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equation, we found that the technique itself can be
simplified considerably if the quantity of interest is
the transmission amplitude (the field at the emergent
face of the slab) rather than. the full-field amplitude in
the slab. We show that this simpliGcation arises when
certain short-range parts of the field are eliminated.
Thus, this paper has two objectives: One is to present
the physics described above, and the other is to de-
scribe the mathematical simplification (which is con-
nected more with the two-sided Wiener-Hopf technique
than with the specific electromagnetic problem).
Although we chose the logical order of presenting the
method before using it, the reader who is interested orily
in the physical results and discussion is invited to read
the next few paragraphs and then to skip to Sec. IV,
and read that section in its entirety. The rest of the
paper will serve him only if he is interested in how the
results were obtained.

In an earlier paper, 2 we sketched out the derivation
of the equations which govern the electromagnetic
fields in a metal slab under the following simple cori-
ditions. A plane, circularly polarized, transverse elec-
tromagnetic wave is normally incident on a metallic
slab of thickness L The frequency of the wave is low
enough (below infrared) so that the metal can be repre-
sented as a degenerate, zero-temperature Fermi gas
composed of the conduction electrons, which are
treated as free. Electrons reaching the face of the slab
are assumed to be scattered diffusely. Using . the
standard assumptions of the Boltzmann equation in
the relaxation-time approximation, ' we found that the

I. INTRODUCTION

'HIS is the second in a series of three papers con-
cerned with the propagation of electromagnetic

waves through a metallic slab of Gnite thickness. In the
situation studied here, the relation between the current
in the slab and the electric Geld which drives it is

highly nonlocal because of the Gnite electron mean free
path. We calculate the transmission amplitude under
these conditions assuming that there is a steady
magnetic Geld normal to the faces, and assuming also
that electrons within the slab scatter diffusely at the
surfaces of the slab. A transmission peak is predicted
at cyclotron resonance which, in the limit of slab width
much larger than an electron mean free path, has a
line shape which approaches the square root of a
Lorentzian and a phase which shifts by ~ across the
line. All of this is superposed on the Gantmakher-
Kaner' oscillations which are also present. The resonant
behavior, which is absent when the electrons are
assumed to be scattered specularly from the surface of
the slab, can be understood in terms of electron trans-

port from Fresnel zones on the Fermi sphere which ex-

pand at resonance so that the first zone covers the entire
hemisphere. The absence of this resonance when the
electrons are scattered specularly is tentatively ascribed
to a fortuitous cancellation which arises because the
equatorial electrons, whose response gives rise to cur-
rents which shield the interior of the metal, themselves

undergo a resonance which excludes the Geld from the
metal.

In carrying out these calculations using the two-

sided Wiener-Hopf technique' for the nonlocal wave
' V. F. Gantmakher and E. A. Kaner, Zh. Kksperim. i Teor. Fiz.

4S, 1572 (1965) )English transl. : Soviet Phys. —JKTP 21, 1053
(1965)j.

2 G. A. BaraG, J. Math. Phys. {to be published).

3 G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc.
(London) A195, 336 (1948).
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This is the second in a series of three papers concerned with the propagation of electromagnetic waves
through a metallic slab of Gnite thickness. In the situation studied here, the relation between the current
in the slab and the electric Geld which drives it is highly nonlocal because of the finite electron mean free
path. We calculate the transmission amplitude under these conditions, assuming that there is a steady
magnetic Geld normal to the faces, and assuming also that electrons within the slab scatter diBusely at the
surfaces. A transmission peak is predicted at cyclotron resonance which, in the limit of slab width much
larger than an electron mean free path, has a line shape which approaches the square root of a Lorentzian and
a phase which shifts by x across the line. All of this is superposed on the Gantmakher-Kaner oscillations
which are also present. This resonant behavior, which is absent when the electrons are assumed to be
scattered specularly from the surface of the slab, can be understood in terms of electron transport from
Fresnel zones on the Fermi sphere which expand at resonance so that the first zone covers the entire hemi-
sphere. The absence of this resonance when the electrons are scattered specularly is tentatively ascribed to
a fortuitous cancellation which arises because the equatorial electrons, whose response gives rise to currents
which shield the interior of the metal, themselves undergo a resonance which excludes the Geld from the
metal. In carrying out these calculations using the two-sided Wiener-Hopf technique for the nonlocal wave
equation, we found that the technique itself can be simplified considerably if the quantity of interest is the
transmission amplitude (the field at the emergent face of the slab) rather than the full-field amplitude in
the slab. We show that this simplification arises when certain short-range parts of the Geld are eliminated.
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In the earlier paper' we presented a method for the
solution of Eq. (1.1).Our method resulted in a Fredholm
integral equation for the Fourier transform of e(z),
whose iterative solution converged as exp(L/l) where l
is the range of the kernel. (For the conductivity kernel,
this range is equal to the electron mean free path. ) This
method is most useful when the thickness of the slab is
of the order of, or greater than, the range. The zeroth
iterate contains both the ordinary semi-in6nite-
medium Wiener-Hopf solution and the Fabry-Perot
resonances arising from multiple internal reQection of
the wave. The higher iterates represent the multiple
rejections of the single-particle excitations, i.e., of that
part of e(z) which results from branch-cut singularities
in the Fourier transform of the kernel.

In the remainder of this introduction, we review the
solution to (1.1) and discuss when and why a simplifica-
tion is to be expected. This simplification results from
the elimination of some short-range parts of the 6eld
and can be carried out when the kernel E has a trans-
form whose only upper-half-plane singularity is a
single branch cut. 4 In Sec. II we show how this can be
done. The results at the end of Sec. II are only a
reformulation of the solution given in Ref. 2. However,
in some cases where the techniques of Ref. 2 would
require a high-speed digital computer, the reformula-

Geld satisfied the following nonlocal wave equation

fd'
+ko' le(z) = &(lz—z'l)e(")«'

0&s &1., (1.1a)

where K(lz —s'l) = —ia&uo)r(lz —s'l), o being the ordi-
nary conductivity which relates current and electric
field in an infinit medium by

ji») f(=)» » ))»—(»')'d»'

This equation differs from that given by Reuter and
Sondheimer' for diffuse-boundary scatter only in that
the thickness of the slab I., which appears as the upper
limit on the integral, is in their work in6nite, and that
the conductivity 0 which appears here must be cal-
culated assuming the presence of a static magnetic field.

