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have been proposed by Friede14 et ul. and Anderson. '
They are referred to as virtual energy states and are
created by transition element impurities. It is proposed
that these states are responsible for the stationary peak
in the absorption curve at 300 nm. The position of the
virtual energy states below and above the Fermi level
could shift. However, the energy di8erence between the
Fermi surface and the occupied or unoccupied virtual
states should be independent of the Fermi energy posi-
tion. Similar studies on ANNi and ANPd alloys' 7 reveal
the formation of new absorption structures due to im-

purity states in the near infrared. Computations' in-
dicate energy ground-state solutions for impurity states
of CuNi of the order of 0.1—0.2 Ry. Small modi6cations
in the atomic integrals can change the impurity po-
tential by similar accounts. Therefore, the theory gives
no accurate results for our alloys.

'F. Abeles in Optical Properties and Electronsc Structure of
Metals and Alloys, edited by F. Abeles (North-Holland Publishing
Co., Amsterdam, 1966), p. 553.

s B. Caroli, Phys. Kondensierten Materie I, 346 (1963).' J. B. Sokoloif, Phys. Rev. 161, 540 (1967).

The concept of impurity states could explain some
anomalies in the optical absorption of CuNi alloys. The
experiments' showed no noticeable change in the posi-
tion of the main absorption edge near 600 nm. This was
explained as due to the formation of virtual energy
states. The secondary absorption structure at 300 nm
seemed to move with increasing concentrations of nickel
to lower wavelength by about 20 nm. From our present
studies we would conclude that this shift is due to
virtual energy states with optical absorptions near 300
nm. Their absorption peak may be slightly concentra-
tion-dependent and could move with increasing nickel
concentration to lower wavelengths. This peak would be
superimposed on the secondary absorption structure of
copper. Ke intend to study this effect in detail.
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The orthogonalized-plane-wave (OPW) method has been applied to calculate the energy levels at several
symmetry points in the Brillouin zone in indium metal. The calculated energy values were utilized to obtain
parameters for the pseudopotential interpolation scheme. Using these parameters, a number of dimensions
of the second- and third-zone Fermi surface were calculated and compared with experimental results from
de Haas-van Alphen and magnetoacoustic measurements. The calculated Fermi surface qualitatively
resembled that expected from the nearly-free-electron approximation. There were, however, diGerences in
detail which brought the theoretical results into better agreement with experiment. The effect of spin-orbit
interaction on the band structure was found to be small. The conduction-electron wave functions were
calculated at a number of points on the Fermi surface using the OPW method, These wave functions were
used to calculate the isotropic Knight shift, which was found to be 0.81%, in good agreement with
experiment.

I. INTRODUCTION

N recent years, the rapid development of experi-

. - mental techniques for the study of the shape and

dimensions of the Fermi surface has led to the accumula-

tion of a considerable body of such data in a number of
metals. ' Concurrently, the development of theoretical
methods' for computing energy bands has permitted a

*Supported by the National Science Foundation.
f Present address: Department of Physics, University of

California, Santa Cruz, Calif.
~ W. A. Harrison and M. S. Webb, International Conference on

the Fermi Surface of Metals (John Wiley tk Sons, Inc. , New York,
1960).

s J. Callaway, Energy Band Theory (Academic Press Inc.,
New York, 1964).

fairly detailed comparison' between the features of the
Fermi surface determined experimentally and theoretic-
ally. Since these features require for their interpreta-
tion only a knowledge of the energy bands, little atten-
tion has been paid to the calculation of wave functions
in solids. With the advent of nuclear- and electron-
resonance techniques, several additional properties are
now available which require for their interpretation a
detailed knowledge of the wave functions. Examples of
such properties are isotropic and anisotropic Knight
shifts, nuclear quadrupole interaction, electronic g
factors, and relaxation times for nuclear and electron
spin resonance.

3 W. A. Harrison, Phys. Rev. 118, 1190 (1960).
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From the study of the properties of molecules and
atoms, ' it appears that energy by itself is not a satis-
factory criterion for determining the accuracy of wave
functions since energy is a quantity which depends on
all of con6guration space. Other electromagnetic pro-
perties that depend on a specific region of con6guration
space allow a more severe test of the theoretical model
and resulting wave functions. It would therefore be
interesting to investigate for metals how well one could,
starting from a particular model, interpret both the
properties that depend explicitly on energy bands and
the properties that require in addition a knowledge of
the wave function. Indium is a particularly suitable
metal for such an investigation because of the wealth
of data of both kinds which are currently available for
it 5—8

The choice and evaluation of the crystal potential
are described in Sec. II. In Sec. III the procedure for
calculation of the energy by the orthogonalized-plane-
wave (OPW) method. is described. The results of the
OPW calculation at symmetry points are used to obtain
pseudopotential parameters for interpolation of the
energy bands. The resulting band structure is compared
with experimental data in Sec. IV. Spin-orbit sects
are discussed in Sec. V. The calculation of the Knight
shift and a comparison between its theoretical and ex-
perimental values are presented in Sec. VI, and con-
cluding remarks are given in Sec. VII.

