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The influence of electron-electron correlation on exchange instabilities of a metal is examined. The
employment of screened interactions does not constitute a proper treatment. Correlation effects suppress
ferromagnetic instabilities, as is well known, but they need not suppress instabilities of the spin-density-
wave type. On the contrary, it is shown that correlation enhances exchange instability of the charge-density-
wave type. For either type, the wave vector of such a state adjusts so that the Fermi surface makes critical
contact with the energy gaps introduced by the instability. This circumstance optimizes the correlation
energy. The observed conjunction of the long-period-superlattice periodicity with the Fermi surface in
order-disorder alloys is probably an example of this phenomenon. It is suggested that charge-density-wave
ground states are likely in simple metals having weak Born-Mayer ion-ion interactions, such as the alkali
metals. The intensity of Bragg reflection satellites caused by a concomitant positive-ion modulation is

computed.

I. INTRODUCTION

XCHANGE interactions among itinerant electrons

tend to cause magnetic instabilities, an effect
first discussed by Bloch.! The extensive bibliography
which has accumulated on this topic is summarized and
enlarged upon by Herring.? The prevailing opinion is
that correlation corrections to the Hartree-Fock ap-
proximation always cancel substantially the effects of
exchange. This was shown originally for ferromagnetic
instabilities by Wigner.?

The influence of electron-electron correlation on the
stability of a spin-density-wave (SDW) state has not
been adequately investigated. The question is critical
because there are always SDW states of lower Hartree-
Fock energy than the normal state for all electron
densities.? One purpose of this paper is to show that
modifications of the electronic density of states N(FE)
by, say, SDW energy gaps augment the correlation
energy and enhance the instability.

This effect is pertinent to a general exchange-insta-
bility wave, which we now define. Consider a (supposed)
electronic ground state for which the spin-up and spin-
down electron densities are

pt(r)=3p[ 1+ cos(Q-r+¢) ],
p (1) =3%p[1+p cos(Q-1—¢)].
The mean electron density is po, and the fractional modu-
lation is p. We shall refer to a state for which the phase

¢ is 0 as a charge-density wave (CDW). The three
possible types of exchange-instability wave are

M

=0, pure CDW;
=1, pure SDW;
0<¢<ir, mixed CDW-SDW.

1F. Bloch, Z. Physik 57, 545 (1929).

2 Conyers Herring, in Magnetism, edited by T. Rado and H.
Shul (Academic Press Inc., New York, 1966), Vol. VI.

3 E. P. Wigner, Phys. Rev. 46, 1002 (1934); Trans. Faraday
Soc. 34, 678 (1938).

4 A, W. Overhauser, Phys. Rev. 128, 1437 (1962).

167

At first sight, the possibility of a CDW ground state
seems remote. A large Coulomb energy, the volume
integral of 8%/8m, is the obvious reason. However, our
primary concern is not with an ideal electron gas having
a rigid background of neutralizing positive charge; it
is with a real metal, where the positive ions are more or
less free to adjust their positions to minimize their local
potential energy. For example, the Born-Mayer ion-ion
interactions are known to be extremely weak in the
alkali metals. Consequently, the equilibrium positions
of the positive ions could be displaced from their ideal
cubic sites, to cancel most of the Coulomb energy
mentioned above.

The existence of an exchange-instability wave, des-
cribed by (1), requires a nonconstant potential V(r) in
the one-electron Hamiltonian. It will have the form

V(r)=Ac,sinQ-r—C cosQ-r, (2)

where 4 and C are the coefficients of the exchange and
Coulomb contributions. Both will be proportional to the
fractional modulation p. o. is the usual Pauli matrix.
A spin-up electron will accordingly experience a
potential

V(r)=—G cos(Q-r+ o). 3)

A spin-down electron will experience a similar potential,
but with the sign of ¢ reversed. The relationship be-
tween (2) and (3) is

A=Gsing, C=Gcosp.

The periodic potential (3) will introduce energy gaps of
magnitude G in the one-electron energy spectrum E(k).
These will occur on planes perpendicular to the wave
vector Q, a distance 3Q from the origin of % space.

The effect of a CDW or SDW on the correlation
energy cannot be determined with precision. It is con-
venient to take the second-order perturbation correction
to the Hartree-Fock energy E, as the basis for discus-
sion. In this crude approximation, the correlation energy
is

We=—2:| | U[8) |/ (Ei— Ed). @

691



692 A.

The matrix elements are those an an electron-electron
interaction. (See the Appendix for an explicit interpre-
tation of (0| U|4).) The excited states {i} are those for
which two electrons have been removed from below the
Fermi energy and placed in states above the Fermi
energy, but with no change in total momentum. A
CDW or SDW changes the numerical value of W, by
altering both the matrix elements and energy denomi-
nators of (4). We shall consider first the latter effect,
since this has heretofore been entirely neglected. It is
obvious that electron excitations of low energy play a
proportionately greater role in the sum than those of
high energy. Consequently, the electronic density of
states N(E) near the Fermi energy Ep is of paramount
interest.