The field at the faces of the slab must satisfy the
boundary conditions appropriate to a wave of unit
amplitude incident from negative s. These are

tion given here is amenable to pencil and paper calcula-
tion. In Sec. III, we apply the method to the problem
for which it was developed, namely, a calculation of
the transmission amplitude for an electromagnetic wave
across a metallic slab under the conditions listed
earlier. We con6ne our attention to the simplest free-
electron model of a metal, and, within that model, ex-
amine only the "extreme anomalous limit", ' where the
nonlocality of the conductivity is most pronounced.
We find a transmission peak at cyclotron resonance,
and a phase shift of m across the peak. Our tentative
physical understanding of this is described in Sec. IV.

To sol~e (1.1), by the methods of Ref. 2, we introduce
the dispersion function or characteristic function, call
it P(k), which is the Fourier transform of the operators
in Eq. (1.1a):

P(k) —=k' —kp'+ E(l s l)e
—*"ds. (1.2)

It turns out that the function e(z) in the slab has
Fourier components at each singularity and branch cut
of 1/P. The singularities can be poles and branch points
which, because P(k) is even, must occur in pairs. If
there are 2&V poles, their location is given by solving
the dispersion equation

f(k„)=0, Imk„) 0, n=1,2, 1V.

(We have chosen Imk„)0 as the convention to fix
which of the two roots will be designated as +k„.) The
function P in the electromagnetic problem has a single
pair of branch points k= &P (with ImP) 0 fixing the
sign of p). We let branch cuts run radially outward
from the branch points to in6nity along the lines
k=&Pu, 1&u& ~. Then the field in the slab has the
form

e(z)= Q (a e'&zz+b s ik»»z)-
n=l

+ pa(u) e'~"z+b(u) e @'"zjdu (1.4).
In Ref. 2, we wrote e(z) as the sum of a part decay-

ing to the right l the a„and a(u) termsj and a part de-
caying to the left

l
the b„and b(u) termsj and treated

the field within the slab (which arises from a wave
incident from the left) as the sum of the field produced
by symmetric waves incident left and right and anti-
symmetric waves incident left and right. By this means,
the field was given as a sum of four terms:

z(z) =f'(«)+f (z)+f+(I «) f (I- «)— (—1 5)—
We wrote each of the four terms as

4 It may well be that these simpli6cations occur for kernels with
multiple-branch cuts. If so, it should be trivial to demonstrate,
but we have given absolutely no thought to this matter.

f+(z)=i p z.+l e"-*—p f +(t)e' '*dt
l

(1.6)
)
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and found that each f„+(t) had to satisfy the equation

f.+(t) =
X+(pt) X—-(pt) 1/X(k„) e*"/X( —k )

27ri pt+k.
" f +(u)e'tt"~du

(1.7)
(u+t) X(—Pu)

The function X(k), which appears in the computation
of f„, is a complicated but explicit functional of the
function lt (k), namely

X(k)= (P—k)"-' exp
2' 1

where

"pdu lnG(pu)
(18a)

pu —k

0+(pu)=—»m NI p(u+te) j (1.8c)

Similarly, X+(pt) are limiting values of X(k) on either
side of the cut

X~(Pt) = lim X(k(t+ie)]. (1.8d)

Once the f +(t) have been determined by iterating
(1.7), the coeKcients p + can be calculated by solving
the set of algebraic equations

N

Q Ct ~q„~=0, l=0, 1, 1V—2 (1.9a)

N

i g B„~q „+=1, (1.9b)

where

k ' (—k ) tets"z

Tp
X(k„) X(—k„)

co ( pu)tf j(u)eteaL
-dQp

X(—pu)

G(pu) —=lt' (pu)/p+(pu). (1.8b)

Here, f+(Pu) are limiting values of |tt (k) as it approaches
the point k=Pu from one side of the branch cut or the
other:

Consider Eq. (1.6) for a moment. We shall call that
part of the field described by the integral the "single-
particle excitations. " The range of those excitations
whose amplitude is f„+(to) is clearly 1/ts ImP. The
largest values of f "(t) describe the excitations with
short range, those t values nearest unity the excitations
of longest range. It is reasonable that only excitations
with a range longer than the thickness of the slab
should suffer multiple reAection in the slab. The
structure of Eq. (1.7), whose iterative solution generates
the multiple-re6ection series for the single-particle
excitations, confirms that this is so. In that equation,
f„+(u) under the integral sign appears multiplied
by exp(ipuL), which cuts the integral off at about
u=1/L ImP, discarding those excitations with range
shorter than L.

If we observe the field at s=I., the short-range ex-
citations from the incident face will not be present.
However, they will inQuence the reflection of the in-
cident wave, and thereby the amount of energy entering
the slab. Short-range excitations will also play a role at
the emergent face of the slab where they will inQuence
the internal reflection of waves within the slab. These
two e6ects of the short-range excitations are contained
in the mathematics in (1.10), where knowledge of
f„+(t) is required at all t, and in (1.5) and (1.6) where
evaluating f+(0) again requires knowledge of f„+(t) at
all t.

%e showed in Ref. 2, that our equations can be
solved explicitly when the width of the slab is infinite.
One suspects that the role of the short-range excitations
in determining the rejections should be the same
whether the slab is 6nite or infinite. This suggests that
it might be possible, in some way, to use the explicit
solution for the infinite medium in order to bypass the
task of calculating the short-range part of the excita-
tions. This suggestion motivates the present work.
It does turn out to be possible to recast Eqs. (1.5)—(1.10)
into a form where only the long-range part of the single-
particle excitations appear explicitly. This will be
demonstrated in the next section.

