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appears to be very promising in its ability to describe
relative changes of metallic band structures with change
in lattice spacing, especially in the vicinity of the Fermi
energy, once a reasonably accurate potential has been
found for theuncompressedmetal. This conclusion seems
to imply that the predominant change in band-theory
potentials as the lattice spacing changes is simply due
to a superposition of single-atom charge densities,
while the change in these charge densities with small
changes in lattice spacing is, at most, a second-order
eRect. Of course, this conclusion is based only on this
study of the change of copper's band structure, and we

hope to have the opportunity in the near future to
perform similar studies on other metals.
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A novel viewpoint towards the lattice dynamics of an anharmonic crystal, put forward in a previous
paper of the same title, is enlarged and extended. This viewpoint 6rst focuses attention on the motion of a
single atom in a static environment, and develops the collective modes of the crystal as a whole from a
superposition of the motions of the individual atoms. It is shown that of the many collective modes for a
given wave vector, three are identifiable as one-phonon modes in that only these contribute to the dis-
placement-displacement response, and a simple expression for the eigenfrequencies of these modes is ex-
hibited. The other modes are shown to be associated with single-particle transitions, and their contribution
to the neutron structure function S(k,~) is derived in the special case of a purely harmonic lattice. The
many-body approximation is extended to include collective fluctuations in the equilibrium state. Serious
diKculties in principle are encountered, associated with maintaining translational invariance, but are
partially overcome by an ad hoc procedure. Collective-mode frequencies renormalized in this way are
compared with those obtained from an alternative theory which deals exclusively and from the outset
with collective coordinates only.

I. INTRODUCTION
' N a previous paper' of the same title, a novel view-
s - point towards the lattice dynamics of a crystal was
put forward. This viewpoint first focuses attention on
the motion of a single atom in a static environment, and
then develops the collective modes of the crystal as a
whole from a superposition of the motions of the indi-
vidual atoms. The philosophy is the same as that of the
random phase approximation (RPA) which is also the
starting point of the theory of most other many-body
systems.

No assumption is made in this theoretical approach
about the smallness of the atomic displacements relative
to the interatomic spacing. Hence this theory is ap-
propriate for highly anharmonic crystals, a leading ex-
ample of which is helium. Here the traditional quasi-
harmonic theory fails, due to the light mass and weak

~ D. R. Fredkin and N. R. Werthamer, Phys. Rev. 138, A1527
(1965), hereafter referred to as I. Similar ideas have also been
discussed by W. Brenig, Z. Physik 171, 60 (1963), and more
recently by G. Meissner, ibid. 205, 249 (1967).

restoring force, and consequent large zero-point motion
of the atom. Yet the present picture gives a good ac-
count' ' of the phonon spectrum and attendant thermo-
dynamic properties.

Despite the success of the RPA approach in giving at
least qualitatively correct results for the phonon spec-
trum, some other aspects of the lattice dynamics are not
treated adequately, notably the temperature depend-
ence. This is because the phonon collective modes are
only obtained from the response of the crystal to a
disturbance. In the absence of any disturbance, i e., at
equilibrium, the RPA regards the crystal as an array of
nondynamically interacting atoms with a discrete
single-particle excitation spectrum. Consequently, there
are no Boltzmann factors of the form expL —(phonon
energy)/k&Tj as should be expected, only factors
expL —(single-particle excitation energy)/AsTj, which

~ L. H. Nosanow and N. R. Werthamer, Phys. Rev. Letters 15,
618 (1965).

3 F. W. de Wette, L. H. Nosanow, and N. R. Werthamer, Phys.
Rev. 162, 824 (1967).
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obviously give vastly diferent results. A further in-
adequacy of the RPA is the lack of any phonon lifetime,
thus precluding any calculation of transport properties.
Since phonons are not present as Quctuations in the
equilibrium state, the collective response cannot be
damped by the usual mechanism of decay into two or
more phonons.

This paper attempts to extend the RPA treatment of
crystal lattices in order to overcome these deficiencies.
It is necessary, first of all, to generalize the rather ad hoc

density matrix formalism of I in order to have a
mathematical structure of sufhcient power. This is done
in the following section, where a suitable adaptation of
the usual field-theoretical formalism is presented, and
developed into a diagrammatic perturbation expansion.

The RPA results of I are then rederived in Sec. III
with the new formalism. Several new results are also
obtained which clarify the nature of this approximation.
In particular, vie are able to exhibit a simple explicit
expression for the one-phonon eigenvalue equation, a
result previously only conjectured. ' ' Also, by reverting
to a harmonic interatomic potential, we are able to find
explicit solutions for all other collective modes in addi-
tion to the one-phonon modes. These other modes are
merely independent single-particle transitions, having
discrete frequencies. With the full set of modes at our
disposal, we construct the structure function S(ir,~)
seen, for example, by neutron scattering. Besides the
correct one-phonon poles, 5(k,u&) also contains artificial
poles at the discrete single-particle transition fre-
quencies, indicating that the RPA does not contain
sufhcient correlation to solve the harmonic-lattice
problem exactly.