N(E) for electrons interacting with a CDW-SDW po-
tential is shown in Fig. 1. There are striking deviations
from the 4/E dependence appropriate to an energy
spectrum without such a potential. Point A of Fig. 1
corresponds to the constant-energy surface (in % space)
which makes critical contact with the energy gaps in-
troduced by the potential (3). (We shall show below
that point A will coincide with Ep, but this may be
ignored for the present.) Point B of Fig. 1 corresponds
to the constant-energy surface which just begins to
include states on the high-energy side of the gap G.
N(E) is rigorously horizontal between A and B. This
may be seen by considering a two-dimensional electron
gas, with E(k)=7%2k2/2m. For this case, the (unit-area)
density of states is

No(E)=m/2h2, ()

a constant. Consider now the three-dimensional elec-
tron gas to be sliced up perpendicular to Q into a large
number of thin circular segments. Because (5) is con-
stant, the increase in N(E) with increasing E occurs
only because new segments are continually being added.

N (e)

F1c. 1. Electronic density of states versus energy for a free-
electron gas. The parabolic curve corresponds to the normal,
paramagnetic state. The solid curve, passing through points 4
and B, applies to a collective-electron deformation of the CDW-
SDW type, having energy gap G.
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However, as soon as £ reaches the value for which its
surface just touches the energy-gap plane (critical con-
tact), new segments are no longer added with increasing
E. The surfaces of constant energy acquire necks at
each energy gap, and N(E) remains constant. Only
when £ exceeds its critical contact value by G, allowing
further addition of new segments, does N(E) resume its
increase.

The location of A or B in Fig. 1 depends on the magni-
tude of Q. If Q is large compared to the diameter 2kp
of the Fermi surface, the energy at which critical con-
tact occurs will exceed Er, and N(Er) will not differ
appreciably from its normal value No(Er). Consider the
change of N(Ep) as Q is gradually reduced (with G
held constant). The variation is shown in Fig. 2. There
is a cusplike maximum in N(Er) at point A, correspond-

N (EF)
No(Eg)

I-f
Q/2k;

Fi16. 2. Electronic density of states at the Fermi energy versus
wave vector Q of an exchange-instability wave, for a given energy
gap G. The optimum Q [maximum N (Ep)] is slightly larger
than 2k and corresponds to critical contact of the Fermi surface
with the energy-gap planes in & space.

ing to critical contact. At this point,
N(EF)“NO(EF)D‘}‘(G/‘}EF)]- (©6)

This incremental increase in N(Er) can be deduced
from Fig. 1, to terms linear in G. It is just the slope of
VE (at Er) times 2G. The value of Q corresponding to
critical contact also depends on G, because the constant-
energy surfaces are appreciably distorted by the po-
tential (3). The equation of the surface in critical con-
tact has been derived previously.5 It requires

Q=~2kp[1+(G/4EF)]. )

Consequently, the wave vector of a CDW or SDW in
critical contact with the Fermi surface is slightly larger
than 2kp.

Since the correlation energy W, is negative, a larger
magnitude for W, is associated with greater stability.
Obviously, modifications of the one-electron E(k) which
increase the proportion of low-energy virtual excitations

5 A. W. Overhauser, Phys. Rev. Letters 13, 190 (1964).
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contributing to (4), increase this magnitude and reduce
the total energy. It follows that the upward cusp at A
in Fig. 2 will correspond to a downward cusp in the
total energy. Therefore, if the ground state contains a
CDW or SDW, the optimum Q will be that given by
Eq. (7) for critical contact.

The foregoing argument assumes that the cusplike
behavior of N(Er) provides the sharpest variation to
the Q dependence of the total energy. In a Hartree-
Fock approximation, the optimum Q will be smaller
than 2kr, since the Hartree-Fock energy decreases
smoothly with decreasing Q near Q~2kp. This has been
called the “clamp-down” effect, which describes the
tendency of SDW energy gaps to clamp down on the
Fermi surface, causing neck formation. This effect is
still present in a Hartree-Fock treatment using screened
interactions.® However, such calculations with realis-
tically screened interactions do not show SDW-type
instabilities.” It follows that if a CDW or SDW were
the ground state of a typical metal, the correlation-
energy stabilization arising from the enhanced N(Er)
has dominated, and should likewise dominate the de-
termination of Q.