II. POTENTIAL FOR THE CONDUCTION
ELECTRON

The crystal structure of indium metal can be de-
scribed alternatively as either body-centered tetragonal
(bct) with c/@=1.532 or as a face-centered tetragonal
lattice' (fct) with c/@=1.08. The Brillouin zone [(BZ) is
obtained in the usual manner and is shown in Fig. 1

together with some of the important symmetry points. '
The potential for the conduction electrons can be

written as

V(r) = 2Z(r)/r— (2)

within each cell (in rydbergs). In computing Z(r) we

4 T. P. Das and R. Bersohn, Phys. Rev. 115, 897 (1959).
~ J. A. Rayne and B. S. Chandrasekhar, Phys. Rev. 125, 1952

(1962); J. A. Rayne, ibid 129, 652 (1.963).' G. B. Brandt and J. A. Rayne, Phys. Rev. 132, 1512 (1963);
Phys. Letters 12, 87 (1964).

7 P. R. Torgeson and R. G. Barnes, Phys. Rev. Letters 9, 255
(1962).

8 J. E. Adams and L. Berry and R. R. Hewitt, Phys. Rev. 143,
164 (1966);T. T. Taylor and R. R. Hewitt, ibid 125, 524 (1962)..

G. F. Koster, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1955), Vol. 5.

where the summation is over all lattice sites. We make
the usual approximation of a spherical Wigner-Seitz
cells Lradius r, =3.4788 atomic units (a.u.)$ and a
central potential

FIG. 1. Brillouin zone for indium vvith symmetry
points and lines indicated.

separate the various contributions along the lines of
Heine. "

St(r): Coulomb Potential due to the Nuclei
and Core Electrons

Since there is little overlap between core electrons,
the contributors to Zt(r) will be the nuclear charge of
49 and the surrounding core electrons in closed shells
is' through 4d' . For the latter, Herman, and Skillman's
Hartree-Pock-Slater wave functions" for indium atom
were used. The screening eGect of the conduction elec-
trons was accounted for by using core wave functions
for the neutral atom rather than In' ' '.

Ss(r): Exchange Potential between Core
and Conduction Electrons

For the core-conduction exchange we have adopted
the prescription of Robinson, Bassani, Knox, and
Schrieffer" who have tried to incorporate Coulomb cor-
relation within the framework of the Slater exchange
approximation, and have derived a modified expression
for the Slater potential

&s =—L(3/8 )p(r)~'( )1'" (3)

where F(a) is charge-density-dependent and is given by

F(n) =1——,"n tan —'(2/a)+-'ns in(1+4/as)
——sa'L1 —rsn' ln(1+4/n-') j, (4)

with
=0646/Pp( )j'".

The correction factor P(n) has the effect of reducing the
unscreened exchange potential at all distances but this
reduction becomes most severe in, the low-density
region. This is important because the unscreened Slater
potential is known to overexaggerate exchange eEects

"V.Heine, Proc. Roy. Soc. (London) A240, 340 (1957); A240,
354 (1957); A240, 361 (1957).

~'F. Herman and S. Skillman, Atomic Structure Calculation
(Prentice-Hall, Inc. , Englewood Cliffs, N. J., 1963).

~' J. E. Robinson, F. Bassani, R. S. Knox, and J. R. Schrieffer,
Phys. Rev. Letters 9, 215 (1962).
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TABLE I. The crystal potential.

Z1b @20 Z88 g e g&f

0.01
0.10
0.20
0.30
0.46
0.62
0.78
1.02
1.26
1.50
1.98
2.46
2.94
3.42
4.06
4.70
5.34
5.98
6.94
8.22
9.50

10.78
12.06
13.98
15.26

48.3259
43.1064
38.7152
35.0453
30.3298
26.6532
23.6110
19.8906
17.0417
14.8890
11.8309
9.5680
7.7617
6.3622
5.0562
4.2384
3.7434
3.4480
3.2126
3.0818
3.0336
3.0156
3.0089
3.0060
3.0000

0.1136
0.5406
0.6163
0.7372
0.8410
0.8458
0.8309
0.8989
0.9358
0.9072
0.6972
0.5902
0.6316
0.6838
0.7225
0.6518
0.5010
0.3726
0.2278
0.1125
0.0549
0.0271
0.0137
0.0051
0.0027

—0.0031—0.0313—0.0626—0.0939—0.1439—0.1939—0.2439—0.3187—0.3933—0.4677—0.6157—0.7623—0.9072—1.0501—1.2368—1.4185—1.5943—1.7636—2.0032—2.2922—2.5405—2.7416—2.8892—2.9966—3.0000

0.0002
0.0019
0.0038
0.0057
0.0087
0.0117
0.0148
0.0193
0.0238
0.0284
0.0375
0.0465
0.0556
0.0647
0.0768
0.0889
0.1010
0.1131
0.1312
0.1554
0.1796
0.2038
0.2280
0.1801
0.0926

48.4365
43.6175
39.2726
35.6943
31.0356
27.3169
24.2128
20.4901
17.6081
15.3563
11.9498
9.4424
7.5416
6.0606
4.6187
3.5606
2.7511
2.1700
1.5684
1.0574
0.7276
0.5050
0.3614
0.1946
0.0925

X =r/p, =r/0. 241942.
b Z1 is the Coulomb potential due to ion cores.
o Zg is the screened Slater exchange potential between ion cores and

conduction electrons,
& Z8 is the Coulomb potential due to conduction electrons.
& Zs is the correction due to deviation from spherical symmetry.
& Zr is the total crystal potential.

in the low-density region" leading to a total potential
with a rather long tail.