The approximation we consider beyond the RPA is
one in which an atom is allowed to emit and reabsorb
virtual phonons in the equilibrium state. In attempting
to implement diagrammatically this physical idea, we
are confronted by a serious technical obstacle connected
with satisfying the requirements of translational in-

variance. The nature of the obstacle, its ramifications
for many-body theory in general, and the procedure we
follow to circumvent it is the subject of Sec. IV. We
there also present results for the phonon frequencies as
rnodified by this interaction with other phonons, and
which thus have a more satisfactory temperature
dependence.

We conclude in Sec. V with a brief discussion of these
results, and an intercomparison of this theory with an
alternative formulation, which we will call the self-
consistent phonon approximation, which has made
several appearances in the recent literature.

D. ZORlm, ASM

It will be the goal in this section to develop a for-
malism adequate for a self-consistent treatment of the
crystal-lattice problem, independent of the harmonic
approximation as a starting point. Indeed, as we have

emphasized earlier in the Introduction, we choose to
start from a single-particle representation and build up
the phonons as the low-lying collective modes of a
general anharmonic system, in contrast to the con-
ventional method of using the purely harmonic solid as
the lowest-order approximation to the equilibrium state.
Within the context of a single-particle description, how-
ever, direct application of the methods of second quanti-
zation —in particular, the thermodynamic Green's-
function approach —to the problem of the crystal lattice
presents certain immediate difFiculties. That this is true
becomes apparent if we note that the crystalline solid
exhibits the property that each particle associated with
a given lattice site must be localized in a volume

a' (a=—lattice constant) about that lattice site. Fur-
thermore, there must be on the average no more than
one such particle localized in this volume. Thus one is
prevented at the outset from employing a single-field-
operator description of the solid, since such a description
introduces exchange and indistinguishability in so
fundamental a way that one could not distinguish be-
tween particles associated with different lattice sites.
Nor could one hope to impose in any easy way the con-
dition that particles be created and destroyed only in
those localized regions of space surrounding the lattice
sites of the crystal.

In order to preserve the distinguishability of particles
associated with diGerent lattice sites, we consider
Heisenberg 6eld operators f,t(xt), f, (xt) as creating and
destroying particles of type i (i.e., particles associated
with lattice site i) and satisfying commutation relations

P, (xt)P, t(x't)WP, t(x't)P, (xt) =8;,P(x—x'),

P, (xt)P;(x't) +P, (x't)P, (xt) =0. (&)

The requireInent of localization means that mathe-
matically we must have some way of differentiating
crystalline solutions from those solutions, for example,
which might represent a gus of distinguishable particles.
As we shall see in more detail later, in order to isolate
those solutions representing an ordered solid, one must
cast the equations in a form which makes explicit the
property of invariance of the system with respect to
translations through a lattice vector. Bounded solutions
of this set of equations then automatically represent
states of an ordered lattice of particles.

Once localization is assured, the problem of how to
guarantee that there be oe the average no more than one
particle localized at a given lattice site is a separate
question. In principle, one satisfies this requirement by
assigning a chemical potential p; to each type of particle
and in the end allowing each p; —& —~. Of course, one
must be careful at all times during the limiting procedure
to satisfy the constraint

Z f(~-,t ) = &,

where f'(e, tI) is the distribution function appropriate to
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the manifold of single-particle energies e at each lattice
site. The above procedure, of course, introduces dis-
tinguishability and the associated Maxwell-Boltzmann
statistics. It also eliminates the possibility of introducing
exchange in any fundamental. way at the beginning of
the calculation. However, unless one is interested in the
nuclear magnetic properties of the solid, this does not
constitute a serious drawback to the approach. Indeed,
although actual exchange of particles may occur in a
highly quantum solid such as crystalline helium, esti-
mates of the exchange energy involved4 indicate that the
exchange contribution to the ground-state energy is
negligible even in this case. Furthermore, it is possible to
reintroduce exchange in an ad hoc but plausible way by
antisymmetrizing the scattering amplitude between
neighboring particles, if the magnetic properties are
indeed of interest.

