristics of four-atom
interactions, we consider first the results for a tetra-

hedral and a square arrangement of atoms; this allows
a comparison with the first-order results of Margenau
and Stamper.?? In Table I the relative first- and second-
order four-atom energies A4E1/E1©® and A4Es/E,® are
given as a function of the dimensionless parameter SR.
To compare these results with the corresponding three-
atom energies, we also list the ratios A4E;/AE; and
ALEy/AE, between the four-atom and the total three-
atom energies of the four triangles which form the
tetrahedron and the square, respectively. For com-
parison with the results obtained by Margenau and
Stamper, their first-order results for A4E;/AE; are
given in parentheses in the table. It is seen that the
agreement is excellent for a tetrahedral configuration;
the differences for a square arrangement are due to the
fact that Margenau and Stamper interpolated graphi-
cally from the curves of Ref. 1, which is not as accurate
as a direct calculation carried out in the present analysis.

It is interesting to note that for a tetrahedral arrange-
ment the relative first- and second-order four-atom
energies are very nearly the same; the four-atom inter-
actions are of opposite sign with respect to three-atom
forces, i.e., they produce a quenching of the many-atom
energy. Their magnitude relative to the three-atom
interactions varies between 8 and 209, for BR between
3 and 1. For a square configuration, on the other hand
the four-atom interactions are of the same order ot
magnitude as those between three atoms and, again,
they are of opposite sign. It should be noted, however,
that AE; and AE, themselves are much smaller for a
square configuration then for a tetrahedron, because of
the different geometry of the triplets involved.

III. MANY-ATOM CRYSTAL ENERGY;
NUMERICAL RESULTS

We now present the numerical results for first-
and second-order four-atom interactions in solid Xe
(BR=2.0) and solid Ar (8R=2.4). The quadruplet
configurations considered are those formed by a central
atom and three nearest or next-nearest neighbors, in a
fcc and a hcp arrangement. Because the number of
atoms in the first shell is 12, in the second shell 6, there
are in total 816 of such four-atom arrangements; taking
redundant quadruplets into account, this number
reduces to 681 quadruplets per atom in the solid. To list
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TasirE II. Number of quadrangles, per atom, for the hexagonal
and cubic close-packed structures of rare-gas atoms. Each con-
figuration (abcd) is defined by the squares of the six distances ab,
ac, ad, bc, bd, and cd. The nearest-neighbor distance is taken as
unity and a is the reference atom.

(ab)?=(ac)?=(ad)?=1

quad./atom quad./atom
(be)2 (ba)2 (cd)? Hex. Cub. (bc)2 (bd)2 (cd)? Hex. Cub.
1 1 1 2 2 1 3 11/3 12
1 1 2 12 12 1 3 4 24 48
1 1 8/3 3 2 4 2 6 12
1 1 3 9 12 1 11/3 11/3 6
1 3 2 36 48 2 3 3 12 24
1 2 11/3 12 2 3 11/3 12
2 2 8/3 6 3 3 8/3 6
1 3 3 18 24 3 3 3 2 8
1 8/3 11/3 12
2 1 1 3 3 1 11/3 17/3 24
2 1 11/3 6 3 3 11/3 12
3 3 1 36 48 4 3 3 6 12
8/3 1 11/3 12 1 5 5 6 24
1 3 11/3 12 2 3 17/3 12
2 5 1 6 12 11/3 3 11/3 24
1 8/3 8/3 18 1 5 17/3 12
2 3 3 12 24 3 3 5 12 48
1 3 5 48 96 8/3 3 17/3 6
3 1 17/3 12 3 5 11/3 12
4 1 5 12 24 2 5 5 12
(ab)2=1 (ac)2=(ad)?=2
1 11/3 8/3 12 1 17/3 19/3 24
1 3/ 4/ 24 48 5 5 8/3 6
3 3 8/3 6 3 11/3 19/3 12
1 5 4 12 24 11/3 17/3 4 12
1 3 19/3 12 3 5 19/3 12
1 11/3 19/3 12 3 5 4 48
3 17/3 8/3 6 1 S5 8 24
1 5 19/3 12 3 3 8 24
11/3 11/3 4 6
(ab)? = (ac)? = (ad)2 =2
4 4 4 2 8 4 19/3 19/3 6
4 8/3 19/3 12 4 4 8 12