8„+—= (1+k„/ks) a (1—k~/kp) e*'s" —p dt f„+(t)

XL(1+Pt/ko)&(1 —Pt/ko)e'e'zj. (1.10)

Condition (1.9b) represents the imposition of the
spatial-boundary conditions (1.1b) and (1.1c). The
other conditions (1.9a) arose in a rather subtle way
from use of Muskhelishvili methods' in obtaining the
solution, a procedure inspired by Case s pioneering
work in transport theory. '

N. L Muskhelishvili, Singular Integral Equatt'ons (P. Noord-
hoG Ltd. , Groningen, The Netherlands, 1953).

'A series of papers by Case and his co-workers appears in
Ann. Phys. (N. Y.) from 1959 to 1963. Two important examples
are: K. M. Case, Ann. Phys. (N. Y.) 9, 1 (1960); R. Zelazny, A.
Kuszell, and J. Mika, Ann. Phys. (N. Y.) 16, 69 (1961).

Pdt f +(t)(1+Pt/k, ). (2 1)

It is this term which we must try to reexpress. Using
the integral equation (1.7) to evaluate f„+(t) gives

1/X(k„)
Pdt[X+(Pt) X (Pt) j(1+Pt/k, ) ——-

2m 1

e""z/X(—k„)

pt+k„

" f~+(u)e'e" zPdu -~

(2.2)
(Pt+Pu) X(—Pu)

II. REMOVAL OF THE SHORT-RANGE
EXCITATION 8

Consider the coeKcient 8„+ defined by Eq. (1.10).
Part of this coeKcient seems to depend on knowledge
of the entire excitation spectrum, namely
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the cut plane, there are no other singularities. The pole
singularities contribute residues which are easily
evaluated and the result is now

~ -Pu
d= (1+k„/ke)+(1—k„/ke)e'~"~+ f +(u)e*e"~'Pdu

—hm~""2xi — 0—k
" f„+(u)e'e"~Pdu-

(tf+Pu) X(—au)

e'""~/X(—k )

2% 1/X(k„)
id' tlX(tf)(1+if/kp)

(2.4)

Fn. 1. (a) Original path of integration in the complex-g
plane; (b) deformed path.

The t integral here can be regarded as an integral
in the complex g plane where the path of integration is
inwards from t= eo to f=1 along the line tf=P(t ie) and-
outwards from f= 1 to t= 0o along the line tl=P(t+ie)
The function X(tl) has been constructed with just those
properties' ' so that its integral along the in6nitesimal
semicircle about the branch point tl=P will vanish in

the limit that the radius of the semicircle goes to zero.
Thus (2.2) can be written

When this is inserted into (1.10), the residue terms here
cancel the other terms in 8 +, so that 8„+is equal to the
y integral in (2.4). The y integral can be carried out by
expressing the integrand as a power series in tl (choosing
the form of the power series appropriate to large tl). The
p integral then projects out the constant term of this
series.

To facilitate this expansion, let us write the power-
series expansions for various factors of the integrand:
for example,

1/X(k~) e*""~/X( k~) " f~+(u) e'&~ipdu

g —k il+k; i (tf+pu)X( —pu)
OQ=- Z y'-( )/v' (25)

g l=o

N«e that the coeKcients of this series, the y,+(n), are
identical to the coeKcients C, + defined in (1.10).
Therefore if the coefIicients q satisfy (1.9), it will
follow that

27ri

N

Q yi+(&)q +=0, l=0, 1, ,y—2.1/X(k. ) e*'"z/X( k„)—
dr( X(tt) (1+-«/k I)e

k k

(2.6)
n=l

(2.7a)

n tf+
Similarly, we can write a power-series expansion for" f~+(u)e'e" pdu X(tl). Using (1.8), we write

(2.3)
, (&+pu)X(-pu)

where the contour C starts at infinity, comes in just
below the cut, circles the branch point and goes oG

again to infinity just above the cut, as in Fig. 1(a).
Now consider the contour C to be swept outwards

from the cut until it becomes the circle at in6nity,
traversed. in the negative sense, Fig. 1(b). That is,

q —+ Re'(~&) and dg= —iqdq where 0( q &2x and
where g is the angle between the cut and zero. As the
contour is swept outwards, it will cross the singularities
of the integrand. There are poles at g =k„, q= —k„, and

tl = —pu, ~ but, because X(tl) is everywhere analytic in

7 Alternatively, instead of reversing the order of integration
and picking up a pole at g= —PN, one could have considered the
singularity in the y plane to be another cut which the deformed
contour would surround. Evaluation of the e integral would
then be performed @rsvp by using the Plemelj formulas, giving the
same result.

where, in particular,

(2.7b)

xi ———(1V—1)P-
2x'i

pdu lnG(pu) —= —J . (2.'Ic)

Using (2.5) and (2.7), the integrand in (2.4) is

and the constant term, which is projected out by the p
integration, gives simply

N-I N
& +=(—1)" ' g x i &y,+(u)+—g x„,y,+(„)

l~O &9 &-o
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When we use this expression in (1.9b), the condition
(2.6) removes many of the terms of the e summation.
Those that are left yield

where
+I+ai/ce, i+-

R
(3.1b)

Z [(ko J—)y~ i+-(rs)+y~+(&)3v +
n=I

= —i(—1)" 'ks. (2.8)

This is to be used instead of (1.9b) for calculating the
coefficients y„+. Significantly, each appearance of f„+(t)
in (2.8) is as a factor of the product f„+(I)expiptL,
which makes knowledge of the large-I behavior of f +

unnecessary. The effects of the short-range excitations
must be contained within the factor J, which also

plays an important part in setting the normalization
of the semi-in6nite medium solution.

We now consider the emergent field e(1) as given by
(I 5):

For metallic densities and frequencies below the
infrared of interest here, neglect of kss, the displacement-
current contribution, is justified. The & sign in p refers
to the two possible senses of circular polarization for
the transverse electromagnetic wave whose time de-
pendence is e-'"'. Here, I is the number density of the
gas; pr is its Fermi momentum; &e,=qB/rN, the cyclotron
frequency; R= Vr/eo. , the cyclotron radius; and I= V&r
the mean free path. The branch of the logarithm to be
used is the one which vanishes at k=o.