Let us consider, then, a system of E distinguishable
particles with associated field operators f, (x,1), P;t(x, t}
(i=1 1V) and governed by a Hamiltonian

H= P dsxlI it(xt)( —1/2M)VQ (xt)

+—,
' P dsgdsx'Pit (xt)g„t (x't)

L, m

grand-canonical density matrix operator

w= expP P p; dsnP;t(x)P;(x) B—

Tr expP P ls; ds+;t(x)P;(x) —H, (6)

where P= (kiiT) . Using the delnition (5) in conjunc-
tion with the equation of motion (4), one easily writes
down in the usual manner the infinite hierarchy of
Green's-function equations of motion. As is well known,
the hierarchy of Green's-function equations are most
easily dealt with in the imaginary time interval 0&t

iP,—employing the appropriate boundary condi-
tions. ' The one-particle Green's function G;;&'&(xt,x't'),
for example, satisfies the boundary condition

G;;l'&(xt, x't')
( ~ p= ~exp(Pp~)G; "(xt,x't')

( ~,p, (2)

and similar relations hold for the higher-order functions.
Let us recall at this point that a convenient formal
method of generating Green's-function approximations
is via the functional-derivative technique. ' In this ap-
proach one adds to the Hamiltonian of the system some
arbitrary nonlocal scalar potential

where
&& Vi (x,x')lI „(x't)pi(x1), (3)

U(t, t') —=p dsxd'x'lt it(xt) Uip(xt, x't')pi. (x't'), (8)
ll'

V i (x,x') = v(x —x'), l~ m

=0 l= ns.

The equations of motion of the field operators f, (xt) are
calculated according to the usual prescription

i(8/el()lt;(xt) = Lp;(x1),IIj
= (—1/2M) Pp;(xt)+p dsx'V;i(x, x')

&&i/ i (x't)P i(x't)P;(x1) . (4)

and then allows the field operators to evolve in the
imaginary time interval 0&1& iP. The one-par—ticle
Green's function 6(" is now a functional of U, and one
can generate higher-order Green's functions through
successive functional differentiations of Gl'&(U). In the
presence of U, in the imaginary time interval, one finds
it convenient to adopt the interaction representation for
the one-particle Green's function,

G,,'"(x1,x'1'; U) —=((4 '(xI)4 '(x'1') )+)/((~)+)

dtd1'U(1, 1')S—=exp —iNow, by forming the time-ordered product of any
number of field operators f with an equal number of
field operators ft and taking the appropriate statistical
average, one easily constructs the typical m-particle
Green's function

Completely analogous representations hold for the
higher-order functions. One easily verifies that the
boundary condition (7) holds in this more general case.

Let us consider now the equation of motion of
G;;l'&(U) written in the following symbolic form (in
what follows, we denote G&" simply by G):

Gl14 "ln QX1/1&X232& ' '&Xnfnp X1 $1 &X2 ~2 &' ' '&X+ 3z I(n) l ~ ~ / I I 1 I IQ

=—(—i)"((A,(»1i) . "1Ii.(x-1-)
XA„'( '1.x') 4 i,'(xi'1i'))+) (5).

=8;;h(1—1'), (10a)

d2( Gp. i '(12; U) —Zri(12; U) jGg;(21; U)
Here, ( .)+ denotes the time-ordering operation. The
statistical average, ( ), we take with respect to the

4 L. H. Nosanow and W. J. Mulhn, Phys. Rev. Qetters 14, 133
(1965}.

' L. P. Kadan06 and G. Baym, Quantum Statistical Mechaejqv
(W. A. Benjatnin„ Inc., New York, 1962},
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where

Gp; '(11'; U) —= i(8/Bti)+ (1/2M) Vis

wi Q d2V;i(12)Gii(22+; U)

X ti;,5 (1—1')—U;, (11'), (10b)

Z;;(11'; U) =—i Q d2d2'V;i(12)

X t 8G;i (12'; U)/6Uii(2+2)]Gi '(2'1'U) (10c)

which, in principle, all of the equilibrium thermo-
dynamic properties of the system may be derived. Given
such an equilibrium description, one can now ask how
one obtains information about the response of the
equilibrium state to some external probe. Such infor-
mation is contained in the response function L defined in
Eq. (11). Now, within the framework of our approxi-
mation, we have a closed self-consistent equation for
G(U); hence, from Eq. (11)it follows that we can obtain
a closed equation for L, appropriate to this level of
approximation, by means of a single functional diBer-
entiation of the equation for G(U). Indeed, if we rewrite
the equation for G(U) as

is the self-energy function. In the above we have
G i(11 U) G i(11 U) Z L11 G(U)j (13)adopted the notation 2—= (xs, ts), etc., and

and use

dt2 d'x2,

b(1—1')—=b(ti —ti')8'(xi —xi'),

V;;(11')—=8 (ti—ti') V;;(xi xi ) .