these different configurations, we denote the central
atom by ¢, the remaining three by b, ¢, and d, and the
sides of the quadrangle by ab, ac, etc. The configurations
can be grouped together according to the different
values for the lengths of the sides; all lengths are
measured in units of the nearest-neighbor distance R.
In this way, four groups appear: for the first group
(ab)?= (ac)?= (ad)*=1; for the second (ad)*= (ac)’=1,
(ad)*=2 (one of the four atoms in the second shell of
neighbors) ; for the third group (ab)?=1, (ac)*= (ad)*=2
(two atoms in the second shell), whereas for the last
group (ab)?= (ac)*= (ad)*=2 (the three atoms are all
second neighbors of the central one). In Table IT we
list, for each group, the lengths of the remaining sides
(b¢)?, (bd)%, and (cd)? and the number, per atom, of such
configurations in the hexagonal and the cubic structures.

From Eq. (5), the total four-atom energy is computed
by summing over all the 681 quadruplets in the two
crystal structures, hcp and fcc, as a function of the
ratio p’ between the total second- and first-order pari
interactions for each quadruplet. In a similar manner,
the total three-atom energy is determined from (4), as
a function of the corresponding ratio p, summed over all
the 50 nonredundant triplets per atom, formed by a
central atom in either structure and any two of its 12
nearest neighbors. In performing these sums, we con-
sider, in first approximation, only pair interactions
between nearest neighbors of the quadruplet or triplet.
The total pair interaction between nearest neighbors in
the solid is approximately equal to —e, the depth of the
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TaBLE IIT. Total three- and four-atom energies Az and A4 per
atom, in the hcp and fcc configurations for solid Xe (8R=2.0) as
a function of p(=2’). The values A3, A4, and Az+Asare relative to
the total pair energy per atom, which for a Lennard-Jones (6,12)
potential is equal to —8.4¢, where — e is the depth of the potential
well. The variable parameter (=) measures the absolute ratio
| E:®/E;®]| for a pair of nearest neighbors in the solid.

Hexagonal Cubic
p(=P,) Az Ay Asz+Ay Az Ay As+Ay
1.8 0.506 —0.264 0.242 0.512 —0.166 0.346
1.9 0.449 —0.189 0.260 0454 —0.091 0.363
2.0 0.402 —0.129 0.273 0.407 —0.031 0.376
241 0.365 —0.080 0.285 0.369 0.018 0.387
2.2 0333 —0.039 0.294 0.338 0.059 0.397
2.3 0307 —0.005 0.302 0.311 0.093 0.404
24 0.284 0.025 0.309 0.288 0.122 0.410

pair-potential well. Then E® for a four-atom con-
figuration is just a multiple of —e, where the coefficient
can be determined directly from Table II, whereas for
each triplet E@= —3e for an equilateral triangle and
—2¢ otherwise. In this approximation p’=p for all
configurations, the parameter denoting just the absolute
ratio of second-order over first-order interactions for a
pair of nearest neighbors in the solid. The influence of
further neighbors of a central atom can also be taken
into account, leading to values of p’ and p which are
different for different -configurations. We have used
different values for the ratio of second- to first-order pair
interactions for first and second neighbors in the solid;
however, the effect on the many-atom crystal energy
was found to be negligible.

In Tables IIT and IV the results for the total three-
and four-atom energies Az and A4, per atom, in the hep
and the fcc configurations are given for solid Xe
(BR=2.0) and solid Ar (BR=2.4), relative to the total
pair energy, per atom, of the crystal. If we adopt a
Lennard-Jones (6,12) potential then this quantity is
equal to —8.4 ¢ per atom, where —e is the depth of the
pair-potential well. The variable parameter is p(=p"),
measuring the absolute ratio | E;®/E;®| for a pair of
nearest neighbors in the solid. For solid Xe, we select
a range of values for p between 1.8 and 2.4 as being most
probable; for solid Ar, the results appear to be quite
similar to those for solid Xe if the range of p values is
chosen between 1.4 and 1.7.

TABLE IV. Total three- and four-atom energies A; and A4 per
atom, in the hcp and fcc configurations for solid Ar (BR=2.4) as
a function of p(=p’). The values Aj;, A4, and As;-}Aqare relative
to the total pair energy per atom, which for a Lennard-Jones
(6,12) potential is equal to —8.4¢, where —e is the depth of the
potential well. The variable parameter p(=p’) measures the
abﬁolute ratio [E,®/E;®| for a pair of nearest neighbors in the
solid.