It becomes convenient to introduce several parame-
ters related to those already listed. First, polar co-
ordinates for P are useful

e(1.)=f+(I)+f (I.)+f+(0) f (o)— (2 9) p= e'&/r (3.2a)

The terms f+(0) defined in (1.6) again appear to require
knowledge of f„+(t) at all t The cu.re for this apparent

difhculty is the same as before: use the integral equation
for f„+(t), convert to a path integral, expand the path
outwards to pick up residues and a contribution from
the circle at in6nity. The residue terms arising from
the calculation of f +(0) this time turn out to equal
W f„(1).The contribution from the circle at infinity
is again evaluated using (2.5), (2.6), and (2.7). We
finally obtain

y+(0) ~f+(L)+i( 1)s'-i P yir, +(n) ie„+ (2 10)

which substituted into (3.1) yields

N

e(L)= (-1)"-'E Ly -'( )9-'
—y~-r-(~) ~=j (2»)

1/r= [(+~e,+em)s+1/rq'ls/». (3.2c)

In the limit of low frequency and large ei,r, r becomes
the cyclotron radius. At cyclotron resonance, it in-
creases and becomes the mean free path. We de6ne q
(a real number, not the complex variable used briefiy
in Sec. II) as

3ispnqseirs 3(Vg)s Cd40y

(3 3)
2 Pr 2E C I [(+re+co)s+1/rsj+s

and

so that

&= tan-'[1/(+ai, + re) rg (3.2b)

is the angle between the cut and the real axis, and
the distance from the branch point to the origin is
given by

py using (2.11) and (2.8) instead of (1.5) and (1.9b) to
evaluate e(J), we have obtained a form where each
appearance of f„+(t) is accompanied by the factor
e't", which discards all excitations whose range is less
than the slab width. This is the desired reformulation.

III. ELECTROMAGNETIC WAVE IN
THE DIFFUSE SLAB

In the case of a circularly polarized electromagnetic
wave propagating through a fully degenerate free-
electron gas, use of the standard scattering-time approxi-
mation leads to a dispersion function' ' '

3Psmq'e& 1/ Ps) P—k P
iP(k)=k' —ks' —— —

~
1—

~

ln —,(3.1a)
2 kpp 2k k'i 8+k k

1s

I = (xs~n) '".— (3.4)

[Here ai„ is the plasma frequency (nqs/rises)'Is). In
the limit of long mean free path, the value g= 1 de-
scribes the onset of Doppler-shifted cyclotron reso-
nance. ' At small values of g, the helicon wave is a well-
defined excitation and the electron gas behaves as if its
conductivity were local. At large values of g, the non-
locality is severe. In the absence of a magnetic field. ,
large values of g correspond to the so-called extreme
anomalous limit. ' The large-ii limit (with a magnetic
field present) will be our concern here.

At large values of ii, 1/p is small enough so that useful
results can be obtained by working to lowest order in
I/p throughout. This we shall do.

In terms of these parameters, the dispersion relation

'P. M. Platzman and S. J. Buchsbaum, Phys. Rev. 132, 2
(1963).' P. B. Milier and R. R. Haering, Phys. Rev. 128, 126 (1962).

e-sar-I ( ps p k p

(k/p)-2&» p+k k
~ (3-5)
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C. Equations for q and e(L)
Inserting (3.8) and (3.9) into (2.5) gives

A. Location of Roots

The number of roots k„can be determined by follow-
ing the change in the phase of f along its branch cuts. '
At large g, one will And either one or two roots in the k' P

upper half-plane, depending on the value of $. Assum- Xt'(u) =
X k„k„X(k„)

ing that the roots are at large k/P, one can expand the
logarithm and, applying some care to maintain the cor-
rect branch of the logarithm, can seek roots by setting k„'+'+re)+st

k X(k)kit( k)/P'= (k/P)'+rte "&Xis/2T= 0,

(—Pu) 'W(u) e*~"~

XI g(u)+h(u)7du

(3.10a)

where T= sgn Im(k/P). This cubic equation would have
three roots were it not for the factor T which arises
from discontinuities across the branch cut of the
logarithm. By taking T= &1 without considering its
k dependence, one has three possible roots in the upper
half -plane,

where

p/+t

pl+

(—u) 'W(u) k(u) ere "zdu (3 10b)

( u) '—W(u) g(u) e"'"zdu (3..10c)

where
k~ —

(Pp) er(v & t)— (3.6a)

p] —671 ~
cp~g= p7i Q3—gX ~ (3.6b)

It is convenient to change the normalization of the
coefficients p„+ by introducing

Only one or two of these are actually solutions for a
given P because T depends on k. The values of l, des-
ignating the actual roots, depend on P as follows:

0($(ss I=2

f)„+=i( —1)"—'q +/k„X(k„).

Using (3.10a) and (3.11) into (2.10) gives

e(L)= Z L(k-"+tee t+ssr t)(i.+

(3.»)

—'s ($(-'s
svr( $(—s,rr

ass.($(s.

2)1

(3.7)

Since E, the number of roots found here, agrees with
the number independently determined by the phase
arguments, there are no roots which we have overlooked
by assuming large k/P.

n=1

(k."+re~ —s~ )e„-7 (3.12)

N

Q (k '+'+teg+sg)0„+=0, l=0 1V—2, (3.13a,)

while inserting (3.10a) and (3.11) into (2.6) and (2.8)
gives the algebraic equations which must be solved
for the 0„+coefficients:

B. Integral Equation for f„
In Sec. II, we established that we need f +(t) only

for t of order unity. Since k„ is of size pp, we can, to
lowest order in 1/p, neglect Pt compared to k„ in Eq.
(1.7). The term e'"" is of order e p; we neglect it also,
and (1.7) becomes

f„+(t)= [X—
(pt) —X+(pt)/2s. ik X(k )7XF+(t), (3.8a)

where F(t) satisfies the equation

Z L(k +teN —les%—1)(ks ~)
n=l

+(k ~+'+re &s )7& +=k (3 13b)

Equations (3.13) are to be solved for e„+ and the
result used to evaluate e(L) in (3.12). Although the
details of solution for the two cases E= 1 and X= 2
differ, the final forms do not. To lowest order in 1/p,
we obtain'o

and where

F+(t)= 1+
"W(u)e' "PFz+( )udu

(u+t)
(3.8b)

e(L) =2ksss/(ks+ P k.—J)'

or, making use of (3.10c) and (2.7c)