The uniform distribution will represent the potential
between conduction electrons quite well in the region of
large r. It is true that the conduction-electron charge
density will have oscillations due to orthogonalization
to the cores, but these oscillations will occur within the
core region where the other terms PZt(r) and Zs(r)]
in the potential predominate. A more important cor-
rection arises from the fact that a sum over Wigner-
Seitz spheres, as in Eq. (1), does not completely map
out the actual crystal. Hence the potential is over-
emphasized in the region between atoms where the
spheres overlap while in other regions which are not
enclosed by spheres, the potential is neglected entirely.
This can be corrected in the manner 6rst suggested by

'8F. Herman, J. Callaway, and F. S. Acton, Phys. Rev. 95,
371 (1954).

Zs(r): Coulomb Potential between Conduction
Electrons

In calculating the potential due to the conduction
electrons, we have assumed a uniform distribution of
three electrons in each Wigner-Seitz sphere. The
potential resulting from such a distribution is

Heine, "and the effect of the correction is included by
an additional" "contribution 2Zs(r) to the total 2Z(r).

For a heavy metal like indium, the exchange and
correlation between conduction electrons is quite dif-
icult to approximate with any reasonable degree of
confidence. We have therefore omitted any considera-
tion of these sects in the potential. The various con-
tributions to Z(r) are listed in Table I.

IIL OPW CALCULATION AND PSEUDO-
POTENTIAL INTERPOLATION

There are a number of excellent reviews' ""of the
theory of the OPW method, '" so we shall present only
a few relevant points of the procedure we have followed, .

For the core functions employed in the orthogonaliza-
tion procedure we used those obtained by solving the
Schrodinger equation in the potential V(r) of the
conduction electrons and not" with the atomic poten-
tial. To distinguish between the two, one can refer to
the former as quasicore and the latter as atomic-core
functions. The quasicore wave functions were found by
integrating the Schrodinger equation numerically for
the 1s through 4d wave functions. This was done with
the aid of a program originally written by Cooley'
and modi6ed by Zare and Cashion" for use on the
IBM 7090.

A general program was written to generate the
Hamiltonian matrix H and the overlap matrix S that
arise in the variational procedure. For a particular
symmetry point and irreducible representation, the
various symmetrized wave vectors were initially read
in as data and the program calculated the matrix ele-
ments of Lt and S between symmetrized OPW's. To
obtain the eigenvalues it is necessary to solve the secular
equation det

~
H —ES

~

=0. Since some of the properties
we are interested in depend on the wave functions, it
becomes necessary to solve for the eigenvectors also.
Therefore a separate program was written to Gnd S-'
and construct the new matrix B'=S 'H, and the
secular matrix (H'=EI) was then diagonalized. "

Following the format outlined above, the energies
for the various irreducible representations at the sym-
metry points were calculated. In Table II, the energies
are listed and a comparison is made with the cor-
responding free-electron energy values.

' G. D. Gaspari, Ph. D. thesis, University of California, River-
side, 1965 (unpubhshed).

OT. L. I.oucks, Ph.D. thesis, Pennsylvanis State Universityf
1963 (unpublished); T. L. Loucks and P. H. Cutler, Phys. Rev.
133, A819 (1964)."T.0. Woodruff, in Solid State Physics, edited by F. Seitz
and D. Turnbull (Academic Press Inc., New York, 1957), Vol. 4."C. Herring, Phys. Rev. 57, 1169 (1940)."J.W. Cooley, Atomic Energy Commission Research and De-
velopment Report No. NVO 9490, 1961 (unpublished).

9R. N. Zare and R. K. Cashion, University of California
Radiation Laboratory Technical Report No. 10881, 1963 (unpub-
lished).' The authors are indebted to Dr. John Fry for the use of a
program which diagonalizes a nonsymmetric matrix.
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and
Us= Ux,

(6)

n F. Herman, Phys. Rev. 88, 1210 (1952);93, 1214 (1954)."J.C. Phillips, Phys. Rev. 112, 685 (1958).
2' L Kleinman and J. C. Phillips, Phys. Rev. 116, 880 (1959).
'4 M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).
'5 J. Austin, V. Heine, and L. J. Sham, Phys. Rev. 127, 276

(1962)."F.Bassani snd V. Celli, Nuovo Cimento ll, 805 (1959); J.
Chem. Solids 20, 64 (1961).

"W. A. Harrison, Phys. Rev. 118, 1182 (1960).