The fallacy of all calculations employing screened
interactions in attempts to discuss delicate questions
such as stability is apparent. The appropriate screened
interaction, if such is ever possible, must certainly de-
pend on the character of the deformation (i.e., Q) and
the amplitude of the deformation p. Even for ferro-
magnetic deformations (Q=0), the remaining depend-
ence on p must be included.® To ignore the deformation
parameters in U, as almost everyone does, is to beg the
question. Unfortunately, it is difficult to envision how
to determine U. The alternative is to compute deformed
one-electron wave functions and energy spectra for
employment in an expression such as (4). But the com-
putational task seems prohibitive.

Consider the N(Ep) variation for a ferromagnetic
polarization of conduction electrons. This is easily
derived:

N(Ep)=3No(EnLA+P)3+1A—-P)"],  (8)

where P is the fractional polarization. This variation
is shown in Fig. 3, along with that derived above for a
CDW-SDW state. In contrast with the latter case, a
ferromagnetic polarization decreases the density of states

6§ D. R. Penn and M. H. Cohen, Phys. Rev. 155, 468 (1967).
These authors ignored the correlation-energy contribution leading
to critical contact. Consequently, their conclusions regarding neck
formation are invalid. Another serious error in their work is a
claim to have shown that finite-amplitude SDW instabilities could
occur before differential ones. For the finite case, their calculation
allowed repopulation of % space, as is required, in order that the
Fermi surface be one of constant energy. This should also have
been done in the differential case, since the factorized interaction
empolyed for a fixed Q would require a nonspherical Fermi surface
even In the zero-amplitude limit. Their apparent failure to do
this prevents a meaningful comparison of the two cases.

7D. R. Hamann and A. W Overhauser, Phys. Rev. 143, 183
(1966). See also Refs, 2 and

8 S. Misawa, Phys. Rev. 140 A1645 (1965).
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. . X SDW or CD
F16. 3. Electronic density of orcow

states at the Fermi energy t
versus fractional polarization

for ferromagnetic, SDW, and N(Ep)
CDW deformations.

Ferromagnetic

Polarization —s=

at the Fermi surface. Thus the correlation energy is
reduced in magnitude, inhibiting the deformation. The
N(Er) decrease is a contributing factor to the suppres-
sion of a ferromagnetic instability by correlation correc-
tions. An argument is frequently advanced that SDW
instabilities will be suppressed by correlation corrections
analogous to the ferromagnetic case. We emphasize that
the deformations have opposite behavior in a very
crucial aspect, so no analogy exists.

We have shown that the two common arguments for
discounting the likelihood of anomalous conduction-
electron ground states are incorrect.? This by no means
establishes the contrary. The energy differences between
paramagneticc, CDW and SDW states are probably
much smaller than the accuracy of many-body calcu-
lations. Experimental evidence!® will possibly provide
the only information on such questions for the near
future.

The negative cusp in correlation energy that occurs
when the Fermi surface is near critical contact with an
energy gap should be a general phenomenon. Sato and
Toth!! have established experimentally that the perio-
dicity of the long-period superlattice in CuAu and other
alloys is governed by such a critical-contact require-
ment. The generality of their results is hard to explain
without a cusplike term in the energy versus super-

9 Herring (Ref. 2, p. 114) presents a third argument, but
because of a logical error, this is also incorrect. He invokes a
lemma, proved on p. 15, that electron correlations eliminate any
energy contributions from repulsive 8-function interactions. He
then argues: Real interactions can be divided into high-¢ and
low-¢ components. The latter determine the plasma frequency,
which is independent of magnetic deformation. Appeal is then
made to the lemma to show that the high-g components can have
negligible effect on magnetic stability. However, we observe that
proof of the lemma does not derive from the high-¢g components of
a & function. It depends on the fact that a § function is a precisely
phased synthesis of low-¢g and high-g components. A § function
with its low-q parts deleted would have no such lemma.

In a subsequent paper, the author will summarize the ex-
tensive, yet still inconclusive, evidence that alkali metals have
anomalous electronic ground states.

1Y, Sato and R. S. Toth, Phys. Rev. 124, 1844 (1961); 127,
469 (1962). M. Tachiki and K. Teramoto 7. Phys Chem. Solids
27, 335 (1966)] have attempted to explain the behavior by
treatmg the superlattice potential in perturbation theory. They
found relatively smooth and shallow minima in energy versus Q
for superlattice Q’s near the required values. However, they
neglected several Q-dependent contributions to the energy whxch
will probably shift the minima and spoil agreement.
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lattice periodicity. The effect we have described pro-
vides a promising explanation.

II. MATRIX-ELEMENT CONTRIBUTIONS
TO THE CORRELATION ENERGY

In Sec. I, we have discussed qualitatively the effect
of energy-level shifts on the correlation energy (4). Here
we shall estimate the effect of matrix-element changes
for virtual excitation of electron-hole pairs. We shall
find that these are also important.