W(u) =LX-(Pu)—X+(Pu) 7—/2s iX( Pu)—(3.8c) e(L) = —2kaa W(u)g(u)e'e"zdu
1

F+(t) =g(t) ak(t), (3 9)

If we iterate this equation (3.8b) to convergence, we

develop a series of the form —(1V—1)p— pdu lnG(pu) . (3.14)
2%i 1

(t) is the sum of all even iterates (the zeroth "We shallsee that in the range near N=l, the function iir(u),
which is the same in (3.10) as in (3.8), is of order unity and that

second, ~ ) and Is(t) is the sum of the odd iterates. therefore te,/k„~+r- $/pl+1 and that sl/k l+r t/p$+$
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This result is correct to lowest order in 1/p and de-
serves some comment. In the numerator of this ex-
pression for the emergent fmlds is the function W(u) g(u)
which consists of 8' times the sum of even iterates of
(3.8b). The 6rst term of g(u) is 1 and each higher term
is smaller than the one before it by exp( —2L ImP). The
interpretation of these higher terms as partial ampli-
tudes which have been returned to the emergent face
after additional round trips through the slab is clear,
especially since the function W(u) expipuL, which is

the lirst partial amplitude (the first term in the series),
is the same function as appears in (3.8b), the equation
which generates the iterates. If the numerator integral
describes the attenuation in the slab on the erst and
successive traverses of the slab, then the other terms in

(3.14) must describe the effect of the incident and

emergent faces in allowing the wave into and out of the
slab, i.e., must describe reAection at the faces. This
interpretation is consistent with the absence of any
thickness dependence in these other terms.

where E is the number of upper-half-plane roots which

depends on $ as given by (3.7) and where q(u) is a
rather smooth looking real function of I which depends
on none of the physical parameters of the problem. "
At u=1, q(1) =i2, and at large u, q(u) goes as 4/7r2u.

The term X—~3 persists up to N=p. In addition,
(ism.i) lnG(pu) develops a peak of area p at u= p. The
height and width of this peak depends on $, the peak
being sharpest at those values of g which swing the cut
alongside one of the roots. We show, to accuracy p

' 1np,

that

00

Pdu lnG(Pu) =PpL1V ——,'+F($)],2' (3.15a)

where F(]), which arises from the peak of area p, is

given by

( I) (a-1)/2- e8eQ e—3nie-

F(~)=- Z
s n&0 odd u 3u+1 3u—1

(3.15b)

The function F($), which is periodic with period 32m,

can be evaluated most easily by noting its resemblance
to F'($), the Fourier-series representation of the saw-

"lt does depend on the form of the Fermi surface, which we
have taken to be a sphere.

D. Evaluation of the Emergent Fields

In Appendix A, we show that, to within an accuracy
of 1/p,

1
lnG(Pu) =/V —s3+q(u), 1&u&P'",

27ri

tooth function of the same period

F,(P)=——;g;

( I ) (a-1) /2 e3n-i t e 3n-it

=—Z
Z7i +&0 S — 3S 3R

(3.16a)

(3.16b)

(3.16c)

The difference between F($) and iF0($) is a series
whose convergence is much more rapid than either.
Two terms for the real part and one for the imaginary
part

1 f cos9$) f sin3)y
F(0)=——

I
cos3t— I+il Fo(k)+

4n. i 30 J k 12m. )
(3.17)

G(t) = (2/i/3') expi(~/3 —
&) .

Inserting (3.18) into (3.14) gives

(3.18b)

e(L) = e2''/«/'& W(u)g(u)e'e"~du (3.19).
2Pp' 6

In Appendix B, we study the function W(u) and
show that for I less than p'", it is real and independent
of all the physical parameters. The important feature
of its e dependence in this range is that it is of order

unity and decreases smoothly to zero at I= 1, approach-
ing zero with a slope S also of order unity. This behavior
is enough to 6x the form of the emergent 6eM in thick
slabs, i.e., for L/l=LImP)1. If L is large enough,

multiple reflection Lhigher iterates of (3.8b)g can be
ignored and we can take g(u) =1. Then in evaluating
the integral in (3.19). we can use the form of W(u)
appropriate to smallest u, namely

W(u)eie"~du=S (u 1)eie~~du= —Se—'e~/(P'L2)

where S is the slope of 8' at u= 1.Using this evaluation,
and the delnitions (3.2) and (3.4) give

e(L)= L3koSp/2(p/r)'L'j expi(PL 2 /3 i') . (3.20)— —

provide accuracy of better than 1'P~.
We use (3.15a) to evaluate the denominator of (3.14).

The terms ko and (/V —1)P in (3.14) are discarded as
being 1/p smaller than those retained (at metallic
densities and frequencies below the infrared). The roots
k„ in (3.14) have been evaluated by (3.6a), and so the
denominator of (3.14) is

ppL E e""' " /V+l —F(t)j=—ppG($) (3 18a)
N values

ofl

There is undoubtedly some Fourier expansion we have
failed to take advantage of here, for after a few mo-
ments of numerical evaluation, it becomes clear that
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IV. DISCUSSION OF THE TRANSMISSION
AMPLITUDE

The Geld e(L) at the emergent face of the slab, as
given by (3.20) can be rewritten, using deGnitions (3.2),
(3.3), and (3.4) as

refers to the two possible senses of Geld rotation relative
to cyclotron rotation. At any given point the direction
itself rotates with frequency co, as does the initial-
field direction. Thus the impulse I carried by the elec-
trons of velocity e, is

2 spy
s(l) — $pvi(PL 2xl—B t)-

x o)„212
(4.1a)

I.=cos$(Wco, +(o)s/v, cot]—,

I„=sinL(W(o, +co)s/v, —cotj.

where S is a constant of order unity. The amplitude of
e(L) depends on magnetic field only through the factor

f(~(y —(g)2+ 1/pmj»2 (4.1b)

which gives the square root of a I.orentzian for the
line shape near cyclotron resonance. The attenua-
tion of the Geld is L 'exp( —L/t), characteristic of
single-particle excitations near a limiting point of
the Fermi surface. ' ' The phase of the emergent Geld
exhibits the Gantmakher-Kaner oscillat. ions Lthe term

