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The electronic structure of the 2P ground state of the boron atom has been studied using configuration
interaction. A 187-configuration function yielded an energy of —24.6392 hartrees, which corresponds to
88.3% of the correlation energy. The separability of different types of single and double excitations from
the Hartree-Fock ground state was investigated. The sum of the energy increments found for single and
double excitations amounted to 88.19 of the correlation energy; when the same functions were used simul-
taneously in a full configuration interaction, the calculated energy included 86.3%, of the correlation energy.
Triple and quadruple excitations accounted for 2%, of the correlation energy. A relatively good five-con-

figuration wave function is also given.

INTRODUCTION

HE need for atomic wave functions of better
than Hartree-Fock accuracy has long been
recognized. For smaller atoms, it has proved practical
to use configuration-interaction (CI) methods, and
such studies have recently been reported for atoms
containing as many as four electrons.! However, the
difficulty of carrying out calculations increases rapidly
with the number of electrons, and few authoritative
studies exist for atoms larger than Be. A five-electron
atom already illustrates most of the added difficulties
which must be overcome in order to make CI calcu-
lations for the remaining first-row atoms. These
difficulties include the effect of an increased variety
of intra- and intershell correlations involving electrons
in p orbitals, and the problems associated with the
description of an angular momentum eigenfunction for
five electrons in an open-shell state. Accordingly, we
present in this paper an accurate CI study of the five-
electron ?P ground state of atomic boron.

The experimental value of the correlation energy of
boron (the difference between the nonrelativistic exact
energy and the Hartree-Fock energy) has been placed
by Clementi? at 0.125 hartrees, based on his accurate
Hartree-Fock calculation? with an energy of —24.52905
hartrees. Two-configuration calculations have been
made on boron both by Iutsis ef al.* and by Clementi
and Veillard.® Both of these calculations use the Hartree-
Fock ground-state configuration 1s22522p plus the
“degeneracy effect’” configuration 1s5?2p3 and both
obtain about 25%, of the correlation energy. A more
complete CI study of boron was made by Boys.® He
obtained an energy of —24.600 hartrees, or 579, of the
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correlation energy, using an 11-configuration wave
function.

Our study of boron is aimed toward three objectives.
First, we wish to obtain as accurate a CI wave function
and energy as can be reached with reasonable amounts
of effort. Secondly, we wish to analyze our results in
terms of different single excitations and pair corre-
lations, to identify the main contributions to the
correlation energy, and to help evaluate the quanti-
tative accuracy of approximate theories of correlation.
Finally, we wish to present a simple wave function
which is accurate enough for many purposes. We have
found a five-configuration function of energy —24.608
hartrees. This result compares favorably with the
11-configuration result of Boys.

Our calculations are based on CI expansions whose
first configuration is the analytical Hartree-Fock func-
tion of Clementi.? This function is probably quite
accurate, as it gives an energy within 0.0001 hartree
of the numerical Hartree-Fock value obtained in a
careful investigation by Froese’ (—24.52913 hartrees).
The use of an accurate Hartree-Fock wave function
(rather than, for example, a double-{ function) as a
first configuration allows one to speak legitimately of
excitations of various types from the Hartree-Fock
zero-order state.

ATOMIC ORBITALS

The 1s, 25, and 2p atomic orbitals or one-electron
functions were taken to be the Hartree-Fock orbitals as
given by Clementi. Additional atomic orbitals were
obtained by adding Slater-type basis orbitals to the
existing basis set and using the Gram-Schmidt pro-
cedure to orthogonalize these new one-electron functions
to all previously adopted atomic orbitals of the same
angular momentum. Our total basis set contained ten
s, seven p, and four d Slater-type orbitals. From this
basis six s, five p, and four d atomic orbitals were
constructed. Following the notation used by Watson?®
in his Be calculation, the occupied Hartree-Fock
orbitals are referred to as 1s, 2s, and 2p, while the