To achieve perspective, consider again a half-filled
conduction band with fractional ferromagnetic polari-
zation P. The number of parallel-spin pairs per unit
volume is

np=3[(1+P)*+(1—P)*]p*= fpo*(1+P?),

where po is the electron density. Since the exchange
energy is proportional to #p (if all exchange integrals
are taken equal),

WeX(P)/Wex(O)~1+P2. (9)

The increase of |Wex| with P?is the major contribution
favoring magnetic instability. As is well known, the
correlation energy opposes such a tendency. This is
easily understood by considering Eq. (4). The dominant
contributions to the sum over virtual states are those
from electron-hole-pair excitations having antiparallel
spin. (The parallel-spin pairs have smaller matrix ele-
ments because of cancellation by an exchange term.)
If wave-vector conservation is ignored, the total number
of antiparallel-spin electron-hole excitations in a half-
filled band is

na=(3p0)*(1+P)1—-P)(1-P)(1+P).

Since the correlation energy is crudely this number
multiplied by an average matrix element and divided
by an average-energy denominator,

Wo(P)/W (0)~(1—P?)2~1—2P2.

The last approximation is limited to small P. The de-
crease of [IW,| with P? only partially cancels the in-
crease of | Wex|, since generally |W.(0)] is three or four
times smaller than |We(0)].

The foregoing analyses of exchange- and correlation-
energy changes fail when exchange-instability waves
[Eq. (1)] are considered. In this case, the numbers of
spin-up and spin-down electrons remain the same when
the amplitude p of the fractional modulation deviates
from zero. It is clear, however, that variations similar
to (9) and (10) must still occur. These are to be found
instead in matrix elements, as we now show. Suppose,
for the sake of simplicity, that all of the modulated
wave functions for occupied states can be written

=i (14+3p cosQ-1)/(1+Ep) 2.

The exchange energy associated with two of these func-

(10)

(11)
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tions is, by a tedious evaluation,

K| UK J)=U K-k +1pTU K ~k+Q)
+UK-k-Q)], (12)

with p* and higher terms neglected. U(k) is the Fourier
transform of U(r). If we were to neglect the k depend-
ence of U(k), we would have

KUK k)~ UK —k)(1+35p?).

This agrees with (9), since §? is the mean-square frac-
tional polarization for SDW deformations and corre-
spond to P? in the ferromagnetic case.

The correlation energy involves the matrix element
for processes in which two electrons in occupied states
kK (having opposite spin) are virtually excited to
empty states k4q, k'—q. It is important to know
whether these latter states are above or below the
energy gap. Assume first that they are both below,
which is the predominant case. Then both ¥ and Y,
can be taken to have the form (11). For an SDW de-
formation, ¥i and Yi—q will have the form

o= (1—4p cosQ0/(1+3p)2,  (13)

since the down-spin modulation is 180° out of phase
with the spin-up modulation. The matrix element of the
virtual excitation can be evaluated directly (all but 19
of the 81 terms which arise are 0):

(k'—q, k+q|U|K, k)=2U(q)
- U@+0Q0)+U@—Q)], »14)

where p* and higher terms have again been neglected.
Were we to neglect the q dependence of U(q),

|(K'—q, k+q| UK, k)| 2~ U(g)[1-2(3p?)],

which agrees with (10). (It is the behavior of the square-
matrix element that must be compared in this case.)
Naturally, it is not correct to assume that all ¥, have
the same p [or, for that matter, that the exp(iQ-r)
and exp(—7Q-r) components of the modulation have
equal coefficients], as we have done for the sake of
simplicity. Matrix elements of general validity, corre-
sponding to (12) and (14), can with patience be written
down, but that is not necessary for the present purpose;
as long as U(g) is positive, all of the correction terms
that would arise have the same sign.

We have shown that the usual suppression of a fer-
romagnetic instability by correlation energy persists in
the SDW case, but manifests itself as a decrease in
magnitude of the matrix elements appearing in Eq. (4).
In Sec. I, we showed that this decrease is partly com-
pensated by an increase resulting from changes in N(E),
provided Q has the value required for critical contact.
Such cancellation cannot occur for a ferromagnetic
polarization.

Consider now the behavior of the correlation energy
for a CDW deformation. The only difference from the
SDW case above is that the modulation of the spin-up
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and spin-down wave functions are now in phase. Since
the most numerous excited states are again those for
which both virtually excited electrons are below the
energy gap, all four states which determine the matrix

element can be taken to have the form (11). We then
find

(k'—q, k+q|U|K, k)=U(g)
+1p U@+ Q)+U(g+Q)]. (15)

The correction terms are all positive. This result is
important because it shows that correlation energy en-
hances a CDW instability, opposite to the behavior in
the magnetic case. This is in sharp contrast to the ex-
change-energy trend, which is always the same. [Equa-
tion (12) applies generally, irrespective of the phase
¢ in Eq. (1).]