LReP=(+&a,—or)L/vi in the exponent( which are
linear in magnetic Geld. The periodicity of this series
of oscillations is spoiled a,t cyclotron resonance where
the phase slips by an a.dditional amount v (the term
&
= tan '1/(+~, +(0)r in the exponent) across the

resonance peak.
There is a reasonably simple interpretation of the

oscillations, the resonance peak, and the phase slip
across the peak, which is based on the idea that the
field of the incident wave penetrates a short distance
into the slab, leaving the interior relatively Geld-free. "
In the situation we have been calculating the electric
Geld of the incident wave is parallel to the slab sur-
face, and circularly polarized so that it rotates in the
plane of the surface with a frequency eo. An electron
moving across the slab will receive an impulse from the
electric Geld only while it is near the incident surface.
Thereafter, its motion carries it through the slab with
velocity e„during which time, it experiences only the
steady magnetic Geld which bends its path into a helix.
If this electron is observed at a time t after receiving
the original impulse, its position is e,t, and the direction
of the current it carries at that time is at an angle a&,t

with the original direction. Another electron of velocity
v, observed doser to the incident face at this same time
will have been at the face more recently than the Grst,
and hence will have suGered less rotation. It will,
however, have received an impulse from the electric
Geld at a later time, when the direction of that Geld is
somewhat rotated. It is clear then that at any instant,
the direction of the impulse carried by electrons varies
with distance across the slab and that the angle de-
scribing this direction is (&re,+~)s/v, where the &

"G. Weisbuch a.nd A. Libchaber, Phys. Rev. Letters 19, 498
(i967).

Although this looks like the description of a wave,
there is no wave in the conventional sense of energy Bow
between oscillators. There is just a rotating helix. As
the cyclotron frequency co, approaches the Geld fre-

quency (0, the pitch of the helix (for the resonant direc-
tion of rotation) lengthens and, at cyclotron resonance,
becomes inGnite. When the cyclotron frequency passes
the field frequency, the pitch of the helix shortens up,
but this time the handedness of the helix is opposite to
what it previously was.

In the metal, electrons have a continuous distribu-
tion of e, values. The contribution of each of these elec-

trons, each with its own helical pitch, must be added.
Electrons whose motion is exactly across the slab
arrive soonest and (all other things being equal) in

greatest number because their direct path across the
slab makes them least subject to the collisions which

inevitably interrupt their Qight. These electrons would

therefore determine the dominant helical pitch, or
apparent wavelength of the signal.

All other things are, however, &zot equal. In the
Grst place, the electrons which travel directly across
the slab are those which originate at circumpolar
latitudes on the Fermi sphere. Their motion is most
nearly normal to the electric Geld and hence, by reason
of their direction, they receive the least energy from
the Geld. (In a degenerate Fermi gas, the current
carried. per particle depends on the energy it acquires
from the Geld, not the velocity, because in effect the
Pauli principle demands transitions across the Fermi
energy. ) They contribute least to the current for this
reason. Secondly, their motion carries them out of the
6eld region most rapidly and their effectiveness is
further decreased. Nonetheless when all the individual

contributions are added, the effective pitch of the helix
is as though the circumpolar electrons were most. effec-

tive, although the phase of the he1ix leads or lags that
of the circumpolar electrons somewhat, being held back
or advanced by electrons originating closer to the Fermi
equator. Whether the phase shift is a lead or a lag de-

pends on the cyclotron frequency relative to the Geld

frequency: electrons originating closer to the equator
and observed at the emergent face must have left the
incident face earlier than those which originated closer
to the pole. The question is whether the added cyclotron
rotation in their longer Qight was greater, or less than,
the added rotation of the Geld at the incident face
during the same time.

The above ideas describe the phase of the Geld at
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the emergent face as a function of magnetic Geld: the
linear increase in phase (the Gantmakher-Kaner term)
arises from the steady change in the pitch of the helix,
and the phase shift across the resonance peak repre-
sents the conversion of the phase lead of the equatorial
electrons to a lag, relative to the phase of the polar
electrons.

The ideas also describe the transmission peak at
cyclotron resonance. Although the analogy is not exact,
it is as though one had Fresnel zones on the Fermi sur-
face, each zone being defined such that all electrons
from that zone arrive at the emergent face with a phase
along the helix which is within 2x of the average from
that zone. Contributions from adjacent zones tend to
cancel although (unlike in the optical case) the can-
cellation is not complete. The zones, constructed in this
way, would be bounded by parallels of latitude whose
spacing is uniform in 1/cos0, e being the polar angle,
and would have a width given by b,(1/cos8)=X/2I.
where X is the pitch of the circumpolar helix. The
thicker the slab, the narrower are the zones and the
more complete the phase cancellation will be. )Note
the 1/I.' decrease in (4.1a), even when the exponential
attenuation due to collisions can be ignored. ) At
resonance, however, the first Frensel zone expands to
Gll the entire Fermi hemisphere, and there is no can-
cellation of adjacent zones, so the signal is more intense.

These Fresnel-zone expansion effects by themselves
would lead, in this limit, to a line shape with a
Lorentzian dependence on magnetic fieM and a phase
which slips by 2s. across the resonance. )The mathe-
matics which leads to this conclusion is formally
identical with the unnumbered equation preceding
Eq. (3.20).g However, this discussion has ignored what
changes the driving field itself will experience. Clearly,
it the portion of the Geld which penetrates the sur-
face and launches these helical electrons changes its
phase or intensity relative to the incident Geld, or,
changes its depth of penetration, the intensity of the
impulse given to the electrons crossing it or the phase
of this impulse relative to that of the incident Geld will
also change, and thus there will be a corresponding
eRect on the signal transmitted across the slab. The
driving field certainly has structure of its own (i.e.,
wavelength, attenuation length, phase relative to the
incident Geld). This structure can be expected to change
near cyclotron resonance, because it is determined in
large measure by the currents near the surface. These
currents, which shield the interior of the metal, are the
response of the electrons to the Gelds to which they are
subject. Think of these electrons as harmonic oscillators
with frequency co,.The response of the electrons will lag
or lead the Geld, as any harmonic oscillator lags or leads
the oscillatory driving force, when the frequency of
that force goes through resonance with the frequency
of the oscillator. How sharp the resonance is depends on
the damping of the oscillator. Similar effects must occur

at the emergent fact of the slab. The point is that in ob-
serving the emergent ields near cyclotron resonance,
one is experiencing the eRects of three resonances which
are occurring simultaneously, one due to Fresnel-zone
expansion, the. other two due to the shielding currents
at the two faces of the slab.