In order to get an idea of the convergence of the
energies, it was decided to explicitly test the con-
vergence for several symmetry points. Secular equa-
tions as high as 10X10 incorporating up to eighty
OPW's were diagonalized. From the results" it was
felt that errors resulting from truncation of the secular
equation mould be expected to be less than 0.01 Ry
in all cases. It is interesting to note from Table II that
the free-electron energies are reasonably close to the
OP% values throughout most of the arillouin zone
(BZ). A closer look at the matrix elements H and
S ~ indicates the reason for this nearly-free-electron
behavior. It was noticed that in H the Fourier
coef6cients of the crystal potential were being cancelled
by the terms from orthogonalization leading to an
energy matrix whose diagonal elements were predomin-
antly determined by the kinetic energy, and the off-
diagonal elements were considerably smaller than the
diagonal elements. This behavior of the Hamiltonian
matrix" "forms the basis for the pseudopotential inter-
polation scheme. "

In principle it is possible to use the OP%" method to
determine the complete band structure; however, the
computational effort can be greatly reduced by using
the pseudopotential interpolation scheme. A number of
alternate procedures" " for the application of the
pseudopotential methods to band-structure calculations
are available in the literature. To retain the spirit of
the 6rst-principle nature of our calculation, me have
follomed the procedure of using the calculated values
of the energy levels at certain symmetry points" to
determine the pseudopotential parameters rather than
utilizing experimental band data for this purpose.

Since our OPW calculation does not employ a k-de-
pendent potential, the use of a local pseudopotential is
adequate. Here the Fourier coeKcient (k+K;~ V„~k)
is only a function of the reciprocal lattice vector K,.

The number of Fourier coeKcients of the pseudo-
potential to be kept as parameters is not well defined
but the criterion that they must reproduce the energy
values already calculated by the OP% method fairly
accurately is sufi.cient for our purposes. If the parame-
ters do meet this criterion, then we can be con6dent
that the energy bands obtained will be at least as
accurate. It was decided to keep only Gve parameters
which are de6ned by

Z1 U000 y Z2 U011 1 Z3 U002 P Z4 U110 P

ALE II. Energies at points of symmetry from OPW
calculations.

Symmetry point

P$
Fg
Z2'
Z1
Z5
Ze

b, 4
X8'
X1
X4'
X2'
Ts (doubly degen. )
T4
T1
V4
V1
V1
Ug

U4
N1
N4
N4
Z1
Z4
Z1
S4
Si
Sg

No. of
OPW's

61
89
80
48
64
80
23
37
56
44
56
56
40

44
38
24
24
42
28
38
30
30
30
22
34
22
40
28
38

OPW
energy'

0.0000
1.640
0.4274
0.4554
0.7107
1.0778
0.1209
1.0869
0.4895
0.5601
0.9264
0.9568
0.5963
0.6626
0.7218
0.4473
0.4891
0.7886
0.4673
0.5124
0.7588
0.3605
0.3725
1.2624
0.1223
0.8783
0.9400
0.5114
0.6017
0.6913

Free-electron
energy

0.0000

0.4478

0.1314

0.5255

0.6375

0.4694

0.4910

0.3747

0.1336

0.5492

a Energies are in rydbergs relative to the bottom of the band.

where K is any reciprocal lattice vector whose length is
greater than that of (1,1,0). The use of a constant V~
for the higher reciprocal vectors is reasonable since the
higher Fourier coefIicients are essentially determined
by the potential in the core region where U„ is small
because of the effective cancellation by orthogonaliza-
tion. These parameters were determined by solving"
the 6ve nonlinear simultaneous equations obtained
from 2X2 secular equations at the points Z», d1, X4,
X3', and Z2'. One could make any choice of the five
irreducible representations one uses to obtain the
Fourier coefBcients but we found that the best over-all
6t to the calculated energy values were obtained when
the above five representations were used.

The nonlinear simultaneous equations were solved
using the Newton-Raphson method" and the initial
values needed to start the procedure were obtained by
perturbation theory. In this way the following values
mere obtained:

Z1= —0.3603,
Z, =—0.9847X 10-2

Z5=0.1494X10 '.

Z2= —0.7968X10 '
Z4= 0 2563X10-' (7)

In order to check how well these parameters represented
the bands, the energies for a number of irreducible

s' K. Nielson, 3Eethods is Nsmerica/ Asalysis (The MacMillan
Co., New York, 1956),
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representations were computed and compared with
the OPW calculation. This comparison is presented in
Table III, where the energies are relative to the bottom
of the band. The agreement is quite favorable and we
can feel conident that the resulting bands will be as
accurate.

Using the calculated pseudopotential parameters, the
energies along symmetry lines I'Z, I'Z, ZV, ZU, A, B,
D, Ii, and H (Fig. 1) were calculated. For all these cases,
a third-order secular equation was used, and the
resulting energy bands are shown in Fig. 2. The value
of the Fermi energy indicated in the 6gure was not ob-
tained by a direct calculation but rather by an empirical

method. For a direct calculation one has to obtain
constant energy surfaces Ez Eo in k-space and slow——ly
alter E& until the volume enclosed by the constant
energy surface is equal to 1-,'times the volume of the
BZ. Since this procedure would require much additional
labor and computing time, it was decided to use ex-
perimental data to determine the Fermi energy Ep.