7 C. Froese, J. Chem. Phys., Suppl. 45, 1417 (1966).
8 R. E, Watson, Phys. Rey. 119, 170 (1960).
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TasLE I. Basis set of Slater-type orbitals. 217
Orbital n ! ¢ 154
Is

v 1 0 4.4661 ¢
¢ 1 0 7.85 0.9+ _2s
¢c 2 0 0.832 £
od 2 0 1.1565 2p
[ 2 0 1.91197 0.3 ‘ . s =
ef 2 0 3.5213 0 - : :
g 2 0 5.05 . BOHRS
eh 3 0 2.03 ’
L4 3 0 10.6
¢f 4 0 2.76 094
°k 2 1 0.8783
] 2 1 1.3543
em 2 1 2.2296 -1.57
n 2 1 5.3665
op 3 1 10.28 .
vq 4 1 11.8 -2
or 3 1 2.25 F16. 1. Occupied Hartree-Fock orbitals for the 2P ground state
es 3 2 1.71 of atomic boron. Plot is of Py (r) as defined in the text.
ot 4 2 13.2
Z)‘ g % 1;:31 tively optimized for 1s% and 2s? correlation. Continuing

remaining ‘‘virtual” orbitals are designated sy, s11, stit,
stv, etc. The basis orbitals and the coefficients of the
basis orbitals in the resulting atomic orbitals are listed
in Tables I and II.

The screening parameter of each added basis orbital
was chosen to optimize its effect in describing a particu-
lar type of correlation. For example, basis orbital ¢,,
the main contributor to s1, was selected to optimize a CI
containing the configurations 1s?2522p, 152243 and
st 2s%2p. Atomic orbital s; was thereby made particu-
larly suited for describing 1s? correlation. By adding to
the above configurations p;%2s*2p and thereafter
1s% di® 2p, atomic orbitals pr and di were then respec-

in a similar way, atomic orbitals drr, 1, and si; were
successively optimized for 1s?, 2s>42s2p, and 2s
correlations, respectively. It became too cumbersome
to continue this process further, so the remaining
orbitals (si11, Stv, pr11, p1v, dirr, and drv) were optimized
in CI’s containing only the configurations 1522522p and
152243, plus configurations characterizing the relevant
correlated pair (1s® for s, prr, and drv; 2s? for syv,
prv, and dpp). It is planned to describe this process
elsewhere in more detail.?

The atomic orbitals we have obtained by the process
described in the two foregoing paragraphs have the
general form

‘Pnlm=Rnl(’)Ylm(07‘P) y (1)

where R,;(r) results from the linear combinations

TasLE II. Expansion of atomic orbitals in terms of the normalized Slater-type orbitals given in Table I. Atomic orbitals 1s, 2s, and
2p are occupied Hartree-Fock orbitals; the remaining atomic orbitals are virtual orbitals used in excited configurations.

(15)=0.92109 15557 ¢.+0.07847 01325 ¢,—0.00036 00006 ¢.+0.00085 00014 ©;+0.00002 00000 ¢,+0.01146 00194 ¢
(25) =—0.19400 97071 ¢,—0.01242 99723 ¢;-+0.01800 00119 ¢.+0.71580 04782 ©4+-0.38903 02597 »,—0.11030 00684 ¢
(s51) =—1.97116 75695 9,—0.16935 22976 ©;—0.00545 55774 ©,—0.25051 55350 ¢,—0.13517 44781 ¢,+0.01294 96046 o,

+2.45334 34755 ¢4

(s11) =0.22922 38820 ¢,—0.00214 48809 ¢, —0.09488 02107 o, —3.78618 89654 43— 2.05737 27695 ¢,+0.57339 97311 o,

—0.21881 92910 ¢,+5.51658 98361 o4

(s111) = —2.43246 06704 0,—0.20935 21436 ¢, —0.00834 17195 . —0.37342 96007 ¢;—0.20173 97512 ©,+0.02566 72642 ¢;
—0.77510 88894 ¢,+0.87663 14221 ¢3+3.45323 11270 o;
(s1v) = —0.38297 21483 ©,+0.00811 44440 ¢,+0.17833 63144 o, +7.11729 12698 ©4+-3.86743 35439 ¢,—1.07727 59014 ¢
+0.38827 26863 ¢, —27.96700 93488 ¢3,+0.32522 55427 ¢;+-18.02623 27118 ¢;
(2p) =0.54004 95918 ¢;+-0.38244 97109 ¢;+4-0.13207 99002 ¢,,+0.00956 99928 ¢,
(p1) = —0.09263 75883 ©1—0.06560 36398 ¢;—0.02265 63701 ¢,—0.00164 15919 ¢,+1.01460 55251 ¢,
(prr) = —2.63387 41273 ¢1+3.12164 99115 ¢;—0.64416 64563 ©n—0.04667 37809 ¢, —0.04890 46063 ¢,
(prrr) =0.12813 48061 ¢;—0.27459 17875 ¢;-+0.03133 79228 ¢, +0.00227 06233 ¢ — 5.43508 45248 ¢,+5.55154 02179 ¢,
(prv) =4.35399 84954 ¢r—12.69661 04231 ¢;+1.06485 71822 ©n+0.07715 53849 ¢,+0.29326 23310 ,—0.16627 78297 ¢,
+-8.09098 57262 ¢,
(dr) =1.00000 00000 ¢,
(@11) = —0.07088 92555 ¢,+1.00250 94945 o,
(drrr) = —1.18793 52764 ¢,+0.07364 82957 ¢,+1.55056 15836 ¢,
(d1v) =0.14626 18019 ¢,—2.66717 33250 ,—0.10350 88284 ¢,4-2.84101 05144 ¢,