The quantity 8G/8U which appears in the expression for
the self-energy, when evaluated for U=O, defines the
response of the equilibrium G to an external probe U.
This leads us to define a general response function

Li~, i ~ (12,1'2'; U)—=+8Gii (11'; U)/tiU„(2'2). (11)

The form for Z in terms of 8G/8U provides a useful
starting point for the development of an iterative ap-
proximation scheme for Z in terms of V and G. Neg-
lecting 8G/8U altogether, for example, yields the lowest-
order, or Hartree, approximation, which we will discuss
in some detail later. It is clear, however, that one could
arbitrarily approximate Z(U) by a functional of G(U),
say ZLG(U)], and hence from Eq. (10a) obtain a closed
self-consistent equation for G(U). In making such an
approximate choice for Z, however, one must be careful
to ensure that the conservation laws for particle number,
energy, and momentum are preserved. Such will be the
case if the approximate self-energy functional Z is
derivable from a scalar functional C/G(U)j by the
prescription'

Z (11')=8C/8G (1'1). (12)

In practice, however, the requirement that a given ap-
proximation be conserving does not always prove to be
the sole criterion for choosing an approximation ap-
propriate to the problem under consideration. Indeed,
as we shall see in Sec. IV, a seemingly obvious choice for
a conserving approximation fails to give an adequate
description of the solid.

I.et us assume for the moment that we have chosen a
ZLG(U)j suitable for approximating the exact Z(U).
Substituting this choice into Eq. (10a) and setting U= 0
results in a closed self-consistent equation for G from

6 G. Baym, Phys. Rev. 127, 1391 (1962).

SG '= —G '(tiG)G ',
8Z = (bZ/8G) 8G,

we immediately obtain

Li, i ~ (12,1'2'; U)

= &Gin (12'; U)Gmi (21; U)&i Q Gii(11; U)
lm

G;, (xt,x't') =8,;G(x—R,t, x' —R,t'),
Lig pgp (xtxt;x ttx t ) (15)

= &ii 8~,;LR, a,„(x—Rit, x—R t, x' —Rit', x' —R t'),

where Rl, R are position vectors associated with lattice
sites t, m, respectively. Equation (15) is essentially the

XGii (11;U) Vim(12)L-m, -m (22,2+2'; U)

+ Q Gii(11; U)Gi i (1'1'; U)
l l', mm'

(5Zii (11'; U) )
X I IL„-„,„- „.(22,2'2', U). (14)

8G-- (22'; U))

From the above, we see that within the framework of
the approximation for Z (U), Eqs. (10a) and (14) yield,
in principle, all of the information necessary for a com-
plete description of the equilibrium and nonequilibrium
properties of the system. The task of actually solving
Eqs. (10a) and (14) in a self-consistent manner will, of
course, prove to be a formidable one in practice. One
can, at least, say that having chosen a suitable ap-
proximation for Z(U), one has a definite prescription for
determining G and L in a consistent manner.

Let us consider now the above equations within the
context of the crystal-lattice problem. We will, of course,
be interested in solutions for G and L in the limit
U —+ 0, i.e., for the true crystal lattice in equilibrium. In
this case it is clear that the physical situation relative to
a given lattice site should not be different from that
with respect to any other. Hence, there exist particular
solutions for G and L which have the property that
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mathematical statement of localization that we men-
tioned previously. The imaginary time boundary condi-
tion for the localized G takes the form

G(xt,x't') ~, p= &e»G(xt, x't') ~,=,e, (16)

with all p; equal to a constant p. Now, if we introduce
Eq. (15) into Eqs. (10a)—(10c) with V=0 we ffnd that
we may write the equation for G as

m l.
p'

2
ITl

Fzo. 3. Integral equation for the response function.

m
pt

g'9."dtLGp '(xt, xt) —Z (xt,xt) jG(xt,x't')

=5'(x

Fro. 1. Diagrammatic represenation of the quantities
G(1,1') and U~~(1,1').

with

Gp '(xt, x't') = i (8/Bt)+ (1/2M) P

Employing the localization ansatz (15) one could also
transform Eq. (14) for L&, & into an equation for Lz.—x')&(t—t'), (17a) Rather than write out this equation explicitly, however,
it is advantageous at this point to cast the equations for
the localized functions into diagrammatic form. The
rules for constructing Green's-function diagrams in
coordinate space are well known. ' It is easy to see that

l these same rules apply here with the reminder that one
must be careful to keep track of lattice subscripts on
interaction lines and two-particle functions. The corre-
spondence between the basic elements of a diagram and
the quantities G, V are given in Fig. i. Thus, if we
denote the response L~, ~ as in Fig. 2, then the
equation for L may be written schematically as in Fig. 3.
The effective "particle-hole" interaction E is given in

wi d xpp(x —x)G(x0; x0+) 8'(x—x')b(t —t'), (17b)

and

Z(xt, x t') =+P d'xd'x'dt'wg(x x)—
&&L~(xt,xt; x't', xt+)G '(x t', x't'). (17c)

In the above, we have eliminated the remaining explicit

fTl

2'

FIG. 2. Diagrammatic representation of the response
function I~, ~ (12,1'2').

lattice dependence by introducing the Fourier-series
representation

~l p
L l7l

FIG. 4. Functional derivative definition of the kernel in
the response function integral equation.