Hexagonal Cubic
p(:?’) Az Ay Az+Asg Az Ay Asz+Ag
1.4 0.354 —0.135 0.219 0358 —0.134 0.224
1.5 0.231 —-0.032 0.199 0.235 —0.027 0.208
1.6 0.149 0.036 0.185 0.153 0.045 0.198
1.7 0.091 0.085 0.176 0.095 0.095 0.190
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From Table III we note, first of all, that the three-
atom crystal energy for solid Xe is attractive over the
whole range of p values, whereas the four-atom compo-
nent is relatively small in either structure for p values
in the interval between 1.9 and 2.3. A change of sign,
from attractive to repulsive, of the three-atom crystal
energy for solid Xe occurs for a value of p larger than
approximately 50, but such high values are unrealistic.
This change of sign does not affect the stability of the
fcc configuration, which is always (with varying p)
favored over the hcp structure by very nearly the same
percentage of the crystal pair energy. Further, the sum
of three- and four-atom energies changes very little
when p is varied. It therefore appears justified to con-
clude that the convergence properties of the cluster
expansion for the crystal energy are satisfactory.
Furthermore, we conclude, at least in a qualitative
sense, that the stability of the fcc configuration is
enhanced by considering four-atom interactions in
addition to the three-atom component of the crystal
energy. It is certain, on the basis of the results of
Table III, that four-atom interactions do not reverse
conclusions regarding crystal stability obtained on the
basis of the three-atom crystal energy alone.

For solid Ar (Table IV) the results are similar to
those for solid Xe if the range of p values is chosen
between 1.4 and 1.7. The sum of the relative A; and A4
components is here always smaller than the correspond-
ing values for Xe. Again, both A; and A4 favor the fcc
configuration.

When the range of p values for Ar is extended beyond
1.7, it is found that the three-atom crystal energy goes
to zero at p between 1.9 and 2.0, becoming progressively
more repulsive at higher values. At p= 3.0, for example,
the repulsion is about 139 of the crystal pair energy. At
the same time, the four-atom component, which is
already attractive at p=1.6, becomes progressively
more attractive at higher values of p. The sum of the
three- and four-atom contributions, however, varies
very little (amounting to 229}, for p=1.4 and to 159,
for p=3.0). Over the whole range of p values between
1.4 and 3.0, both the three- and the four-atom compo-
nents favor the fcc structure, the differences between the
two crystal structures remaining practically constant.

On the basis of the present model, some conclusions
can also be drawn with regard to the stacking-fault
energy in rare-gas crystals. Bullough, Glyde, and
Venables? have recently estimated the stacking-fault
energy in solid Xe and Ar from electron micrographs
and associated diffraction patterns of films of these
substances grown on a carbon substrate. By comparing
the data with those obtained for silver metal, they
conclude that the stacking-fault energy in solid Xe is
< 1.0 erg/cm? and in solid Ar <0.7 erg/cm?. Limiting
ourselves for the many-atom crystal energy to the
nearest neighbors of a central atom, the stacking-fault
energy v (being the energy difference, per unit area of
stacking fault, between the crystal with hexagonal fault
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and the ideal cubic crystal) is given!! by v=2(4/4231/2)
X 8(Enep— Eiec), wWhere a is the lattice constant, and
8(Enep— Erec) is the difference in many-atom crystal
energy between the hexagonal and the cubic close-
packed structures. The results for Az and A4 in Tables
IIT and IV can be used directly to calculate the three-
atom stacking-fault energy; we will here restrict our-
selves to the three-atom contribution. For an average
difference in Az values (over the range of p values con-
sidered) of 0.45%, for solid Xe and 0.409, for solid Ar,
we find y=1.0 erg/cm? for Xe and y=0.9 erg/cm? for
Ar, in reasonable agreement with the upper limits given
by Bullough et al.?? However, it should be remembered
that the estimates of the stacking-fault energy are
obtained from thin films of molecular crystals; it is not
obvious that accurate information can be obtained in
this manner.

IV. CONCLUDING REMARKS

In this paper we have presented an analysis of three-
and four-atom interactions of exchange type on the
basis of a Gaussian effective-electron model. It was
found that both the three- and four-atom components
of the crystal energy for rare-gas solids favor the fcc
configuration, that the sum effect of the many-atom
components is attractive in either structure, and that
this sum changes little with varying values for the ratio
p between second- and first-order interactions for
nearest neighbors in the solids. It has also been found
that, both for solid Xe and for solid Ar, one can select
a range of p values where the four-atom component of
the crystal energy is practically negligible with respect
to the three-atom energy.