® In the Ph.D. dissertation to be written by H. F. Schaefer (unpublished),
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F1c. 2. Hartree-Fock 1s orbital and corresponding virtual s
orbitals. Plot is of P,;(r) as defined in the text.

indicated in Table II. To aid in visualizing these atomic
orbitals, we have plotted their radial parts in the form
P.i(r)=7rR,i(r). Figure 1 shows the relative locations
of the Hartree-Fock orbitals 1s, 2s, and 2p, for orien-
tation purposes. As expected, the 2s and 2p atomic
orbitals have rather similar radial dependences. Figure
2 shows the 1s orbital and the two other s orbitals, s;
and st1, which were optimized for describing the con-
figurations with the 152 pair excited. We note that these
two virtual orbitals also lie in the 1s region of space and
have the nodal properties predicted by Nesbet!® to have
optimum effect. Figures 3—7 show the remaining virtual
orbitals, together with the Hartree-Fock orbitals which
occupy the same regions of space. The curves show that
there is a very definite separation between the orbitals
which contribute primarily to the K-shell correlation
energy and those which contribute primarily to L-shell
correlation.

ANGULAR MOMENTUM

The five-electron angular momentum eigenfunctions
are far more complicated than those of smaller systems.

20T

0.9+

-2l

F16. 3. Hartree-Fock 2s orbital and corresponding virtual s
orbitals. Plot is of Pni(7) as defined in the text.

1 R, K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955).
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Fi1c. 4. Hartree-Fock 1s orbital and corresponding virtual p
orbitals. Plot is of P,;(r) as defined in the text.

The complexity is due to the fact that many sets of
five spin orbitals can couple to form L-S eigenfunctions
in more than one way. Consider, for example, the
configuration formed by the excitation of a 2s electron
to a dj orbital to give 15?252pd;. This configuration has
an s, a p, and a d electron outside of closed shells, and
these may couple to form two linearly independent 2P
eigenfunctions. And the problem can get far worse.
The configuration 1s252p p1 p11, which is important
in our best wave function, leads to 15 linearly in-
dependent 2P states.!! Clearly, if we include all linearly
independent terms of the same orbital occupancy as
separate configurations, the resulting CI will rapidly
become so large as to make the matrix diagonalization
a very difficult task and to obscure the interpretation
of the wave function. In addition, the construction
of the linearly independent L-S eigenfunctions is a
major problem in itself.

Our approach to this problem was to develop a
method for identifying a nearly optimal mixture of the
full set of linearly independent eigenfunctions corre-
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Fic. 5. Hartree-Fock 2p orbital and corresponding virtual p
orbitals. Plot is of Py (7) as defined in the text.

1 Calculated with a computer program written by A. Roten-
berg. The method is described in J. Chem. Phys. 39, 512 (1963).
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F16. 6. Hartree-Fock 1s orbital and corresponding virtual d
orbitals. Plot is of Pn;(r) as defined in the text.

sponding to a given orbital occupancy. The optimal
mixture, of course, is that which is present in the exact
wave function. We approximated the optimal mixture
by determining it from a CI including all eigenfunctions
of the set in question, together with enough other
configurations to establish the relationship of this set
to the leading terms of the over-all wave function. This
means that we assumed that small refinements in the
final wave function would not cause serious readjust-
ment in the relative weights of the set of eigenfunctions
coming from a particular orbital occupancy. In applying
this procedure, we determined the optimum L-S eigen-
function for each singly or doubly excited configuration
from a CI which included the leading configuration
1s?2s?2p, plus all other configurations of the same
excitation type as the configuration under study.
Fortunately, it is possible to carry out the prescrip-
tion of the preceding paragraph without first explicitly
constructing the L-S eigenfunctions. Instead, we may
include in the CI all the Slater determinants needed to
form these eigenfunctions. The coefficients found for

