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In a crystal with a free surface, the force constants associated with the coupling of surface atoms to
their neighbors need not be the same as those associated with the coupling of interior atoms. A theoretical
investigation has been made of the effect on the atomic mean square displacements of varying the force
constants for surface atoms on the (110) surface of a face-centered cubic crystal. The bonds coupling atoms
on such a surface to their nearest neighbors may be grouped into three classes, depending on the angle
between the bond and the normal to the surface. The force constants for each of these three types of surface
bonds have been varied independently, and the mean square displacements have been evaluated in the
high-temperature limit of the harmonic approximation, using the nearest-neighbor central force model for
crystals up to thirty layers thick. A comparison is given between the theoretical results and experimental
low-energy electron diffraction data for the (110) surface of nickel.

I. INTRODUCTION

'HE development of low-energy electron-diGraction
techniques has provided a means of obtaining

information about the mean square displacements of
surface atoms. ' MacRae' has carried out a detailed
experimental investigation of the (110) surface of nickel
and has found that the parallel and perpendicular
mean-square-displacement components are different.
Furthermore, he found that the two parallel values are
not equal to each other.

In a previous paper, ' theoretical calculations have
been made of the mean-square-displacement com-
ponents of atoms in the (100), (110),and (111)surfaces
of a nickel-crystal model with nearest-neighbor central
forces. The harmonic approximation in the high-tem-
perature limit was employed, with no change in the
force constants at or near the surface. The results for
the (110) surface were in good qualitative agreement
with the experimental results of MacRae, but there were
certain quantitative discrepancies. Speci6cally, the
calculated mean-square-displacement components in
the I 110]and [001)directions were too small compared
to the experimental values. A number of possible reasons
for this discrepancy were discussed. First, there is the
possibility that the assumptions involved in calculating
the experimental values of the mean square displace-
ments from the experimental data are not valid. Second,
the theoretical calculations may involve too simple a
model, in that it neglects longer-range interactions,
anharmonicity, magnetic e8ects, and changes in the
force constants at or near the surface. Finally, the

' A. U. MacRae and L. H. Germer, Phys. Rev. Letters 8, 489
(1962}.

2A. U. MacRae, in Proceedings of the International Confer-
ence on the Physics and Chemistry of Solid Surfaces, Brown Uni-
versity, June, 1964 (unpublished); Surface Sci. 2, 522 (1964).'B. C. Clark, R, Herman, and R, F, &allis, Phys. Rev. 139,
860 (1965),

theoretical calculations were done on 6nite-sized crystals
very much smaller than those used in the experiments.
In the present paper, one of these possibilities, which is
considered most important, is investigated theoretically,
namely, that the force constants characterizing the
interactions of the surface atoms may have values
diferent from their bulk. values.

II. THEORETICAL PROCEDURE

The methods employed in the present paper are
basically the same as those of Ref. 3. A model of a face-

FIG. 1. Diagram of the interactions of an atom in the (110)
surface. The bond 0.1 makes an angle of 30' to the surface and
connects a surface atom with an atom one layer removed, o.2 is
perpendicular to the surface and connects a surface atom to an
atom two layers removed, and n& is parallel &o the surface, Qosed
circles are visible atoms.
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centered cubic lattice is assumed with nearest-neighbor
central forces. The free surface is taken to be parallel
to a (110)plane. The nearest-neighbor interactions of a
surface atom for this particular surface can be classified
into three different types, as may be seen from an
examination of Fig. i .The interaction of Type 1 couples
the surface atom to an atom in an adjacent (110) plane,
the line of centers of the two atoms making an angle of
30' with the surface. The Type-2 interaction couples
the surface atom with an atom two layers away and is
normal to the surface. The Type-3 interaction couples
two atoms in the surface layer and is therefore parallel
to the surface. Associated with these interactions are
three force constants a&, n&, and a3, respectively, which
need not be equal for a surface atom, even though they
would be equal by symmetry if the atom were infinitely
far from the surface.

The positions of the atoms will be specified in terms

of three basis vectors given by

~1
———,

' (a,0,0),
~2———', (O,e,0),
~2——-', (Ot0t2'~'a)

(ia)

(ib)

(1c)

where u is the nearest-neighbor lattice spacing.
The 2 and 3 directions, which may be taken in the

L1105 and $0015 directions, respectively, are parallel
to a (110) plane, while the 1 direction, which may be
taken in the L1105 direction, is normal to the (110)
plane. The coordinates of a lattice site can then be
expressed as

rt, m, n= l&1+222&2+22&2, (2)

where 3, m, m are either all even integers or all odd
integers, taking zero to be even.