The assumption of diRusion scattering of electrons
at slab boundary faces corresponds to heavy damping
of the electrons whose response is the shielding current.
In such a case the emergent Geld will exhibit more of
the behavior we have described as Fresnel-zone ex-
pansion. The assumption of specular reQection of elec-
trons from the boundary faces corresponds to no damp-
ing of these same electrons, other than that provided by
bulk collisional damping. In such a case, the resonant
behavior of the shielding current should augment (or
diminish, since this is a resonance in the shielding
which means that the 6eld penetrates less) the effect
of Fresnel-zone expansion. Specular reQection, as cal-
culated by Gantmakher and Kaner, shows no resonance
at re, =&0 (even when one restores terms of order c0/ce,

which were dropped because of the low frequency of
interest in their paper). We can conclude that the
resonant response of the electrons adjusts the held
penetration in such a way as to cancel the eRects of
phase shift and Fresnel-zone expansion on the electrons
travelling across the specular slab. "

This discussion should not be interpreted as meaning
that diRuse reQection at the surface eliminates all
resonant response of the shielding electrons. Clearly,
those electrons which are directed into the metal at
small enough angles so that they stay in the skin depth,
or driving Geld, until they are scattered will respond
resonantly whether their original encounter with the
surface was specular or diRuse. Indeed, the resonant re-
sponse of the shielding electrons is the most probable
cause of the difference between the bare Fresnel-zone
expansion effect (Lorentzian line shape and 2s phase
slip) and the results (4.1) for the diffuse slab (square
root of a Lorentzian and s phase slip). The bare
Fresnel-zone expansion eRect could be observed only if
one postulated some mechanism, i.e., macroscopic sur-
face roughness, external to this model, which could act
to intercept all electrons which would otherwise give a
resonant shielding.

One implication of the Fresnel-zone idea here is that
in metals where the Kaner-Gantrnakher signals arise
from a Qat portion of the Fermi surface, so that many
electrons carry the signal, the opening of the Fresnel
zone will not lead to as large an enhancement of the
number of electrons which arrive in phase. Hence, for

'3 The absence of any resonance in the specular transmission
is not strictly correct except in the large (I./l) limit. As L/I is
decreased, corrections analogous to those discussed in the follow-
ing paragraphs reduce the effect of the Fresnel-zone expansion so
that it no longer exactly compensates the increased shielding
caused by the equatorial electrons, The result is then a trans-
mission dip at cyclotron resonance.
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The second correction, becomes important at smaller
slab thicknesses than does the first. It enters the
mathematics through the need for using higher iterates
of (3.8b) to determine g(u). For slabs greater than one
mean free path thick, the next iterate provides a cor-
rection of about 1%, and so the major correction to
(4.1) in this range arises by using (4.2) but retaining

g(u)=1 in (3.19). Doing so gives a result similar to
(4.1) but with S replaced by

0.218
1.50-5.0/iPL

(1—0.65/iPL) (1—7.7/iPL)
(4 3)

The corrections embodied in (4.3) tend to depress the

peak of the line at cyclotron resonance relative to its
wings, making the line shape somewhat less pronounced.

ACKNOWLEDGMENTS

I should like to express my appreciation to a rather
large group of colleagues who have generously discussed
various aspects of the electromagnetic problem with
me, among them S. J. Buchsbaum, C. C. Grimes,
J. R. Klauder, J. A. Libchaber, D. E. McCumber,
P. S. Peercy, P. M. Platzman, H. Scher, W. M. %alsh,
and P. A. %ol6. The length of this list in no way
diminishes the contributions of the individuals on it.
I should like especially to thank Professor S. Shultz of
the University of California at La Jolla for discussions
of his experiments on transmission through alkali
metals at cyclotron resonance. They provided the most
direct impetus for the calculation reported here.

such metals, there is much less reason for a transmission
peak at cyclotron resonance.

To return now to the calculation of the transmission
amplitude, as the thickness of the slab is decreased,
corrections to (4.1) should arise from two sources: erst,
shorter-range excitations are transmitted through the
slab and second, the longer-range excitations them-
selves start to suffer multiple reQection. The first of
these corrections enters the mathematics as the neces-

sity for using a representation for W(u) which is valid
at larger values of u than is the simple W= 5(u—1) just
used. LThe function W(u) really describes the number of
electrons at polar angle e, where u=1/cosa, and how

efficiently they obtain energy from the deld just below
the incident surface of the slab. The statment "all
other things being equal" used in the discussion just
given would translate into mathematics as "W(u) being
a constant". j A simple approximate form which is
useful in the range 1&u&6 (see Appendix B) is

W(u)=0.218L1—0.88e '"&" '& —0.12e r &" "j (4.2)

where

and

27ri
Pdu lnG(Pu), (A1a)

(Aib)

P+(Pu) = lim QLk =P(u+ ie)j . (A1c)

Using (3.4) and (3.5) for the dispersion function P(k),
we have

where

1 1 1—ic(u)
lnG(Pu) = ln =—I(u),

2s i 2s.i 1+ic(u)

b(u)
c(u) =

e"&—a(u)

2~p '-1 1~ u —1 1-
a(u) =-~ — — 1——

~

ln
~Lu 2 u') u+1 u

(A2a)

(A2b)

(A2c)

b(u) =
I

—
I

Eu) u'i
(A2d)

The branch of the logarithm to be used is the one which
vanishes at I= ~. The same phase arguments which
allow one to count the member of upper half-plane
roots of f can be used to show that this branch yields'

I(u=1)=E—1. (A3)

We now examine I(u) in various ranges of u with the
aim of developing approximations compatible with the
1/p accuracy we wish to maintain.