1.5+

0.9+ /dI
O3+
| 2 3
O t t
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~0.91

.—-145.].
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Frc. 7. Hartree-Fock 2s orbital and corresponding virtual &
orbitals. Plot is of Py (r) as defined in the text.
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these determinants in the CI will be those of the approxi-
mately optimal L-S eigenfunction. For example, the
configuration 1s?252p d; has P eigenfunctions which
can be formed from nine Slater determinants. From a
CI which included 1s?25*2p, the nine Slater determi-
nants, and all other configurations involving excitation
of one or both 2s electrons, an “optimal” 1s?2s2p dr
eigenfunction was determined as

152252pdy = —0.39175520 det(1sa,158,250,2p_a,drs+5)
4-0.62587283 det(1sa,158,250,,2p_8,dr4 o)
—0.23411763 det(1s,158,258,2p—ct,dr 1 1x)
+0.27701257 det(1sa,158,2s0t,2 poct,d143)
—0.44255892 det (15, 158,250,2p08,d1.40)
+0.16554617 det (15,158,258, 2poedrscx)
—0.15993339 det (1sa,158,250,2p ¢, d108)
+0.25551151 det(1sa,1s8,252,2p48,d10cx)
—0.09557812 det(1sa,158,258,2p.ra,drocr) ,

@)

where the subscripts to 2p and dr indicate m quantum
numbers.

For the remainder of this paper, the term “configura-
tion” and the corresponding orbital occupancy symbols
will be taken to mean an optimal eigenfunction,
generated as described in this section. We plan to
record elsewhere the coefficients of the Slater determi-
nants in each of the 187 configurations used in this
work.?

CHOICE OF CONFIGURATIONS

The separability of electron pair correlations has
been much discussed recently,'? and some calculations
based on this approach have been carried out. In
particular, Nesbet!® has obtained accurate solutions for
atoms of what he calls generalized Bethe-Goldstone
equations. Although we had serious reservations about
the quantitative validity of separated-correlation
methods, we felt that the concept was at least satis-
factory enough to be used in deciding which configura-
tions to use in a large CI. Since the Nesbet-Bethe-
Goldstone formulation is conceptually straightforward
and no more difficult to apply to open-shell systems
than to closed-shell systems, it was chosen for this
purpose. Our approach to the Bethe-Goldstone equa-
tions was slightly different from Nesbet’s, since we used
angular momentum eigenfunctions rather than determi-
nants as the basis for our calculation. For example, to
describe the single excitation 2s — dj, we use an L-S
eigenfunction which is a linear combination of determi-
nants, some of which differ [see Eq. (2)] by two spin
orbitals from the Hartree-Fock state 1salsf2sa2s82p .
Nesbet would consider these determinants to be double

12 See, for example, D. F. Tuan and O. Sinanoglu, J. Chem.
Phys. 41, 2677 (1964).
18 R. K. Nesbet, Phys. Rev. 155, 51 (1967).
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excitations, whereas for us they are parts of a single
excitation.

We used second-order Bethe-Goldstone equations,
in which the energy is approximated as

E—_-Z e,-—f-z; €ij, (3)

where e; is the correlation energy obtained by single
excitations of the ith Hartree-Fock orbital and e;; is
the correlation energy obtained by simultaneous exci-
tation of the sth and jth Hartree-Fock orbitals. For
boron, these single and double-excitation energies are
€15, €25, €3p, €12, €232, €lss, €lazp, DA €200, Each corre-
lation energy is obtained from CI calculations in-
volving only configurations with the indicated excita-
tions. Thus,

e;i=E,—E,

eii=E—ei—Eo 4)
64j=E¢j—ei—ej—'Eo, ’L#]

where E, is the Hartree-Fock energy, E; is the energy
of a CI which includes the Hartree-Fock state and all
configurations in which orbital ¢ is excited, and E;;
refers to a CI which includes the Hartree-Fock state,
all single excitations of orbitals ¢ or j, and all their
double excitations.