The foregoing conclusions are easy to anticipate
physically. The correlation energy is a consequence of
virtual scattering of pairs of electrons having (pre-
dominantly) antiparallel spin. Wave-function deforma-
tions which partially localize both probability densities
in identical regions magnify this mechanism. Deforma-
tions which localize them in contiguous but separate
regions diminish it.

Contemporary literature in the theory of metals is
often characterized by a total neglect of exchange and
correlation effects, presumably based on a naive hope
they thay always almost cancel. Many workers pretend
that correlation effects are somehow adequately ac-
counted for by carrying out Hartree-Fock calculations
with screened interactions.!? We have shown that such
an artifice can be qualitatively wrong. Phonon spectra
and electron-phonon interaction are examples of phe-
nomena that are sensitive, and probably need reinvesti-
gation. If a modified-interaction artifice must be em-
ployed for pragmatic reasons, ‘“antiscreening” will
sometimes be the appropriate choice. The alternatives
depend on wave vector, as we now show.

When Q> 2kp, which is the case we have been con-
sidering, almost all low-lying excited states are below
the energy gap. This can be understood from Fig. 1.
The contribution to N(E) from states below the gap
corresponds to the area of the curve below an extended
horizontal line running through points A and B. The
only excited states that are above the gap (so the spatial
phase of their modulation is reversed) are those above
the line, to the right of point B. Such states of low ex-
citation energy are obviously very few in number. This
is no longer the case if Q is small, allowing energy gaps
to cut through the occupied region of % space. In this
case, virtual excitations for which one or both excited
states lie above the gap must be evaluated. If only one
excited state is above,

(k'—q, k+q| UK, K)=U()(1—1p»),  (16)

12 Most workers seem content to screen the Fock term without
also screening the Hartree term.
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instead of (14) or (15). If both excited states are above
(and both initial states below),

(K'—q, k+q| UK, )=U()(1—3p%). (17

The results given by (16) and (17) are obtained for
both SDW and CDW modulations. Consequently, for
such excitations, the correlation energy is diminished
by the modulation. Numerous other cases must also be
evaluated, since the locations of all four states relative
to the energy gaps are pertinent.

The general trend is indicated. Exchange and cor-
relation reinforce one another for charge modulations
with Q sufficiently large. The value of Q at which virtual
transitions having this property tend to predominate
is likely near Q=Fkr, for which the probabilities of low-
energy excitations being above and below the gap are
equal.

The ability of exchange and correlation to reinforce
one another rather than cancel when spin-up and spin-
down modulations are in phase has been emphasized
previously in a different context.!?

III. PARALLEL-SPIN CORRELATION AND
UMKLAPP CORRELATION

We were primarily concerned, in the previous sections,
with the variations in antiparallel-spin correlation
caused by an exchange-instability wave. Parallel-spin
correlation (in excess of the exchange energy that arises
directly from the Pauli exclusion principle) is consider-
ably smaller in magnitude. This can be seen by the
following argument. Consider the excited states {|4)}
that enter Eq. (4). They are enumerated by three wave
vectors k, k’, and q. k and k’ are the one-electron states
emptied by excitation to k+q, k’—q. There are %1po?
initial pairs of parallel spin, half for spin-up pairs and
half for spin-down. This is the same number of k, k’
pairs having antiparallel spin. It seems at first sight
that the total number of excited states |4) would be the
same. However, for parallel-spin pairs, the final state
k+q, k'—q is the same as k'—gq, k+q. Consequently,
the number of distinguishable excited states is fewer
by a factor of 2.

Furthermore, square-matrix elements of parallel-spin
excitations are smaller on the average than their anti-
parallel-spin counterparts, since direct and exchange
terms have opposite sign:

[0|U]iy*=[U()—-UK'—k—q)T.

Suppose, for example, that the probability distribution
for |U(g)| were uniform in an interval (0,U,,). For anti-
parallel-spin pairs,

(U= U? f

1
a2da=3U 2.

18 A, W. Overhauser, Phys. Rev. 156, 884 (1967).
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For parallel-spin pairs,
1 1
e[ [ mypsiy=gu.z,
0 Jo

which is smaller by a factor of 2. Combining all factors,
we conclude that parallel-spin correlation is approxi-
mately 209, of the total correlation energy. This esti-
mate depends on the probability distribution assumed
above, but is not very sensitive to reasonable
modifications.