It has already been pointed out that the OP% energy
values differed slightly (Table II) from the free-electron
energies; in fact, the average diGerence is approximately
0.025 Ry. It seems reasonable to assume that the Fermi
energy is somewhat lower than the free-electron value
of 0.633 Ry. One could then determine the Fermi
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energy by comparing topological features such as the
extremal dimensions and areas of the Fermi surface for
a number of choices of the Fermi energy in the neigh-
borhood of 0.633 Ry with the experimental results of
Rayne and co-workers. ' ' In order to facilitate such a
comparison the nearly-free-electron Fermi surface for
the second and third band is reproduced" in Pigs. 3
and 4. The details of this comparison in terms of the
dimensions of the relevant sections of the Fermi surface
are described in the next section. It was found that a
Fermi energy of 0.611 Ry satisfactorily fitted most of
the features of the experimental Fermi surface. The fact
that there was no unique Fermi energy, which fitted
exactly all the available data, is not very disturbing
since certain aspects of the Fermi surface mere ex-
tremely sensitive to the strength of the potential. Con-
sequently, we had to be satisfied with a Fermi energy

TAaLE III. Comparison of energies obtained from
pseudopotential and OPW calculations.

Irreducible
representation

Xy
X4

Vs
V4

Uy
Ue

Ug
Ej
T4
TQ

Pseudopotential
energy (Ry)

0.181'
0.582»
0.119'
0.118b
0 697b
0 099a
0.099b
0.140b
0.121.
0.120
0.406b
0.0064'
0 315a
0.252
0.714'
0.712b

OPW
energy

0.210
0.576
0.139

0.703
0.097

0.162
0.117

0.409
0.011
0.313
0.246
0.736

a A second-order secular equation eras used.
b A third-order secular equation was used.

that reproduced the general shape of the Fermi surface
quite well.

IV. BAND-STRUCTURE RESULTS AND
COMPARISON WITH EXPERIMENT

Having determined the Fermi energy it now becomes
possible to proceed to a filling up of the bands. The first
band is found to be completely filled while the fourth
band is completely empty. This corroborates the con-
clusions of Rayne and Chadrasekhar' from the interpre-
tation of the magnetoacoustic experiments. Merriam'0
has conjectured from an analysis of lattice parameter
and superconducting data from In-Pb and In-Sn solid
solutions that the first band of indium contained some
holes. However, our calculated first band in Pig. 2 is
definitely below the Fermi surface and ~ill be com-
pletely filled. The nearly-free-electron model of Har-

's The authors are grateful to Dr. J. A. Rayne for Figs. 3-6."M. F. Merriam, Phys. Rev. Letters 11,321 (1963).

t:ooi]

FzG. 3. Free-electron Fermi
surface for indium (second
band).

fo

rison" predicts pockets of electrons in. the fourth band
but these are removed by the finite crystal potential.

The second band surface is found to consist of
pockets of electrons around the 14 sides of the polyhedra
which extend towards the I' point. Our calculation in-
dicates that the surface does not make any contact
with the BZ boundary, whereas the nearly-free-electron
surface (Fig. 3) touches the zone boundary at the
corners of the diamond. This behavior is analogous to
that found for aluminum by Harrison. "If contact were
made, there would be a multiply connected surface
leading to the possibility of open orbits. Such open
orbits have not been observed in the magnetoresistance
experiments of Alekseevskii and Gaidukov, " lending
support to a Fermi surface which is not multiply con-
nected. The anomalous skin e8ect in indium has been
measured by Dheer" indicating that the area of the
Fermi surface is 93% of the free-electron Fermi surface.
This is in agreement with our second-zone surface since
a decrease in the surface area would occur if the surface
does not touch the zone boundaries.

The central cross sections of the Fermi surface arising
from the second band are shown in Figs. 5 and 6. In
Table IV, some extremal dimensions of the second-band
Fermi surface are listed for two values of the Fermi
energy, the free-electron value of 0.633 Ry and the
chosen value of 0.611 Ry, and these dimensions are
compared with the free-electron model and the experi-
mental results of Rayne. ' This comparison gives support
to the speculation that the second-band Fermi surface

t:ooi)

Fzo, 4. Free-electron Fermi surface
for indium (third band).

s' W. A. Harrison, Phys. Rev. 116, 555 (1959).
3~ M. E. Alekseevskii and Yu. P. Gaidukov, Zh. Eksperim. i

Teor. Fiz. 36 447 (1959) LEnglish transl. : Soviet Phys. —JETP
9, 311 (1959) .

» P. N. Dheer, Proc. Roy. Soc. (London) A260, 33 (1961).
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[ooi]

= foio]

FIG. 5. Cross section of the second-band Fermi surface in a
plane perpendicular to D00$ direction in the nearly-free-electron
approximation.

canbequalitativelydescribed by the nearly-free-electron
model.

From Fig. 2, the third-band electrons are seen to be
located on and near the symmetry lines A and H. In the
nearly-free-electron model, these sections can be pieced
together resulting in a surface shown in Fig. 4 centered
around the symmetry point Z. Owing to the fact that
for indium we are dealing with a tetragonal lattice, the
symmetry lines A and II and consequently the two
arms o. and p are not equivalent as they were for
aluminum" where the lattice was cubic.