For the set of orbitals we used, there are 237 possible
single- and double-excitation configurations. Of these,
164 were chosen for use in a final 187-configuration
function. We selected configurations for the final CI
on the basis of their contributions to the second-order
Bethe-Goldstone energy, rejecting all doubly excited
configurations which failed to contribute at least
0.00001 hartrees to a pair-correlation energy. All
possible singly excited configurations were retained,
since these can be viewed as corrections to the Hartree-
Fock state and omissions here might result in an
incorrect electron distribution.

An enormous number of triple and quadruple exci-
tations were possible. The configurations included were
formed by simultaneous use of the single and double
excitations which had proved to be most important.
Twenty-two of the most important of these configura-
tions were used. Several triple excitations of the L-shell
electrons, thought likely to be important but not
of the above type, were examined but proved to be
negligible.

RESULTS AND DISCUSSION

The main results of our CI studies are shown in
Table III. The Bethe-Goldstone energy increments were
calculated as indicated in Eq. (4). The 165-configuration
“full second-order CI” includes in a single calculation
all the configurations used in the Bethe-Goldstone
computations, and therefore provides a measure of the
extent to which the energy increments are truly

ELECTRONIC STRUCTURE OF
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TasLe ITI. Configuration-interaction and Bethe-Goldstone calcu-
lations of the 2P ground state of atomic boron.

Number of Energy,
Calculation configurations  hartrees
Best CI (all types excitations) 187 —24.639194
Full second-order CI 165 —24.636707
Most important configurations of 91 —24.637839
best CI
Best simple function 5 —24.608469
Analytical Hartree-Fock#* 1 —24.529053
Bethe-Goldstone energy increments
e 8 —0.0001840
2% 8 —0.0218187
s 4 —0.0000002
e1? 38 —0.0387831
25 29 —0.0392773
€152 31 —0.0034801
€1e2p 23 —0.0012473
€22p 23 —0.0050644
Sum of energy increments —0.1098551
Experiment (nonrelativistic)® —24.654

2 Reference 3. b Reference 2.

additive. We see that the full second-order CI yields
a correlation energy of 0.107654 hartrees, which is
86.3%, of the experimentally observed value. To this
result, we may compare the sum of the Bethe-Goldstone
energies, 0.109855 hartrees, or 88.19, of the experi-
mental correlation energy. We thus see that the pair
correlations in this system are additive to within
approximately 29, of the total correlation energy,
confirming nearly quantitatively the approach of
Nesbet.

Proceeding beyond second order, we note that when
the 22 triple and quadruple excitations were added to
the 165-configuration function, the energy was lowered
to —24.639194 hartrees, yielding 88.39, of the corre-
lation energy. This was our best wave function for
boron. We believe that this final function nearly
exhausts the basis set we have used. We estimate that
it may be possible to obtain a maximum of an addi-
tional 0.001 hartrees from triple and higher excitations.
This is the one area in which a small improvement might
have been made by adding further configurations.
Rather than the 29, which we found, we predict that
the true contribution of triple, quadruple, and quin-
tuple excitations is 3%, of the experimental correlation
energy.

Using the method we have described, it appears that
total configuration-interaction calculations can be made
on the rest of the first-row atoms and that these calcu-
lations will yield 85-90%, of the correlation energy.
Nesbet!®!* has reported Bethe-Goldstone calculations
on Be and Ne which obtain over 979, of the correlation
energy. From our work, it appears that about 29, of
this is due to overestimation which occurs when energy
increments are added together. The remainder of the
difference between Nesbet’s work and our second-order

% R. K. Nesbet, Phys, Rey, 155, 56 (1967).
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TasLE IV. A 91-configuration wave function for the 2P ground state of atomic boron, with the energy contribution of each configuration.