Fig. 4. After introducing a Fourier-series representation
on the explicit lattice dependence, the above equation
becomes an equation for L& and can be written simply as
in Fig. 5. In the figure we have indicated explicitly that
the dashed interaction line has lattice wave vector k.

As is well known, ' the equations for G and L are Inost
easily dealt with employing a Fourier-series representa-
tion for the time variable. That such a representation is
possible follows from the boundary condition (16) and
similar boundary conditions for the higher-order func-
tions. The Fourier-series representation allows one to
introduce equilibrium Green's functions as functions of

w~(x —x')= P e '"'w(x —x'+~),
r&0

I.„(xt, )= P e '~'L, (xt, . ),
r&0

2f 2' 2l

where z represents a lattice translation vector. The role

played by k will become more apparent in the next
section when we consider individual approximation
schemes. Suffice it to say here merely that k will appear
as the wave vector associated with the low-lying col-
lective modes of the system.

1

Kk

1I

2'

Pro. 5. Integral equation for the response function
in momentum space.
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a discrete imaginary frequency. Thus,

where

G(xt, x't') = P e **'G(xx',s),(-4) ~

s=in. vP '+p,
v= odd integer, fermions
= even integer, bosons.

(19) Fn. 6. Random phase approximation for the response
function integral equation.

to Eq. (19).Then G(xx', s) may be written as

G(xx',s)=P(s—e )
—'q (x)q (x'),

The diagrammatic techniques applicable to such func- where the I q (x) I are the complete set of real basis
tions need no further discussion, since they are similar to functions diagonalizing G in coordinate space. With this
those considered elsewhere. ' form, we can explicitly evaluate the factor

III. TIME-DEPENDENT HARTREE
APPROXIMATION (RPA)

As a 6rst approximation to the dynamics of a crystal,
we consider in the first part of this section the time-
independent Hartree description of the equilibrium
state. This then provides us with a basis on which to
construct the response properties of the equilibrium
state to a disturbance, according to the functional-
derivative prescription outlined in the previous section.
It is well known, of course, that singularities in the
complex frequency plane of the response function I.(co)

correspond to the collective modes of the system. In
particular, for the case of the general anharmonic
crystal, there exists an in6nite manifold of such col-
lective modes, three of which for given wave vector can
be identified as phonons.

The equation determining the response function is
identical to that obtained in I employing the time-
dependent Hartree approximation for the density matrix.
The duplicated results are treated only briefly here,
primarily as an exercise in the application of the
formalism just developed. However, we are able to ex-
tend the analysis of I to show, in some detail, that all
other collective modes besides the phonons are identi-
6able as single-particle transitions with discrete fre-
quencies. We also exhibit an explicit expression for the
neutron structure function S(k,~) in order to gain addi-
tional insight into the role played by the complete
manifold of collective modes in this approximation.

A. General Equation for the Collective Modes

Formally, the time-independent Hartree approxima-
tion results from neglecting the "collisiona1" self-energy
function Z in Eq. (17a).Thus the equation for G(xt, x't')
takes the same form as that for 60, namely

i (8/Bt)+ (1/2M) V'Wi d'xylo(x —x)G(x0,x0+)

X G(xt, x't') =P (x—x')8 (t—t') . (20)

This equation is easily solved if a Fourier-series reple-
sentation is introduced for the time variable, according

&iG (xo,xo+) =&i g I q (x) I
'( iP)—'

XQ exp(is0+) (s—e.)-'

=2
I q. (x) I'C«pP(~- —t )~17 ',

and allow p ~ —~ subject to the normalization
condition

P LexpP(e —p)W17=1.

The eigenfunctions and eigenvalues, q (x) and e, are
then to be determined self-consistently from

I (—1/2M)V'+V~(x)7q (x)=e q (x), (22)

with the Hartree potential

V~(x) = P d'xn(x —x+~)E f I q (x) I'.

Here f denotes the Maxwell-Boltzmann distribution
function,

f =exp( Pe )—!Pex—p(—Pe ) .