The equations of motion for a bulk atom can now be
written as

1
2120201,m, a= o&{ SNlmn+, Q, Xnv+, 1 ,Nl+Xtn+ttn, -vv , Sll, m, n+4 +1=+2 Nl~l, m, n+gX, tt, v=+1 ~p&1+X,tavtt, a+v

+2 px, tt, v=+1 ~ v21+21, tat , ttyn}vt (3a)

1
2220& 1,m a= oQ ( . Slt1m, a+Z, lt, tt, v=y 1 & 1~jt, m+tv, a+ v 801,m, a+4 g tt-p 2 &1,~n, a+21,a, v=g 1 &IlI1~ 2„m+tt, n+ v

+2 ZX, ,ttvyl PV22tl+X, ~tt, n~v) t (3b)

221022tl m a= 4al 2 (—822tl, m, n+Pg, tt, v=yl ~1+1,m+tt, a+v+2 Zl, tt, v, =pl &v221+Xm+nn~, v,
+2 Kitty +1 P, V,&=1+&,m+tt. n+ )5 t (3 )

where mo is the atomic mass, n is the nearest-neighbor force constant, and p, ~, ,„,e~, ,„,and z ~, , are the atomic-
displacement components in the j, 2, and 3 directions, respectively. The equations of motion for atoms in the
surface layer, / =0, may be written as

2120No, ma= o&{olL, 4NO, m, a+sty. v=+1 (221,m+tt, n+v+p&l, m+tt, vvvv+2 v22tl, m+n, n+v)5+402(N2, m, n +O, m, n)} t (4a)

2220&0maot2 , {o, lL 4&On+ amtv, =+1t(A221, m+ttn+v+ ltlm, +tt, n+ v+, 2 pvlltl, ttyt v, a+ v) 5
+02(—»0, , +4 Q,=g2 00,tat-, .)}, (4b)

ON2,2tO, mno&{201L 4220, m, a++ tt, v=gl (2 v21l, m+tt, a+v+2 pv&l, +t, m+v+ta22tl, ~n, ~v)5n} &

where
1) 2/3

The equations of motion for the layer next to the surface layer, / = 1, are

(4c)

ONO+lmaO&{0, 1L, 4gl, m, a++tv, v +1 (NO, ta+ttn+v il&0m,+tttyvv 2, "'V2,2to, m+tt, n+v)5

4Nl, m, n+Ptt, v=+1 (N2, m+tt, a+v+pO2, m+tt, a+v+2 ll2, vtmn~+vtt) 4Nl, m, a+4NO, m, n} t (6a)

2220211, . 4&{01) 4&1, , +Ztt, =+1 ( @NO, m+tt, ~ +&O,tavtt, n+ +2 PV22tO, m+tt, ~ )5 4&1,

+Ptt, v=+1 (@+2,m+tt, at-v+&2, tn+tt, a+v+2 pvllt2, tat-v, n+v) Sltl, m, a+4 Ptt=+2 ltltn+ }tttn, (&b),

212022tl, m, a= OQ'{Olp SBll ma+pa t yl (—2 '"V, mO m+„,n.v—v+2 "2pvOO, m+tt, n+v+2OO, ~a, n+v)5

82Ol, m, n+P tt, v=+1 (2 vl2, m+tt, n+v+ 2 pv02, m+tt, n+v+22t2, m+tt, a+v) }. (6C)

For the second layer in from the surface, l= 2, only the equation for the 1 component of force is different from the
bulk. This is

2220N2, , OIL nSN2+Qmla, t,, ,+1 (Ntlv+X, m+tt, n+v+~p&1+2, ttyvtt, a+v+ 2 9VW1+'k, m+v, w+v)

+ 402 (NO, l2m, man) +, 4 (14m, nl2, mn, )5, ~ (7'),
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(Sa)ssr, , (a) =-'sv2(Ns, , also' i i, , ),

For reasons of computational convenience, we shall consider crystals with a Gnite number of layers, so that
0&k&X—1. As was discussed in Ref. 3, the ca1culation of the mean square displacements involves the inversion
of various matrices. For given E, the size of the matrices to be inverted can be reduced by introducing the fol-
lowing symmetry coordinates:

vs, ,„(+)=-'sv2(vs,„,„+nsr i s, ,„),
st sm, n(+) s~2(tt's, m, nett'is —1—r, m, e) y

(gb)