Energy Energy E(n)
contribution Coefficient in of n-configuration
Configuration E(n)—E(Mn-—1), 91-configuration function,
No. n Configuration hartrees eigenvector hartrees
1 1522522p e 0.96334095 —24.52905264
2 1522p3 —0.03038760 —0.20464261 —24.55944024
3 152s di 2p —0.01899592 0.13023436 —24.57843615
4 152242 prr —0.00393242 0.06558376 —24.58236857
5 15225 s por —0.00124417 0.04181398 —24.58361275
6 1522p dr? —0.00291758 0.03501298 —24.58653032
7 15%2s dir 2p —0.00089961 0.03147605 —24.58742993
8 15225 pm1 dr —0.00150179 0.02914062 —24,58893171
9 15%2s st 2p —0.00040438 0.02838392 —24.58933610
10 1t 25%2p —0.01895619 0.02112794 —24.60829229
11 1s% s11® 2p —0.00036332 —0.02102822 —24.60865561
12 1s? pi® 2p —0.00059559 0.01966275 —24.60925120
13 si? 2522p —0.01088668 —0.01751313 —24.62013787
14 15225 s1 pux —0.00068963 0.01584036 —24.62082750
15 1s% 51 511 29 —0.00030354 0.01156785 —24.62113104
16 15225 s1t prv —0.00008930 0.01039813 —24.62122034
17 15?25 stv pu —0.00000138 0.00987524 —24,62122172
18 152 s11 s1v 2p —0.00000666 0.00853489 —24.62122838
19 152 pr1 prv 2p —0.00013703 0.00766610 —24.62136542
20 1522s s1 2p —0.00015141 0.00700073 —24.62151683
21 15225 s pr —0.00038187 0.00681641 —24.62189870
22 15225 stv prv —0.00005863 0.00656446 —24.62195733
23 1s? 512 2p —0.00018720 —0.00628013 —24.62214453
24 15225 s1 prv —0.00008333 0.00620866 —24.62222786
25 1s2s 512 2p —0.00113725 0.00591257 —24.62336511
26 1525 prv din —0.00012426 0.00586677 —24.62348937
27 15225 sr por —0.00051753 0.00582674 —24.62400690
28 252242 py —0.00086882 0.00549949 —24.62487572
29 1s? pr1 di® —0.00007390 0.00546162 —24.62494962
30 1s? 51 51v 29 —0.00000724 0.00532383 —24.62495686
31 1525242 p1 —0.00042668 0.00529647 —24.62538354
32 152292 pr —0.00034684 0.00525507 —24.,62573038
33 di® 25%2p —0.00234082 0.00499777 —24.62807120
34 1s? prv? 2p —0.00008671 0.00489237 —24.62815792
35 1s? 511 dy 2p —0.00003800 0.00461525 —24.62819592
36 P 243 —0.00083850 0.00452551 —24.62903442
37 1s% 11 sur 2p —0.00032556 0.00446902 —24.62935998
38 152 srv? 2p —0.00000511 —0.00439936 —24.62936509
39 1s? dint® 2p —0.00005010 0.00413495 —24.62941519
40 15225 s1 p1 —0.00025793 0.00413289 —24.62967312
41 1525 pi® 2p —0.00067400 0.00381442 —24.63034713
42 1525 2p3 —0.00010157 0.00373768 —24.63044870
43 1s2s p1 pu 2p —0.00029017 0.00364480 —24.63073887
44 s 2p3 —0.00050558 0.00358968 —24.63124445
45 15252 s1 1 —0.00029890 0.00355242 —24.63154336
46 1522s p11 dix —0.00002833 0.00345355 —24.63157169
47 1s% sy s111 29 —0.00020143 0.00342084 —24.63177312
48 pur® 2529 —0.00163580 0.00339221 —24.63340892
49 15252p? pur —0.00009892 0.00338595 —24.63350784
50 1s dr 25%2p —0.00008715 0.00328750 —24.63359499
51 15 s11 drar 2p —0.00002451 0.00322902 —24.63361951
52 15252 pr dr —0.00020417 0.00312626 —24.63382367
53 1s? su® pun —0.00002348 —0.00296303 —24.63384716
54 1522s s prv —0.00018068 0.00295444 —24.63402783
55 i 2s dy 29 —0.00033516 0.00289503 —24.63436299
56 1s2s pr piv 2p —0.00015606 0.00287090 —24.63451905
57 smr? 25%2p —0.00069405 —0.00277175 —24.63521310
58 15225 dix 2p —0.00023677 0.00264394 —24.63544987
59 152 sy stv 2p —0.00006815 0.00260533 —24.63551802
60 1525242 prv —0.00004343 0.00249160 —24.63556145
61 1s% sir pu dr —0.00001686 0.00242657 —24.63557831
62 si2 2s di 2p —0.00020470 0.00227599 —24.63578301
63 1s? pr pux 2p —0.00006133 0.00208914 —24.63584434
64 152292 prv —0.00000592 0.00199995 —24.63585025
65 15252 p1 dint —0.00006075 0.00187663 —24.63591100
66 15225 s1v p1 ~0.00002244 0.00185962 —24.63593344
67 152s? p1 dux —0.00020933 0.00184817 —24,63614277
68 15252 prr dr —0.00002823 0.00175515 —24.63617100
69 15225 pr di —0.00004088 0.00170929 —24.63621188
70 1s% prid —0.00000631 0.00167190 —24.63621819
7 15252 prr —0.00000277 0.00161275 —24.63622096
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TABLE IV. (continued).