Our present interest is the parallel-spin correlation-
energy changes introduced by ferromagnetic, SDW,
and CDW deformations. A crude argument for the fer-
romagnetic case, similar to that employed in obtaining
Eq. (10), leads again to Eq. (10). This result is under-
standable. For a half-filled band with P=1, no virtual
excitations within the band are possible, so each con-
tribution to the correlation energy must decrease as
P—1.

Matrix-element changes for SDW and CDW parallel-
spin excitations are identical, and are given by Eq. (15).
Both the direct and exchange terms, say, U and U’,
are increased in magnitude to U4p*, U'4p*/'. The
square-matrix element to order p? is

(U—U") 2+ 2p2(u—u') (U—U").

Because the wave vector Q appearing in Eq. (15) is
large, the relative magnitudes of U and # and of U’
and #’ will be uncorrelated. Consequently, there will be
no predictable trend in the sign of the p? correction term
above. For this case, we conclude that the over-all effect
of the density modulation via matrix elements is negli-
gible. However, the Fermi-energy density-of-states
effect, discussed in Sec. I, plays a proportionate role
here also, enhancing the correlation energy of CDW-
SDW states attributable to parallel-spin excitations.

For the paramagnetic and ferromagnetic states, the
one-electron states are eigenfunctions of momentum,
and the virtual excitations conserve momentum. This
is not the case for CDW and SDW ground states. We
still catalog the one-electron wave functions with wave-
vector labels, but they are no longer eigenfunctions of
momentum. The most important virtual excitations are
those which conserve wave-vector label; and these are
the only ones we have discussed until now. These ex-
citations can still be shown to conserve expectation
value of momentum; but one must introduce the entire
metal center-of-mass coordinate and include its recoil.
The recoil energy is of course completely negligible and
does not affect the correlation energy.

Modulation of the one-electron wave function by the
CDW-SDW potential introduces an entirely new class
of virtual excitations that contribute to the correlation
energy, namely, those for which

(k) — (k+q,k'—q=+=Q).
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The matrix elements of these umklapp excitations will
be proportional to p. They necessarily enhance the cor-
relation energy of an exchange-instability wave by an
amount proportional to p% We shall refer to this con-
tribution as umklapp correlation. It favors CDW or
SDW instability. Which type benefits more is hard to
assess. There are also virtual excitations for which
wave-vector label is nonconserved by #2Q, 4-3Q, and
#4Q. The matrix elements are of higher order in p, so
that their contributions can be neglected.

IV. CHARGE-DENSITY-WAVE INSTABILITIES

The pertinent contributions to the exchange insta-
bility of an electron gas are summarized in Table I
for ferromagnetic, SDW, and CDW deformations. There
is always an increase in total kinetic energy, together
with a countervailing increase in magnitude of the ex-
change energy. The SDW-instability theorem?* proves
that the latter always dominates the former for CDW
and SDW deformations. Only for a low-density electron
gas can this occur in the ferromagnetic case. The effect
of correlation energy differs for all three cases. It sup-
presses a ferromagnetic instability and enhances a CDW
instability. The net effect in the SDW case is uncertain
because the correlation contributions have opposite
sign. The degree of cancellation cannot be determined
without an elaborate numerical calculation.

Perhaps the most surprising conclusion of the present
analysis is the strongly indicated possibility that CDW
instabilities can occur in a simple metal. The (un-
favorable) electric-field energy 8%2/8x will be cancelled
in large part by a displacement of the positive ions from
their normal equilibrium sites. The fractional charge
modulation of the electrons is

p=QG/AEr){1+[(1—u*/2u] [ (u+1)/(u—1)]},
(18
where )
u=Q/2kr~1+(G/4Ep).

The last equality is equivalent to Eq. (7). The result
(18) is obtained by perturbation theory and differs in-
significantly from an exact calculation. Suppose now,
that the ions of a monovalent metal have normal lattice
sites {L}. If the displacement s(L) ‘of the ions”from

Tasre I. Energy contributions to ferromagnetic, SDW, and
CDW instabilities. F indicates a favorable and U an unfavorable
contribution.

Energy contribution Ferro SDW CDW
Kinetic U U U
Exchange F F F
&/8r v U
Correlation, N (Er) U F F
Correlation, |(0|U|:)|? 18] U I
Correlation, | spin -4 U ¥ ¥
Correlation, umklapp F r
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these sites is
s(L)=(pQ/Q% sinQ-L,

the positive-ion charge modulation will just cancel the
electronic CDW. The electrostatic potential arising from
this modulation must of course be included in the one-
electron potential (2).