(8c)

where 0&3& (-,N) —1, and N is taken to be an even integer. When one transforms the equations of motion using
Eqs. (8), one finds that the variables I(+), n( —), and tn( —) are coupled together and that I(—), n(+), and

w(+) are coupled together, but that these two sets of variables are decoupled from one another.
It is also advantageous to exploit the translational symmetry parallel to the surfaces by introducing wave

vector-components q~ and q~ through the transformations

Nl. . . (+) 'm0 [Q =, T (ql qs) $, l, '(ql qs p +)]c (9)

where i denotes the 1, 2, or 3 direction, p designates the normal modes of frequencies re„(qs,qs) corresponding to a
given set of values of (qi, qs), o.=c or s, and

T, (qi, qs) = cos(mqr+nqs),

T (qi, qs) = sin(mqs+sqs) . (10b)

We denote the set of variables $,, s,;(+),with /= 0, 1, 2, , (-,'N) —1, by $...(&).When Eqs. (9) are substituted
into the equations of motion, one finds that the variables $...(&) can be grouped into the following sets of inter-
-t g - b -:«., (+), ~. .(—), ~,. (—)&, [~..(+), ~. .(—), ~.. (—)j, «. .(—), ~. .(+), ~. .(+)&, [~., (—),
~. .(+), &., (+)j.

The equations satisfied by [f, i(+), f, s(—), $, s(—)] and [p,, &(
—), f, ,s(+), $, s(+)j can be written sym-

bolically as
(,, s(qs, qs, p, +) &„s(qs, qs, p, +)

~„'(qs, qs, a) &, , s(qi, qs, p, W) =D.(qi, qs, +) p. , s(qr, qs, p, W) =D, (qi, qs, a—)%'(qr, qs, p, a),
k. , s(qs, qs, p, ~) $, , s(qr, qs, p, ~)

where the D, (qi, qs, &) are the reduced dynamical
matrices associated with the two sets of variables and
are of dimensions 3(s'N)X3(sN). The form of these
matrices is given in the Appendix. Similarly, [$,,s(+),

, 2( ) 5, ( s)j and [$,1( ) 5,2(+) $,I(+)]
satisfy equations characterized by reduced dynamical
matrices D, (qi, qs, &). One finds that the diagonal
elements of the inverses of D, (qi, qs, &) are equal to
the corresponding diagonal elements of the inverse of
D, (qi, qs, &). Using this fact and the methods of Refs.
3, 4 one can write the mean-square-displacernent com-
ponent of atom /me in the high-temperature limit in
the form

((us„„;)')= (k T/2msN') Q,=+ Q„,s,

XLD. '(qi, qs r)]s,s', (12)

where k is Boltzmann's constant, and T is the absolute
temperature. An alternative expression for the mean-
square-displacement component can be written as' 4

((I&„„,)')= (kT/2msNs) P,=~ g„,„„
X [+r,(qs, qs, p, r)j'/ros, '(qs, qs, r) . (13)

In general, our calculations employ Eq. (12); how-
ever, Eq. (13) is used for values of the wave-vector

s M. Born, Rept. Progr. Phys. 9, 294 (1942).

components q~ ——q2 ——x and q~
——q2

——2x, which produce
a zero eigenvalue. In those cases where no zero eigen-
value occurs, the inverse of D.(qi, qs, &) is found
numerically using the Gauss-elimination method. We
have found that this method gives the diagonal elements
of the inverse to six places. The various inverses are
then summed over the q values, as indicated in Eq.
(12). For the few cases where the inverses of
D, (qi, qs, &) do not exist, we employ the method of
Wilkenson to find the eigenvalues and eigenvectors of
D, (qi, qs, &). Then Eq. (13) is used, excluding from
the sum the term which gives the zero eigenvalue, to
find the contribution to the mean square displacements
for these q values. In these calculations, at least four
significant figures were obtained. This was considered
adequate, as the contribution of these two points to
the total mean square displacement does not exceed
5'P~. We also found that the total contribution to the
mean-square-displacement components from the sums
over D, (qi, qs, +) and D, (qi, qs, —) were identical,
thus reducing the calculations by a factor of 2.