Energy Energy E(n)
contribution Coefficient in of n-configuration
Configuration E(n)—E(n-1), 91-configuration function,
No. n Configuration hartrees eigenvector hartrees

72 15225 sx pr —0.00013211 0.00159206 —24.63635307
73 152s pr? 2p —0.00002222 —0.00153646 —24.63637529
74 1s2s di® 2p —0.00002278 0.00147430 —24.63639807
75 1525 s 2p —0.00005505 0.00147172 —24.63645313
76 P12 2% pur —0.00008845 0.00146973 —24.63654158
71 1 S1x 2522p —0.00012006 0.00145468 —24.63666163
78 1525 p1 prmr 29 —0.00017377 0.00145369 —24.63683540
79 1s dux 2522p —0.00001759 0.00143681 —24.63685300
80 15252p% prnr —0.00010861 0.00130629 —24.63696160
81 152s? prv dx —0.00001424 0.00120907 —24.63697584
82 1525 dy di1 2p —0.00001410 0.00120128 —24.63698994
83 15225 st prn —0.00007267 0.00119699 —24.63706261
84 152 sqe® 2p —0.00011114 —0.00118942 —24.63717375
85 15252 stx pr —0.00008440 0.00116313 —24.63725815
86 si2 2% pur —0.00005299 0.00116104 —24.63731114
87 div? 25s%2p —0.00039084 0.00110177 —24.63770198
88 du? 2p3 —0.00010648 —0.00107305 —24.63780846
89 1s2s p11 prv 2p —0.00001116 0.00107166 —24.63781962
90 152 p1 prv 2p —0.00001764 0.00106568 —24.63783725
91 1522s% prv —0.00000140 0.00100968 —24.63783865

result arises from the fact that each Bethe-Goldstone
pair can be treated much more elaborately if it is not
subsequently necessary to include all pairs in a final
large calculation. Nesbet therefore uses larger (and
different) basis sets for each pair calculation.

Let us next consider the simpler wave functions
which can be used to approximate that of the full CI.
Starting from the full CI, we eliminated all configura-
tions with coefficients less than 0.001 in absolute value,
leaving the 91-configuration function described in
Table IV. Most of the remaining configurations in the
full 187-configuration wave function have coefficients
of magnitude between 0.0005 and 0.001. The 91-
configuration function still contains 87.2% of the
correlation energy and is therefore very little worse
than that of the full CI. After arranging the configura-
tions in order of the magnitude of their coefficients,
we successively removed configurations one by one,
starting from that of least weight, until the Hartree-
Fock function was reached. In this way we obtained
an estimate of the energy contribution of each configura-
tion. These data are also presented in Table IV.

A far simpler but rather good wave function can be
obtained by using the five configurations of Table IV
which make the largest energy contributions (all
greater than 0.01 hartrees). After these five configura-
tions, the correlation energy contributions fall off
rapidly. This five-configuration function gives 649, of
the correlation energy and may be suitable for many
calculations where extreme accuracy is not needed.

The function is

W=0.96934910 152252p—0.21351798 1522
+0.11843417 15225 di 2p+0.02147963 py? 2522p
—0.01686341 512 2522p.  (5)

The linear combination of Slater determinants used
for the configuration 15225 d; 2p is that given in Eq.
(2); the optimum L-S eigenfunction for the configura-
tion p1? 252p was found (to a good approximation) to
be that commonly denoted p:12(15)2s22p, i.e., the eigen-
function in which the two p; electrons are coupled to
form a LS two-electron function.

All computations were carried out on the Stanford
IBM System 360 Model 67 computer. All arithmetic
operations were performed in double precision, and
the program plus working storage required a total of
approximately 25000 double-precision words. Typical
over-all computation times were, for the 187-configura-
tion CI, 9 min; for the 91-configuration CI, 4 min; and
for the five-configuration wave function, 50 sec. We
plan to provide more details with respect to the compu-
tational methods and the 165-configuration and
187-configuration wave functions.?
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