The requirement that the Hartree approximation
gives rise to a truly ordered crystal means that the
representative atom is to be localized about x=0. This
in turn implies that V~(x) must have at least one bound
state. Thus in the Hartree description, each particle
moves in a potential well created by the self-consistent
field of its neighbors, and in this way the description
contains correlations due to the structure of the crystal.
The essential feature missing in this approximation,
however, is the existence of dynamic correlations due to
the presence of phonon fluctuations in the equilibrium
stat- a feature of utmost importance in determining
the correct low-temperature behavior, as discussed in
the Introduction. In Sec. IV we consider in detail how
the Hartree equilibrium approximation is to be im-
proved, but 6rst we investigate the response function}I

appropriate to the present description,
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I"rom Fig. 5, we see that Z =0 implies that I. satisfies
the equation of Fig. 6, corresponding to a time-dependent
Hartree or random-phase approximation for the re-
sponse. In analyzing this equation, it is useful to intro-
duce a time-dependent interaction Vii. (xi,xÃ) analo-
gous to the dynamically shielded interaction of an
electron gas. Denoting V by a wiggly line, its definition
in terms of L and the integral equation it satisfies are
shown in Fig. 7. Evaluating the bubble,

+iP-' P G(xx', sos')G(x'x, s')

=~K v-(x)v-(x') v - (x') v- (x)f-'- (s' —e-') '

FIG. 7. Definition of, and integral equation for, the
collective mode propagator (wiggly line).

It is now useful to introduce the set of matrices

P...vv'""' (k)=—~- ,» (k)(~'(k) )» , vv (26)

which have the characteristics of projection operators,

, () x')p, , (sr') g, ,p
where we define aa'

, (P,X')Z Paa', yr'
' = an , yy' 'I

It also proves convenient to dedne a, generalized
Kronecker delta

"o-,» =k("o-,v"o-, v +—~-,~ ~-,~)

Introducing matrix elements of V,

d'xd'x'p (x) y, (x') V&(xt,x't') &p (x)q, (x')

O'2 e p'l:—~'(&—&')3& v I
V. (s) I

'v'),

with
z=is.vP ', v= even integer,

we 6nd that V&(s) satisfies the equation

&~~l V.(s) I~Y&

=&~vleaI~Y&+ 2 &~~le. l~'~'&( —f. -.;)

Z(~ IV.(s)I
' '&("—==') '(—a== f=')'"

aa'

X~;;,» (»)( e» f»)'"=(rrv—Is~IceY), (23)

where we introduce the matrix

y("—==') '( ~IV.(s)l Y&.

Using the reality of the wave functions q, we may
rewrite this as

The projection matrices allow us to formally invert
Eq. (23) to obtain V~(s):

( el v.()l Y&

=
&harp

~ ek
I
u y &++ (re~~.'(k) —e» ') (s'—re»'(k) )-'

aa'

XP.—;,„""'(k)(—.„f,„)- .

This is a particularly useful form with which to work,
since it makes explicit the analytic structure of V&(s) as
a function of s, i.e., isolated poles at the frequencies
+rd». (k) along the real axis. The complete solution, of
course, requires a knowledge of the roti, (k) and P'»'(k)
which, in turn, are to be determined from the eigenvalue
equation (25).

Before turning to an analysis of this equation, how-
ever, let us also write down the formal solution for the
response. We consider the particular case of a local
disturbance, for which

I.j, (xt,x't'; xt, x't')

0 (x)p (x')9 (x)9»(x')
aa', yy'

ae', »'(ks)—= (s eaa' )&an', »' ( eaa'fae') z

Then from the equations of Figs. 6 and 7 it is found that

which is Hermitian under the index interchange I l L /

rrcr'+-+ yy'. The matrix M(ks) can then be diagonalized
with a unitary transformation U(k), such that

(+ )an', aa'~au', ~n' (ks) ~re', yv'
aa', ga' X(—e..f..) I'P...„i»'(k)( —e„f„.)"2. (29)

= Ls' —ro '(k) jb,». . (25) This form for I. will be useful later in constructing the
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displacement-displacement response function and the space of its Cartesian indices, so that
neutron structure function.

VVn„(0) =P e~„(ek„.VVvg(0) eg„)eg. , (35)

B. Collective Modes in the Case of Harmonic Forces

x-—= (—-f-)'"{
I I

') (31)

Equation (22) shows that the set of basis functions
y (x) are harmonic-oscillator wave functions, with
energies (cubic symmetry is assumed, for simplicity)

= (lX1+CE2+A3+ 2)0+const

0= L(3M) 'V2vo{0)j, (32)

and qua, ntum numbers n&, o.2, &3=0, 1, 2, . .. The
eigenvalues ~),),.' and eigenvectors U &""') satisfy

g M, (ka)) U--. &"'--& = (aP —cugg') U &'"'~. (33)
aa'

Introducing principal quantum numbers A =nq+n2+n8
and h.—=Xq+X2+X3, it is found that the matrix elements
X are nonvanishing only for dipole transitions,

Xaa' ~(A—A'), 1

Hence the eigensolutions are characterized by the value
of h.—h.', and for A.—h.'&1, the solutions are verified by
inspection:

U', ('AX')

U, (xv)

U...("')bg,g. , o)),),.'——0, A —A'=0

Uaa '""'2 '~'(&~ ~,J ~ 4~,~ ~), —
copy~ =0, A.—A. (0 {34)

Uaa ~""'~=Uaa ~ "'~2 '~'(~z —~,x—x +4—z, x —x),
a)),), 2= eg), 2= (A —A')'O' A —h.') 1

The eigenvectors U .&""') for a fixed value of A.—A',
since the eigenvectors are degenerate, are arbitrary
except for the requirement of orthonormalitywithin the
subset. Note that these eigenvectors and eigenvalues are
independent of k.