Range 1:1&u&y~i'2

Throughout the range, e"& is negligible in com-
parison to a(u), and, on dropping this term, we have
c(u) = —b(u)/a(u) which is real, and independent of $
and g. The reality of c(u) means that

I(u) = ——tan-'c(u)+m

m (1—1/u')
+m, (A4)

APPENDIX A: THE REFLECTION FACTOR J
In this Appendix, we study the evaluation of an

integral which plays a major role in determining the
normalization, namely
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OAO is not only simple enough to handle but also is re-
markable for its accuracy 3/o over the entire range
here (see Fig. 2).

0.50

0.20

It is no longer within 1/p accuracy to ignore e"&

in comparison to a(u). We can however use a large u
expansion of a(u) and, to within 1/p accuracy, take

1/c(u) =e"&/b(u) —a(u)/b(u)

= (ue'&/p)'+4/vru.

Expanding the logarithm appearing in (A2a) in a power
series in 1/c(u), and choosing the branch which is
continuous with (A6), then gives

0.10
I(u) = iV ', +4/~—'u-+ (ue' /p) '/n. (A7)

1.0
I

2.0 2.4

Range 3: y~~'& u& y

In this range, 1/c(u), although less than unity, can
approach it, and so the full power-series expansion of
the log is needed. Again choosing the branch continuous
with (A'/),

Fro. 2. The function W(u) de6ned in (3.8c) and
the approximation (3.21).

1 1 1 1
I(u) =E—a———+ + +itic .3(ic)' 5(ic)'

where the integer m arises because tan ' is determined
only to within integer multiples of x. The particular
choice of branches compatible with (A3) is m=X—1.

At the upper end of this range, we can expand (A4)
and obtain

I(u) =E—1——— +0(1/u')
2 7I Q

However, we can put 1/c= (ue'&/p)' in all terms of this
series save the irst, where the piece 4/n'u must also be
included, and still stay within the 1/p accuracy. This
gives

I(u) =E—
2

where O(1/u') stands for a series of the form ~ n=odd n&O

1—Qo 82 Q C4 Q
Q

and so, to lowest order, at large Q,

I(u) =N '+4/x'u. —- (AS)

Comparison of the exact (A4) with the approximate (A5)
indicates that because of the fortuitous size of the
coeS.cients of the series, the approximation i s valid to
within about 2 jo even down to u =2. The main defect
with the approximation is that at Q=1, it goes to the
wrong limit. We can force the approxin'a, tion to go to
the right limit by subtracting from (A 5), the quantity
(4/w' ——',) times a function of u which decreases
smoothly from unity at Q=1 to near zero by Q=2. It
turns out that one choice,

I(u) =&——,'+4/n-'u+ (-', —4jm')/u' (A6)

Range 4: y&u

In this range, c(u) &1 and, to accuracy 1/p,

c(u) =b(u)/e" &= (pe '&/u)'.

We use the full power series of the logarithm and choose
the branch which vanishes for large Q. This gives

This form is not obviously continuous with (Ag) at
Q=p. However, if one remembers that X——,'=~-,' de-

pending on the value of t, and then makes use of the
Fourier series for the square wave of periodicity 32~
and amplitude ~~, the continuity of these expressions

is easy to demonstrate.
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Using (A6)-(A9), we now can evaluate (A1a) as 0.20

I(u)du

= [& a+—~(k)jp+4/~'»p+o(ilp') ~ (A10)

where F($) is the series given in (3.15b). At large p, we
retain only the first term of (A10), which gives (3.15a).

APPENDIX 8: THE FUNCTION W(t)

Utilizing (1.8), we have

1,0 2.0 3.0 4.0
U

Fro. 3. The function E—i —I(N) defined by (A4)
and the approximation (A6).

5.0

X+(Pt) (1—t) N-t 1
exp

X( Pt) —(1+t)N ' 2vri
du 1nG(Pu)

X
u —tWie u+t

which, when exponentiated in (Bi), exactly cancels the
factor in front of the exponential. This leaves

1 8 "
Ir 1 ii

W(t) =—exp —— du~
~ (»), &u—t u+t)

In the range where t is of the order of unity, which is
the only range where W(t) will be needed, the square
bracket in (81) goes as u ' for large u. We have seen
that lnG(Pu) is rather constant for large u unless f
is such that there is a pole along the cut. The lnG(Pu)
peaks at I,=p and its integral is of order p. However, in

(81), this peak would be weighted by 1/u'=1/p', and
thus the contribution of the peak to the integral will be
of order 1/p. Hence, for the purposes of calculating the
integral in (81), we can neglect the peak and, to an
accuracy of 1/p, use the form of lnG(Pu) appropriate to
the range u(p'", namely (A4) with tn=E —1. Then
using

(1—1/u')
Xtan —'

(1—1/u') ln[(u+1)/(u —1)+2/u j
Xsin tan '

a (1—1/t2)
(83)

(1—1/t') ln[(t+ 1)/(t —1)+2/tg

This is, as we had claimed, real and independent of the
physical parameters. Since this is the case and since the
function is always used as a factor in an integrand, a
numerical approximation to this function of 6erce
appearance but gentle behavior is indicated. As a 6rst
step, one can replace the tan ' by the same approxi-
mation which led from (A4) to (A6), namely,

1/(u —t+ie) =Pi/(u —t)aixb(u —t)

the integral in the exponent of (81) is

1 1
du~ —

~

(A'—1)——tan —'
Eu—t u+tl

j.
—tan ' m(1 —1/u')

(1—1/u') ln[(u+1)/(u —1)+2/uj
1 4 t'1 4~ 1

(84)
2 e'u ~2 rr'I u'

s.(1—1/u')
X

(1—1/u') ln[(u+ 1)/(u —1)+2/u)
ai~(2V—1)ai

x (1—1/t2)
Xtan —'

(1—1/t') ln[(t+1)/t( —1)+2/tg
(82)

The term proportional to (S—1) in (82) is

(X—1)[ln(t+ 1)/(t —1)&i7rf = (E—1) ln(t+ 1)/(1—t),

This allows one to carry out the integration in (83)
so as to take a look at the beast which emerges. How
one handles it next is a matter of choice. Ke chose to
approximate the result by as simple a function as would

reproduce the important behavior and, after some
numerical evaluation, decided on the form given in

(4.2). A comparison between (4.2) and the more exact
expression obtained by using (84) in (83) is given in
Flg. 3.