Naturally the ion displacements will not be quite
so large as that given by (19). The Born-Mayer ion-ion
interactions will resist a static phononlike modulation
of the lattice periodicity. However, it is well known that
in alkali metals this interaction is very weak and, for
example, contributes little to the bulk modulus. For
this reason alkali metals are perhaps the best candi-
dates for the occurrence of CDW instabilities. The
Coulomb interaction between ions, dielectrically screened
by the conduction electrons, will also be altered by the
lattice modulation. This change, which excludes con-
tributions from Fourier components =+ Q, will also be
small compared to the §%/8r energy that can be elimi-
nated by the lattice modulation (19). The importance
of the aforementioned ion-ion interactions, though small,
lies in their dependence on the orientation of Q relative
to the crystal axes. Determination of the optimum
direction of Q is an important problem.

Modulation of the positive-ion lattice, given approxi-
mately by (19), will necessarily accompany a CDW
ground state of the conduction-electron system. This
will give rise to satellite Bragg reflections of neutrons
or x rays. Observation of satellites would provide un-
ambiguous evidence for such a state. However, the ex-
pected intensities are very weak, as we now show.

Consider a monatomic Bravais lattice of point ions.
The positive-ion density is

p(r)=21 8[r—L],

where 8[r] is a & function. Suppose the lattice positions
are modulated according to (19). Then

p()=201 lr—L—(pQ/Q*) sinQ-L].  (20)

Bragg reflections are found by taking the Fourier trans-
form of (20):

p(K)=/p(r) exp(iK-r)d?r.

Integration yields
p(K)=21 exp{iK-[L+(pQ/0Q% sinQ-L]}.

The second term of the exponential can be expanded in
a power series in p, which allows the sum over {L} to
be performed. One obtains a nonzero result only for
scattering vectors,

K=27G, 2rG+Q, 2:G—Q,

where {G} are the reciprocal lattice vectors. If the
Bragg-reflection intensity of the unmodulated lattice is
I,, the intensities of the allowed reflections for the
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modulated lattice are
(19
I(2rG)=[1—3p*(2rG-Q/Q)*]l,, (21a)
I(27G=£Q)=1p(2rG£Q)-Q/Q*2L,. (21b)

The satellite intensities (21b) are weak if experimental
data are used to determine p. For potassium, the in-
stability-wave energy gap is 0.62 eV, and Ep=2.1 eV.
Equation (18) predicts p=0.17; so that I(2xrG+Q)/I,
~0.007.

This relatively small intensity could be obtained only
if the sample were a “single-Q”” crystal. A “poly-Q”’
crystal, containing modulation domains of at most 24
different (but equivalent) orientations, would have in-
dividual satellite intensities ~3X19~4,. Obviously
these would be quite difficult to observe, even if the
favored orientations of Q were known in advance.

In the absence of direct observation by Bragg reflec-
tion, indirect evidence for electronic ground states of
the SDW-CDW type can occur in varied phenomena.
Anomalous behavior, otherwise unexplained, has been
reported in the alkali metals. Quantititive interpretation
is possible in five areas: (a) optical absorption,® (b)
magnetoresistance,’* (c) de Haas-van Alphen perio-
dicity,115(d) helicon wave absorption,'® and (e) positron
annihilation.” Only the optical absorption depends sen-
sitively on the phase angle ¢ of the CDW-SDW ad-
mixture [Eq. (1)]. The theoretical treatment of this
effect assumed implicitly that the phase of the ex-
change-instability wave (regarded at the time as a pure
SDW) was pinned to the positive-ion lattice. It was
emphasized subsequently’® that the absorption could
not occur without pinning. The present investigation
began as a theoretical study of SDW pinning, by in-
corporation of a CDW component. The surprisingly
favorable correlation energy of the CDW component,
shown in Sec. II, leads to the conclusion that exchange-
instability waves in simple metals are more likely of the
pure-CDW type.

The foregoing conjecture solves a difficulty pointed
out in the original work on SDW instabilities.’® Large
nuclear hyperfine fields (~500 kG in Cs) should be
manifest, at least in a time-averaged, vestigial way. For
the alkali metals, such evidence has never been found
in nuclear-magnetic-resonance (NMR) experiments nor
in the Mgssbauer effect.?

4P A, Penz and R. Bowers, Solid State Commun. 5, 341
(1967). The theory of this effect will be published by J. R. Reitz
and the author.

16 D, Shoenberg and P. J. Stiles, Proc. Roy. Soc. (London)
A281, 62 (1964).

16 A, W. Overhauser and S. Rodriguez, Phys. Rev. 141, 431
(1966). Conflicting evidence from ultrasonic absorption is vitiated
by severe elastic stress of specimens.

E’ D.7 )R. Gustafson and G. T. Barnes, Phys. Rev. Letters 18,
1 (1967).