III. NUMERICAL RESULTS FOR NICKEL

Calculations of the mean-square-displacement com-
ponents for atoms in nickel crystals with free surfaces
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parallel to the (110) plane have been made. The
harmonic approximation with nearest-neighbor central
forces and the high-temperature limit have been em-
ployed. The force-constants coupling surface atoms to
their neighbors are not necessarily assumed to be equal
to the bulk-force constant. The value of the bulk-force
constant 0. was chosen to give agreement with the
experimental maximum vibrational frequency for un-
magnetized nickel obtained by Birgeneau et al. ' The
agreement betwen calculated dispersion curves and the
experimental results indicates that this nearest-neigh-
bor model should be reasonably adequate for investi-
gating the lattice-vibrational properties of nickel. The
value of n determined by this method is 3.79&(104
dyn/cm.

In order to find the general eRect of changing the
three types of force-constants coupling surface atoms to
atoms in the interior of the crystal, we varied each of
the force constants independently. Figure 2 shows the
eRect of varying e&, with e2 and e3 held equal to unity
for a crystal with twenty atomic layers. Decreasing &&

causes all three components of the mean square dis-
placement of atoms on the surface to increase.

14

1.2
CL
LU

CL

m 10
liJ

CL

Ch

w~ 08

0.6

0.4
0.0 0.5 1.0 1,5 2.0

TABLE I. Theoretical and experimental mean-square-displace-
ment components at the surface and in the bulk of a face-centered
cubic crystal with a (110) free surface.

FIG. 2. Components of the mean square displacements of an
atom in the first atomic layer in units of kT/a, as a function of
61, for 62 = 63 =1.

61 62 C3

1.0 1.0 1.0
0.5 0.5 1.0
0.5 0.5 2.2
Experimental (Ni)

L110]

0.805
1.331
1.329
1.407

$110j LOOif

0.643 0.860
0.843 1.414
0.605 1.413
0.626 1.407

0.396
0.404
0.404
0.448

In Fig. 3, the effect of varying e2, holding ~& and &3

equal to unity, is examined for a crystal of twenty
atomic layers. As es couples atoms along the P10j
direction, decreasing es increases the L110) component
of the mean square displacement, as would be expected.
The $110$ and L001j components are effectively un-

changed. Changing e3, as shown in Fig. 4, has the same
kind of effect on the $110j component, which is in-

creased as es is decreased; the L110$ and [0011 com-

ponents are essentially unchanged. Table I gives the
experimental values of MacRae in units of kT/a and
our previous results for ~~

——~2
——&3

——]..
Some interesting eRects arise when e2 is increased

above unity while holding e& and &3 equal to unity.
Figure 5 shows the dimensionless mean square dis-
placements for this case, with e2 ——2.0. Note that the
component of the mean square displacement in the
L110j direction for the surface atom is less than the
corresponding value for &2=1.0. This is expected, as
the force-constant coupling this atom to an atom two
layers removed has been substantially increased. The
L110j component of the mean square displacement for

& fI. J. flirgeneau, J. Cordes, G. Dolling, and A. B. D. Woods,
Phys. Rev. 136, A1359 (1964')

1.2

f1= C3= 10

t001]

0.4
0.0 0.5 1.0 1.5 2.0

C2

Fxo. 3. Components of the mean square displacements of an
atom in the first atomic layer in units of kTjn, as a function of
c2~ fol Sj, =4&= 1

the atom in the second layer does not show this effect,
as the force-constant coupling this atom to the atom
two layers removed has not been altered. We see, in
fact, very little diRerence between these components of
the mean square displacernent in the 6rst and second
layers.

In general, our results show that a mean-square-
displacement component is changed signi6cantly only
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1.2

LIJ

o 0.8

C5

0, 6

LU

0.4
0.0 0.5

~DiOt

1.0

t001]

D10]

1.5

Cg 42= 10

2.0

atoms are increased while the L110) component is kept
roughly the same as in the previous calculations with
~;= 1. We carried out a series of calculations varying &&

and e2, holding e3
——1, and found that e»= e2=0.5 gave

the best representation of the data, with &3= 1.We then
varied e3 and found that e3 ——2.2 improved the agree-
ment further. The results of our calculations for a
crystal of thirty atomic layers with two free surfaces
are shown in Tables I and II. For the case e~—= t.2=0.5,
es ——2.2, the errors are 5.5, 3.7, and 0.4% for the L110j,
L110j, and

I 001j directions, respectively.
Note that the calculated results for the mean square

displacements given in units of kT/n in Tables I and II
and Figs. 2—5 are valid for any face-centered cubic
lattice with nearest-neighbor forces and surface force
constants as indicated, and are not restricted to nickel.

IV. DISCUSSION

FIG. 4. Components of the mean square displacements of an
atom in the first atomic layer in units of kT/u, as a function ot
e3, for eI=e2=1.