More detailed conclusions regarding these many-atom
forces are beyond the scope of the present analysis. It
may well be that mainly mathematical significance can
be attached to the results on the four-atom components,
Le., that these results are mainly of importance in
establishing convergence properties for the cluster
expansion of the energy for molecular crystals. Further-
more, since accurate theoretical knowledge of the “true”
pair potential between rare-gas atoms is lacking, we can-
not accurately determine the values of the parameter .

The difference in many-atom energy between the fcc
and hep structures is found to be practically constant
with varying values of p, and it is always in favor of the
cubic configuration, in agreement with experiments for
solid neon, argon, krypton, and xenon. On the basis of
pair interactions only, it is well known! that most classes
of functions [e.g., the Lennard-Jones (s,6) potentials]
favor the hexagonal structure very slightly, namely, to
a few hundredths of 19, of the pair energy. The sign of
this difference for solid Ar can be reversed, as Alder and
Paulson?® have shown, by an appropriate modification
of the pair potential, without drastic influence on the

(1;66 153) J. Alder and R. H. Paulson, J. Chem. Phys. 43, 4172
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second virial coefficient of the gas. A difference of this
order of magnitude can, however, not play a réle in the
problem of crystal stability. The three-atom difference
in crystal energy is one order of magnitude larger than
that obtained on the basis of pair potentials.

We have undertaken the present analysis principally
with the aim of verifying that the Gaussian effective-
electron model does not lead to divergent results in
passing from clusters of three atoms to four-atom
configurations. In view of the large values of nearest-
neighbor overlap integrals for the heavy rare-gas solids
obtained with the Gaussian effective orbitals, such a
verification is important within the framework of the
model itself. The large overlap results from the manner
in which the Gaussian parameter 8 is determined,
namely, adapted to the long- and the short-range com-
ponents of the pair potentials between near atoms and
then extrapolated to the heavier rare-gas atoms. The
postulatory basis for this procedure is the assumption
that relative many-atom interactions can reliably be
calculated in this way. Recent criticisms of the Gaussian
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effective-electron approach, in particular those formu-
lated by Swenberg,?” must be viewed in this light.28

We have also found that, for isolated quadruplets of
atoms, the four-atom interactions may in some cases
(e.g., a square configuration) be of the same magnitude
as the three-atom energy. Finally, the results of this
analysis as applied to the stacking-fault energy in solid
Ar and solid Xe seem to be in reasonable agreement
with estimates obtained from observations on thin
films of these crystals.”? Definite conclusions must here
await the development of more accurate methods for
measuring the stacking-fault energy.
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Radiation Damage in ZnO Single Crystals*
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The radiation and additive coloration of Li-doped and “pure” ZnO crystals have been investigated.
The radiation coloration is enhanced by the presence of Li impurity when the radiation temperature is in
the range 80-330°K, but the additive coloration is suppressed in Li-doped specimens. The defect production
rate, as measured by the increased optical absorption of the samples, is a linear function of electron irradia-
tion intensity and decreases with irradiation energy. The energy dependence of the electron coloration
suggests that the defect giving rise to the coloration is produced by the displacement of zinc ions. For a
given dose of radiation, fast neutrons (>1 MeV) produce about 30 times as many defects as do energetic
electrons. In irradiated crystals the coloration anneals out around 250°C, whereas in additive colored
samples the annealing-out temperature is about 900°C. v irradiation during and after annealing indicates
that in both cases annealing is complete and not due only to the loss of electrons or holes from the defect
center. It is concluded from the study that radiation damage in ZnO occurs primarily as a result of elastic
collisions, and that the photochemical processes prevalent in alkali halides contribute very little, if any,

to the damage.

INTRODUCTION

HE electrical and optical properties of zinc oxide
have been the subject of a number of investiga-

tions during the last two decades, and a comprehensive
review of these studies up to the year 1958 has been
presented by Heiland, Mollwo, and Stéckmann.! A
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1G. Heiland, E. Mollwo, and F. Stéckmann, Advan. Solid
State Phys. 8, 191 (1959).

more recent survey by Kroger? gives a complete list of
references as well as a discussion of defect models. The
primary obstacle to understanding the effect of defects
on the optical and electrical properties of this material
appears to be that until recently only a few measure-
ments had been made on single crystals; therefore, since
these properties vary greatly when the chemical and
mechanical purity of specimens is not high, it is difficult
to make a consistent interpretation of all the available
results. Our work involves the use of ZnO single crystals
and so we will emphasize the experiments done on single

2F. A. Kroger, The Chemistry of Imperfect Crystals (North-
Holland Publishing Co., Amsterdam, 1964).