18 J. J. Hopfield, Phys. Rev. 139, A419 (1965).

1 A. W. Overhauser, Phys. Rev. Letters 4, 462 (1960).

2 A, J. F. Boyle and G. J. Perlow, Phys. Rev. 151, 211 (1966).
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APPENDIX

A well-known difficulty of Eq. (4) is that W, diverges
when the matrix elements of ¢?/r are employed. This is
caused by the small-momentum-transfer singularity of
Rutherford scattering, and arises from the long-range tail
of the Coulomb interaction. Collective-screening effects
in a metal prevent the dominance of virtual scattering
by small-angle events. This restraint can be incorporated
into the perturbed-ground-state wave function ¢ by

letting
Y2 |0)— 3| i)6| Uso| 0)/ (Ei— En) (A1)

where |0) is the ground-state Slater determinant, and
{|4)} are those of higher energy having two electrons
excited above the Fermi surface. Us, is some appro-
priate screened Coulomb interaction between all elec-
tron pairs. It is clear, however, that U, cannot be used
to calculate the energy. Only the exact Hamiltonian
T+U can be employed. In other words, we interpret
(A1) as a variational wave function. Accordingly, the

energy is
E=Q|T+UY)/@|¥). (A2)

Naturally, the question arises about the choice of Us,.
From the variational point of view, this is discretionary.
One might employ, for example,

Use=e2 2 ij exp(—uri)/14, (A3)

and determine the optimum value of x by minimizing
(A2). The results of such a calculation would provide an
interesting comparison with other estimates of the cor-
relation energy.2!

In the event that (¥|¢) does not deviate too much
from unity, (A2) can be expanded in powers of U and
Ug.. To second order, we obtain

E~Ey—3: [0]U|i)i| Uso| 0)+(0| Use| 4)(| U| 0)
- | (0[ Usc“)[ 2]/(Ei"'E0) ) (A4)
where Eo=(0| T+ U | 0). By way of illustration, suppose

(A3) were used for Us,. Then the correction term of (A4)
becomes

W o= — (dme?)? 3 i(g2+2u?)/
¢: (g +u) Ei—Eo), (AS)

where 7g; is the momentum transfer involved in the
transition to |z). Comparison of Egs. (4) and (AS)
provides an explicit (though somewhat arbitrary) in-
terpretation of the matrix element appearing in (4):

O|U|d)=4me*(g*+2u*)' */q(g*+n?).  (A6)

* A computation similar to that proposed here has already been
carried out and gives reasonable values for the correlation energy
[W. Macke, Z. Naturforsch. 5a, 192 (1950)].
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The advantage of this identification is that long-range
screening effects, as they effect small-angle virtual ex-
citations, are incorporated by wave-function modifi-
cation, as it should be done, and by keeping the exact
Hamiltonian intact. The sum appearing in Eq. (4) will
of course converge.

Ideally, the energy of a CDW-SDW state should be
computed by an ab initio repetition of the perturbation-
variation scheme described above. The reason is that
the optimum parameter u of the screened interaction
for the CDW-SDW state may differ from the value ug
that minimizes the energy of the paramagnetic state.
The resulting correction to the CDW-SDW-state en-
ergy, however, is fourth order in p, the fractional modu-
lation of the exchange-instability wave, as we now show.
The total energy, to relevant order in p and u—p,, is

W (pu)=A+B(u—po)?+pC+D(u—po)], (AT)

where 4, B, C, and D are appropriate parameters. This
is optimized with respect to u by setting W /du=0.
Accordingly,

—Dp?/2B.

Inserting this result back into (A7), we obtain
W(p)=A+Cp*—(D*/4B)p*,

which differs from W (p,u0) only by a term in p*% Con-
sequently, in calculating correlation-energy changes as-
sociated with CDW-SDW deformations, we may em-
ploy the effective matrix elements, e.g., (A6), derived
for the paramagnetic state.

Finally, it should be appreciated that the approxi-
mate expression [ Eq. (4)] for the correlation energy is
not a correction term in a standard Rayleigh-Schrad-
inger perturbation scheme. Rather, it is the term caused
by first-order configuration-interaction corrections to a
Hartree-Fock state. Brillouin’s theorem?? shows that
the only configurations connected to a Hartree-Fock
state in first order are those determinantal functions
differing from the Hartree-Fock state by just two
orbitals. Consequently, the only term in the Hamilton-
ian which can contribute to such matrix elements is the
electron-electron interaction. One might suspect that
this involves some double counting of the interaction,
since the Hartree-Fock potential includes already some
effects of the interaction. This is not so. The potential
terms in the Hartree-Fock equations are one-electron
operators; so that even if they were to be subtracted
from U, they could not contribute to the configuration
mixing allowed by Brillouin’s theorem.

2 J, C. Slater, Quantum Theory of Molecule and Solids (Mc-
Graw-Hill Book Co New York, 1963), Vol. I, p. 259