0.9

0.8

(110)

+1 C 10

C&
= 2.0

if the atom in question is coupled by the force constant
which is changed, and only if the line of centers of the
coupled atoms is not normal to the displacement
direction.

In order to improve the agreement with the experi-
Inental data, it is clear that e1, e~, and e3 should be
changed in such a manner that the L110j and L001)
components of the mean square displacements of surface

The preceding numerical results show that the
theoretical mean square displacements can be brought

Layer number

1
2
3

5
6
7
8
9

10
11
12
13
14
15

[110j
1.329
0.724
0.564
0.488
0.459
0.442
0.431
0.424
0.419
0.415
0.413
0.411
0.409
0.408
0.408

[110j
0.605
0.525
0.454
0.436
0.426
0.420
0.416
0.412
0.410
0.408
0.406
0.404
0.403
0.403
0.402

[00tj
1.413
0.616
0.467
0.435
0.421
0.415
0.410
0.407
0.405
0.404
0.402
0.402
0.401
0.401
0.400

TABLE II. Mean-square-displacement components in units of
kT/n for atoms in successive layers parallel to (110) free surfaces
in a crystal thirty layers thick, with e& ——e2 ——0.5, && ——2.2.

0.7—
I—

0

0.6

CY
CA

0.5

0.4

0.3
0

I

4 5

INDEX L

FzG. 5. Components of the mean square displacements as a
function of layer index I for e&= e&=1.0, e&=2.0.

into reasonable agreement with the experimental data
of MacRae by suitable changes in the surface force
constants. The question arises whether the magnitude
of the changes required is physically reasonable. It
would be desirable to answer this question by making
fundamental quantum-mechanical calculations of the
surface force constants, but at the present time no such
calculations appear to be available.

An alternative procedure is to calculate the surface
force-constant changes using a postulated interatomic
potential such as a Lennard-Jones or Morse potential.
The anharmonicity of such potentials leads to changes
in the surface force constants from their bulk values. A
calculation for the (100) surface of a body-centered
cubic lattice has been carried out by Clark et al.,' who
find decreases in the surface force constants of up to

83. C. Clark, R. Herman, D. C. Gazis, and R. F. Wallis, in
I'roceeChngs of the S~nposium on Ferroelectricity (Elsevier Pub-
lishing Co., Inc. , New York, 1967), p. 101.



FOR. CE-COXS rANT CHWNGES I. N r. c CRVSTALS

35%. Recently, Vail has calculated changes in surface
force constants for a (100) surface of a simple cubic
lattice with Morse-type interactions out to seventh
neighbors. ' He 6nds that the nearest-neighbor force
constant for vibrations of a surface atom perpendicular
to the surface is about 40% smaller than the bulk value,
but that for vibrations parallel to the surface, the
nearest-neighbor force constant is about 7% larger
than the bulk value.

From these considerations, it appears reasonable that
e~ and &2 should be less than 1.0 and might be as small

as 0.5.The value of 2.2 for e3 is in the direction indicated
by Vail's results, but the amount of deviation from
unity must be viewed with some suspicion. In fact, our
results for e&= &2=0.5, &3=1.0 are probably in as good
agreement with the experimental data as one can
reasonably expect, considering the uncertainty in the
data and the simplicity of our model.
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APPEN'DIX

The reduced dynamicai matrices D(q1, q2, +) may be written in terms of the 3X3 matrices d,; as

d00(+) d01(+) d02(+)
d10(+) dll(+) d12(+)

( q d20(+) d21(+) d22(+)
&J

d (N/2) —2, (N/2) —2(+) d (N/2) —2, (N/2) —1(+)
d (N/2) —1, (N/2) —2(+) d (N/2) 1(N/—2) , 1(+)—

The matrices d;; are expressed in terms of the quantities c&= cosy&, c&= cosq2, s&
——sinq&, and s2 ——sing&, and are