The existence of the p arms is well established experi-
mentally'' ""and some of the extremal dimensions
and cross sections are available. " Our calculations
[Fig. 2(b)j indicate that these arms are not pinched off

at the ends and form a loop' "as expected from the
free-electron model. In Tables IV and V the experi-
mental dimensions and cross sections are compared with
the results of our calculation for two choices of the
Fermi energy and the free-electron model. The choice
of 0.611 Ry for the Fermi energy leads to generally
good agreement between theory and experiment while
the predictions of the free-electron model are signi-
6cantly larger.

The cyclotron mass of the P arms for a magnetic field
in the (110) direction has been determined by Brandt

TA'BLE IV. Comparison of the theoretical and experimental
extremal dimensions of the Fermi surface.

Dimension
designa-

Zone tion (OPW) p

1.016
1.20
1.07
0.38
0.32

(OPW)sb

1.03
1.24
1.12
0.36
0.25

Free
electron

1.04
1.24
113
0.42
0.39

Mean
experi-
mental'

1.03
1.19
1.03
0.35
0.25

+ Using a Fermi energy of 0.633.
b Using a Fermi energy of 0.611.
o Values obtained from Rayne (Ref. 5}.
dAll units are in g ~.

'4 R. T. Mina and M. S. Khaikin, Zh. Eksperim. i Teor. Fiz. 48,
111 (1965) LEnglish transl. : Soviet Phys. —JETP 21, 75 (1965)g.

'~ V. F. Gantmakher and I. P. Krylov, Zh. Eksperim. i Teor.
Fiz. 49, 1054 (1965} LEnglish transl. : Soviet Phys. —JETP 22,
734 (1966}j.

and Rayne' from the temperature variation of the de
Haas-van Alphen oscillations using the relationship

me/mp ——(1/z-) dA/dE,

dA/dE being the rate of change of cross-sectional area
with energy and mo the free-electron mass. The experi-
mental value is found to be (m*/mp), n=0.19. From a
graphical analysis of calculated contours around the
Fermi energy 0.611 Ry we have obtained a theoretical
value of (m*/mp) i =0.11. This discrepancy between
the experimental and theoretical cyclotron mass was
found to persist for various choices of the Fermi energy.
This type of disagreement has been found for aluminum

by Harrison" and for lead by Anderson and Gold. "
These authors state that better agreement would be
obtained if one were to replace the free-electron mass
with a renormalized mass including electron-phonon
interactions.

Brandt and Rayne' have observed the de Haas —van
Alphen oscillations associated with the o. arms. On the
other hand, Mina and Khaikin, '4 from cyclotron reson-
ance studies, and Gantmakher and Krylov, "from (rf)
size-effect measurements, failed to detect effects as-
sociated with the n arms. Our band-structure results
LFig. 2(b)] for the line FI give definite evidence for the
existence of the e arms. The results indicate that the n
arms are pinched off at the point T but seem to make
slight contact with the p arms.

V. SPIN-ORBIT EFFECTS

So far we have treated the conduction electrons as
nonrelativistic particles but since indium is not a very
light metal it is important to calculate the effects of the
spin-orbit interaction. In this section we are interested
in calculating the magnitude of the spin-orbit inter-
action for states near the Fermi surface. Those energy
levels which have been accurately determined belong
to the irreducible representations X1, 51, T5. Of these,
T5 is particularly interesting since it is a doubly de-
generate level (not including spin) where the second-
hand Fermi surface almost touches the zone boundary.
Besides, Ts has no s symmetry but has p and d sym-
metry, hence we expect it to be a good candidate for the
study of spin-orbit interaction for electrons at the
Fermi surface.

If spin is included, T5 is a fourfold-degenerate level
and will split into two twofold degenerate levels when
spin-orbit effects are considered. That is, the direct
product representation of T5)&D'" contains the two
additional two-dimensional representations T6 and T;.

TpXD'"= Ts+Tr.

From the irreducible representation of T6 and T7 one
can construct the correct symmetrized combinations of
OP|At's transforming as particular rows of T6 and T7

's J.R. Anderson and A. V. Gold, Phys. Rev. 139, A1459 (1965).
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and we know that there will then be no mixing between
these under spin-orbit interaction.

For T~ we consider the eight OPW's constructed
from the following wave vectors:

(b)
l (ool]

][
Arm

, 9
/3 /JL ~4 8

W Cp Gp C

8) —x' 8) x' C )

8) —
7l 8) —7l C

4= —Ã G)7l 8) —X'C )

/
(F

~E D~

c&
/

combined with the spin functions
FIG. 6. Cross sections of the second- and third-band Fermi sur-

face in a plane perpendicular to L110j direction in the nearly-free-
electron approximation.

T~ representations and between Tv and Tq.»d @=I
(O) &1)

AE(Ts) =E(Ts)—E(Ts) = (c [ II,., I c)= (c' [H, ., I
c'),

The correct symmetrized OPW's transforming like ~E(Tr)=E(Ts) E(Tr)=(dl&' .Id) (12)
different rows of the single group of T5 are given by = «'I & . .Id'&.