The case of A —A'= 1 demands special consideration.
We introduce a complete orthogonal set of unit vectors
eq„v=1, 2, 3, which diagonalizes VV@„(0) in the 3)&3

Returning now to an examination of the solutions to
Eq. (25), we examine first the case where the potential
is harmonic, corresponding to a parabolic Hartree well.
This analysis will provide us with an insight into the
structure and proper classification of the infinite mani-
fold of solutions in the general anharmonic situation.
Even in the general case, we will be able to project out
the three modes to be identified as the one-phonon
modes.

From Eq. (24), the matrix M . ». (kcu) takes the
simple form in the harmonic limit,

Maa~ »~ (kid) = (ltd 6aa~ )Saa~ »&

yX... VV~, (0) X„,, (30)
where

P e,„X..X.."e~. =8„,„.
The corresponding eigenvalues are

a)gg. '=(og„2= 0'—eg„.M 'VVvg(0) eg„

or using the definitions of 0 and ~~,

(37)

o&~„'8.,„=e~„M ' P(1—cosk ~)VVw(~) e~„. (38)

This is just the usual eigenvalue equation for harmonic
phonons, and we naturally identify these three modes as
the one-phonon modes. The remaining eigenvectors
U&""') are again arbitrary except for the requirement of
orthonormality within the full subset A —A.'=1; they
thus depend parametrically on k. The corresponding
eigenvalues are or),~.'= 0'.

Inspection of the solutions show that the one-phonon
modes are built up out of a coherent superposition of
single-particle transitions, from a set of states (n) via
the dipole matrix elements to the states (n') of energy
level just above or below, 3'=3&1.All the remaining
modes correspond to purely single-particle transitions,
with a discrete spectrum at integer multiples of the level
spacing Q. These are the modes which would exist in the
absence of any interaction between the atoms other than
the static self-consistent Hartree field. Although the
one-phonon frequencies are given correctly, the RPA
does not build in sufhcient correlation to remove
entirely the additional single-particle —like modes, which
of course are not present in the exact solution.

C. One-Phonon Modes in the General
Anharmonic Case

We have not been able to construct a complete ex-
plicit solution for all the collective modes in the general
case of an arbitrary interatomic potential. Nevertheless,
it was shown in I that of these modes there are exactly
three which can still be identified as phonons, in the
sense of contributing to the displacement-displacement
response. The three modes of zero wave vector and zero
frequency were exhibited in I, and demonstrated to
correspond to uniform translations of the crystal as a
whole.

This analysis can be extended to an arbitrary wave
vector, and the three one-phonon modes can be pro-
jected out explicitly. We begin by claiming that the re-

then three of the eigenvectors U&~"' for A —A.'=1 are
given by

(36)

as can be verified from the sum rule
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quired eigenvectors are just the generalization of
Ecl. (36),

U. (kv) =M'"(—e f )'12&~I e~, xl~'& (39)

The states
I n) are here the exact Hartree single-particle

levels, without assumption concerning harmonicity of
the interatomic forces. The vectors e~„v=1, 2, 3 are
again orthonormal, although at this point need not be
further specified, and as a consequence the U .(kv) are
also orthonormal. To verify our claim, we substitute
these eigenvectors into Eq. (25), so that

~g„2b„,„=M P &nleg„xlu')
aa', yy'

X L&aa' &aa', yy'( & afaaa')+ ( &aa'faa')

sites coming from the mean zero-point and thermal
motion of the atoms. This description, as opposed to the
harmonic description, more closely resembles the actual
situation existing in real solids, especially in those
crystals for which the zero-point motion is large. Indeed,
calculations carried out on crystalline helium employing
Eq. (43) produce" reasonably good agreement with
experiment.

In order to verify the remainder of our claim, that the
modes we have exhibited are indeed one-phonon modes,
we construct the displacement-displacement response
function. This is defined in terms of the general response
function I.by

D (ks) = d'xd'x'xLq (xx', xx', s)x',

X&&V I v~ laY&(—&~~ f~~ )j(v I ei. 'xl7'& (40) or using definition (28),

Making use of the important relations

xl~') = —M '(~l Vl~'&

—e.«&~I vl~') =(~l vv&(x)

=P f~&nyI Vvo(x —x') In'y&,

Eq. (40) can be reduced to the simple form

D(ks) = 2 (~l xl~'&(~AIL. (s) l~'v')&VI xl~'&.
aa', yy'

(4I)
But substituting Eq. (29) for I.q(s), rearranging factors,
and making use of expression (39) leads to

(42) D(ks)=M-'P
I
s' —o) '(k)$-' P P eg„U..(kv)

aa', yq' ~v'

XP ~„.i'"'i
,(k) U„(kv') e„„..