01+02 0 0
d00(+) = 0 01+202(1—cp+sp) 0

0 0 26y

2+Sl 0 0
d11(~)= 0 1+01+2(1—cp+sp) 0

0 0 2+201

3+02 0 0
d22(+) = 0 4—2(cp—s1') 0

0 0 4

4 0 0
d,;(&)= 0 4—2(cp —sp) 0, 3&i& (211V)—2

0 0 4

4&cyc2 +$1C1 &V2C1$2

d(N/2) —1,(N/2) —1(&)= &slcs 4—2 (cl SP)&c1cs WV2$1$2

&NC1$2 W&2$1$2 4&2C1C2

d01(~)= 01d12(~),

C1C2 —$1C2 —V2C1$2

d; i+1(&)= $1cs —C1C2 V2$1$2, 1&2& (21V)—3
')/2C1$2 %2$1$2 —2C1C2

d10(~) sld21(~) i

—CiCq

di+1, ;(+)= —$1C2
—V2C1$2

~1—CyC2

d(N/2) 2, (N/2) 1(+)= $1C2

VZC1$2

CyC2

d(N/2) —1,(N/2) —2(&)= $1C2

)/ZC1S2

$1C2 V2C1$2

c1c2 V2$1$—2, 1&2& (2/V) —3
V2sy$2 —2cyc2

—$1C2 —%2C1$2
—C1c2 V2$1$2

&2$1$2 —2C1C2

$1C2 V2C1$2
—C1C2 &2$1$2
')/2$1$2 —2C1C2

' J. M. Vail, Bull. Am. Phys. Soc. 12, 80 (1967);Can. J. Phys. 45, 2661 (1967).



658 KVALLIS, CLARK, AND HE V~MAN

do2(+) = esdrs(&),

0 0
d, ,;+s(+)= 0 0 0, 1.&i & (-,'1V) —3

0 0 0

dse(+) = cadet(~),

d;+s, ;(a)=d;„~s(+), 0&i & (-,'N) —3.
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Optical Absorption of Cut, „Zn Ni„with x(0.25 anti
O.OS (y(0.10 at Room Temperature

KLAUS SCHRODER AND KARL MAMOLA

Department of Chemical Engineering and Metallurgy, Syracuse University, Syracuse, ¹utFork
(Received 13 October 1967)

The optical absorption of ternary copper-base copper-nickel-zinc alloys with up to 25-at.% zinc and
about 10-at.% nickel was determined at room temperature in the wavelength range 260 to 800 nm. The
position of the main absorption edge, which for pure copper is observed near 600 nm, moved with increasing
zinc concentration to lower wavelength. Within experimental accuracy it was independent of the nickel
concentration. This indicates that the extra electrons contributed by Zn atoms do not occupy holes produced
by Ni atoms. The secondary absorption structure at 300-nm splits with increasing zinc concentration into
two peaks. The peak which moves to higher wavelength is associated with transitions from the Fermi
surface to higher bands. It is proposed that the absorption structure which stays at 300 nm independent
of the zinc concentration is due to virtual impurity states.

INTRODUCTION

'HE electronic structure of alloys is more dificult
to determine than the structure of pure metals

because the mean free path of electrons is very short.
Techniques which are available to determine the Fermi
surface of metals frequently cannot be used to study
alloys. Therefore, much simpler concepts are used to
describe properties of alloys. One of these is the rigid-
band model, which states in its simplest form that the
properties of alloys depend only on the electron to atom
ratio. Investigations on n brass showed that this rigid-
band model has to be modi6ed slightly to explain their
optical properties. ' Pure copper exhibits a main absorp-
tion edge near 600 nm, and a secondary absorption
structure near 300 nm. Alloying copper with zinc shifts
the position of the main absorption edge to lower wave-

length, and the secondary absorption edge to higher
wavelength. This behavior can be interpreted qualita-
tively using a rigid-band model, if the main absorption
edge is associated with interband transitions from the
d band to the Fermi surface, and the secondary absorp-
tion edge with transitions from the Fermi surface to
higher bands. However, the shift of the absorption
structures is less than the rigid-band model predicts.
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The shift is larger, however, than predicted by Friedel, '
who assumed that the extra electron of zinc would form
a "cloud" near the zinc nucleus. The rigid-band model
fails completely to predict the optical properties of
copper-nickel alloys with up to 25- at. '%%uo Ni. ' The posi-
tions of the main absorption edge and the secondary
absorption edge remain within experimental accuracy
at 600 nm, or 300 nm, respectively. This result has been
explained using the concept of "virtual energy states. '"'
These are states which are created below and above the
Fermi surface, if nickel atoms replace copper atoms in
copper-nickel alloy. The Fermi energy would not change
its position in such a model. Experiments on CNNi
alloys indicate that nickel impurities create virtual
energy states. '

It seemed interesting to measure optical properties
of ternary copper-base copper-nickel-zinc alloys Cu&, „
Zn, Xi„ to determine if extra electrons from zinc atoms
would interact directly with nickel atoms. In that case,
the position of the absorption edges would be at the
same position as that of an alloy of the composition
Cu1 ( „) Zn(, „).However, if the addition of nickel to
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