1 2 3 4

Ib) = Ikt& —Iks)+ Iks& —Ik4&.
(10)

L(1-') Ik.»-(1-') Ik.&~
2v2

—(1+s) [k,)P+ (1+s) [k,)a7,

1
I
c') = 5(1+~)[kr&~—(1+~)[ks)~

2V2

—(1—i) Iks&n+ (1—i) Ik4&nj,

1
L(1+') Ik )~-(1+ ) Ik.»

2&2

—(1—s) [ks)P+(1 s) [k4&P j—,

One can easily obtain the correct symmetrized combina-
tion transforming as T6 and T7 by applying the usual
projection operator'r to either

I
a)n or

I a)p or similarly

I b)rr or
I b)P. Following this procedure the symmetrized

combination of OPW's transforming like different rows
for T6 and T7 are

where

and

DE(Ts) =(c'[H, . [c'),

I
c')=- (v,—Z &y. [

v, )y.)~
Ng c

(13)

vt, = g c,[k,),
QXQ r=r

where Eq is a normalization constant. The values of C,
are the coeflicients for

I
c') in Eq. (11). In the matrix

element for hE there are plane-wave-plane-wave,
plane-wave —core, and core-core parts. It has been shown

by Cohen and Falicov, " and Liu" that over 90%%uq of
the matrix element comes from the core-core part.
On retaining only the core-core part of the matrix ele-

TABLE V. Comparison of extremal cross-sectional areas
of the Fermi surface.

These relations for the change in energy due to the
spin-orbit interaction are obtained neglecting the admix-
ture of higher levels but since we expect the matrix
element connecting the T6 and Tv levels to higher
levels to be much smaller than the energy separation,
this should lead to a rather small correction. We have

[d') = L(1—i) [k,) —(1—i) [k,)~
2M

—(1+ ') Ik & +(1+s)[k ) l.

Direction
of magnetic

Geld (OPW) P

100 0.103~
110 0.075

(opw), b

0.067
0.042

Free
electron

0.094
0.079

Exp O

0.058
0.044

In terms of the wave functions (11)one obtains the fol-
lowing first-order energy differences between T6 and

& Cross-sectiona1 area of Fermi surface using Fermi energy of 0.633.
b Cross-sectiona1 area of Fermi surface using Fermi energy of 0.6i1.
e Brandt and Rayne (Ref. 6).
d Units are A 2.

"M. H. Cohen and L. M. Falicov, Phys. Rev. Letters 5, 544
'7 R. S. Knox and A. Gold, Symmetry in the Solid State (W. A. (1960).

Benjamin, Inc., New York, 1964). "L.Liu, Phys. Rev. Letters 6, 683 (1961).
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ment we obtain the following result:

B„r(k,)= j&(k,r)R„&r'dr,

B„s(k,)= j s(k,r)R„srsdr,

(16)

and R„r and R„s are radial p and d core wave functions
with principal quantum number n. The Grst part of the
right-hand side is the p contribution and the second
part is the d contribution. Making use of the C~ from
Eq. (11) and performing the necessary computations
using our calculated potential (Table I), the following
results are obtained:

bE(Ts) =0.0131Ry,
bE(T&)=—0.0131 Ry,

and a splitting E&,—Ez,=0.0262 Ry. As expected, the
spin-orbit effect is larger in magnitude than for mag-
nesium' but is still rather small. This relatively small
effect of the spin-orbit interaction in indium metal can
be understood by realizing that the spin-orbit Hamil-
tonian is effective mainly over the core region which is a
small fraction of the atomic cell due to the nearly-free-
electron behavior of the conduction electrons.

If we assume that spin-orbit effect does not change
the Fermi energy, the T6 level will lie just below the
Fermi surface indicating that the second-band Fermi
surface still does not touch the zone boundary. It should
be remembered, however, that the band structure is
only accurate to 0.01 Ry, and since spin-orbit effects
are of this order of magnitude, a more detailed in-
vestigation over the entire Fermi surface does not
seem warranted,

VI. KNIGHT SHIFT

The expression for the Knight shift in a magnetic
Geld can be shown to be"

ba/a= (8 /3) x,(I it, (O) I
')- (18)

'0%'. D. Knight, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1957), Vol. 2.

3m j dV
bE= n' P P B„r(k,)B„.r(k, ) R„rR„r rdr

gg n=»'=2 dr

(k, yk, ), 12~r. 4 4

X Z &.Cs* + ~'E Z B.s(ks)
s, s =r ~ks~' n-3 n'=3

dV
XB;s(k,) R.sR~ s «» g C,&;*

dr
(k, k, )(k, &&k,),

X , (15)

where

where the speciGc heat C,=yT at low temperature, p~
is the Bohr magneton, and k is the Boltzmann constant.
It should be noted that Eq. (19) applies rigorously to a,

system of noninteracting electrons. In a real metal,
one expects X„ to be increased above the free-electron
value because of exchange effects, since adding electrons
of parallel spin increases the exchange energy. But it is
also true that the correlation energy between electrons
of antiparallel spin is reduced when the spins align
themselves, which would lead, to a red.uction in x~.
From the calculations of Bohm and Pines, "X~ for free
electrons appears to increase somewhat when electron-
electron interactions are taken into account. In line
with our neglect of the effects of exchange and correla-
tion on band structure and because of the uncertainty
of the importance of this correction for Bloch electrons,
we have not included the effects of correlation on X„.

Bryant and Keesom" have determined p for indium
from their speciGc-heat measurements. They obtain a
value of

7= 1.4035 && 10' erg/g at. deg'.

Substituting this value into (42) gives for xs

x„=1.403)& $0 ' volume units.

(2o)

The remaining quantity that needs to be evaluated is:

J'[ld, (0)
~

(V,E[-wa,
(l&~(0)l')- =

v,EI '«F (22)

where the integration is over the area of Fermi surface.
For wave functions built out of OP%'s the integral

in Eq. (22) is extremely difficult to evaluate since no
simple analytic expressions are available for the varia-
tion of QP%'s with the wave vector k. In order to get
an approximate answer it was necessary to replace the
integral in (22) by a sum which was then evaluated at a
few representative points on the Fermi surface. Since
the third band contains a rather small fraction of the
conduction electrons, it was assumed that most of the
electrons contributing to the Knight shift were in the
second band. Assuming this, we then evaluated fq(0)

"C.A. Bryant and P. H. Keesom, Phys, Rev. Letters 4, 460
(1960).

42 D. Pines, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1955), Vol. l.

where X„ is the Pauli paramagnetic susceptibility per
atom and (~ fz(0) ~

'), is the density at the nucleus due
to a conduction electron averaged over the Fermi
surface.

In order to calculate the Knight shift for indium, a
knowledge of X„ is necessary. Since no electron-spin-
resonance experiments have been performed on indium,
X„was obtained from the low-temperature speciGc-
heat data of Bryant and Keesom, " the relation being"

x„=3(pn/s k)y,
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and ~j,E at three points on the second-zone Fermi
surface (along Fh, 1'Z, and FN) and averaged the
results. The procedure yields

laxation-time measurements" which indicate good
agreement between Tt and o. , (and ~th...) in terms of
the Korringa relation.

(23)

leading to a Knight shift of

o.th,„——(bH/H) th...=0.81%. (24)

"T.P. Das and E. H. Sondheimer, Phil. Mag. 5, 529 (1960),"R.Kubo and Y. Obata, J. Phys. Soc. Japan ll, 547 (1956);
Y. Obata, sbQ 18, 1020 (1963.); A. M. Clogston, A. C. Gossard,
V. Jaccarino, and Y. Yafet, Phys. Rev. Letters', 9, 262 (1962).

~ M. H. Cohen, D. A. Goodings, and V. Heine, Proc. Phys. Soc.
(London) 73, 811 (1959).

G. D. Gaspari, Wei-Mei Shyu, and T. P. Das, Phys. Rev. 134,
A852 (1964); 141, 603 (1965); 152, 270 (1966).

Recent experiments' on the Knight shift in indium at
4.20K gives

~. p=(~&/&) s=0 g2% (25)

in good agreement with earlier results' at room
temperature.

The qualitative significance of the extremely good
agreement between our theoretical value of the Knight
shift and experiment is dificult to assess because we
have not taken into account two other important sources
that could contribute to the Knight shift. One of these
is the orbital contribution to the Knight shift which
would be of the Landau type4' or the Van Vleck-
Ramsey type. 44 Both of these types of contributions are
expected to be small because of the nearly-free-electron
behavior of the conduction electrons in indium. The
Landau-type contribution is expected to be small be-
cause the effective mass is not very different from the
free-electron mass. The Van Vleck-Ramsey contribution
is also expected to be small because for nearly-free-
electron behavior, there would not be much angular
momentum of the conduction electrons with respect to
the nucleus as origin. The other important source is
the core-polarization eGect.""It is a little dificult to
speculate on the importance of this e6ect without
actual calculation. However, the good agreement with
the direct contribution to the Knight shift and experi-
ment might indicate that the core-polarization effect
does not contribute very much to the Knight shift in
indium. This belief is further reinforced by recent re-

VII. CONCLUSION

We have obtained the band structure of indium using
a potential which contains all contributions except cor-
relation and exchange between conduction electrons
and the OP% method. combined with the pseudopoten-
tial interpolation scheme. From these energy bands we
are able to interpret fairly satisfactorily a number of
detailed features of the Fermi surface which have been
observed experimentally. Spin-orbit e6ects have been
analyzed and are shown to be relatively ineGective in
inQuencing the band structure. The wave functions at
the Fermi surface obtained in this calculation lead to an
isotropic Knight shift in satisfactory agreement with
experiment. Two other properties which are currently
available for indium and which could be used as a test
of the accuracy of the wave functions and the model
adopted are the anisotropic Knight shift and the nuclear
quadrupole coupling constant. ~ ' However, an evalua-
tion of these properties will have to await accurate
methods of interpolating wave functions in k space be-
cause they require for their interpretation careful
integrations throughout the Fermi volume and over the
Fermi surface.

For more accurate calculations in the future, it would
be instructive to consider d hybridization of the conduc-
tion electrons, instead of assuming the d electrons to be
localized core electrons. Finally, correlation and ex-
change sects between conduction electrons should be
taken into account in a consistent manner perhaps
following the procedures outlined by Hubbard, 4' and
more recently by Kohn and Sham" and Hedin. "
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