„.=e,„,M Pf.f-,( &I VV(..(x )— Since the mode eigenvectors are orthonormal, only the
three modes (U.') = v contribute to D:—v~(x —x')) lny) e~„. (43a)

A particularly suggestive alternative form is

ca~„2b„,„=ei,„M 'P(1—cosk ~)

XVV«v(x —x'+~)&) e~„, (43b)

where the double brackets denote thermal average over
both x and x' separately.

Equation (43) represents a basic result of this section
in that it determines the frequencies of the low-lying
collective modes (which can be identified as phonons)
exactly within the context of the RPA, independent of
any assumption about the harmonicity of the inter-
action. By comparison with Eq. (38), we note that the
equation has the same form as the harmonic phonon
eigenvalue equation, but with effective force constants
VV((v(x —x'+~))) in place of the usual harmonic force
constants VVv(q). Already this is a signifKant improve-
ment over the conventional harmonic approximation,
since it introduces a "smearing" at each of the lattice

D(ks) =M-' P eg„(s'—a, ')—'e„„.

Because these are the only modes contributing to the
displacement-displacernent response, it is justified to
identify them as the one-phonon modes. The form of D
is identical to that for the phononpropagator in the usual
harmonic theory, but of course with modified frequen-
cies.

D. Density-Density Response and
Neutron Structure Function

Another quantity of interest in the present discussion
is the density-density response function, which is
directly related to the familiar neutron structure func-
tion S(k(o). All of the collective modes are expected to
play a role in the density-density response, and hence
relevant information can be learned from considering
the form of S(k~) in some detail. Within the context of
the present formalism, S(kor) is given in terms of the
general response I. as

S(k(o) —= d'xd'x'e'" &*—*'&—'"i '—'itY—'Dp (xt)p (x't')) —(p (x))(p (x')
&j

d'xd'x'e'"'i* *'+'&I.,~(xx' xx' co)
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Employing Kq. (29) for L&(z), we then obtain

8(co—a)»i (k) ) 8((0+M»i (k) )
S(kco) =g ) P (a [|,' *jo,')(—6 ,f ,)'I'U ,&""'&(k))'. (45)

»'(o» (k) 1—exp( —Pcs» (k)) exp(Pro». (k) )—1

Since we already know explicitly the eigenvectors U, .(k~) for the three-phonon modes, it is straightforward to
work out their contribution to S(k~). More worthwhile, however, is to revert to the harmonic approximation where
the complete solution for all the modes is available. It is easiest to build up the three-dimensional case by recog-
nizing that for harmonic oscillators it is simply the product of three one-dimensional situations. Then for one
dimension, using the results of Sec. III 8,

vr 8(co—AQ) b(co+AQ)
S(k(u)= P Q- ((Z( ~'&*(X+ A) ('AQ(1 —e-z")e-z""(1—~-z'")

~=»=0 AQ 1—exp( —PAQ) exp(PAQ) —1-

z —
h((o —cop) b(co+col,) z

—
b(a) —0) b(~+0)

1—exp( —P&oq) exp(Praq) —1 0 1—exp( —PQ) exp(PQ) —1

X (2 p (a[ e'"*(o.+1)0(1—e
—z")'e-z "M'"(n[ x[n+1) )' (46)

aW

The 6rst term represents what would be the entire result, purely single-particle-transition modes, if there were no
interparticle interaction other than the static Hartree 6eM. The remaining terms represent the phonon contribution,
with enough single-particle contribution subtracted off so as not to violate the familiar sum rule

(2z) ' doe)S(kco) =k'/2M. (47)

The subsidiary sums on X and n can be carried out into closed form, relying heavily on the matrix elements being
taken with respect to a harmonic-oscillator basis set, using an analysis detailed in the Appendix. The 6nal result
proved there, and generalized to three dimensions, is that

~ (e„„k)' t b(~—cog„) b(~+(og, ) )S(k~)=e~] coth-;pQ
) g +

(2310 J .=i M(og„E1—exp( —Po)g„) exp(P(o„„)—13

(u2/mQ) (u2/mQ)—
+ ~ z (~(co—AQ)t:z~""+~(a+AQ)e z~ol') 1&l . I ~+.&I . , I ~

(4'8)
h~l ksinh~~PQ) (sinh~PQ/

where Ih is a modi6ed Sessel function.
This expression is to be compared with the exact result well-known for the harmonic approximation,

t' 1 (e~ ")', i ' (e~ 'k)' ( b(~ "~) &(~+~~ )
S(k~) a=exp~ ——p coth-', p~. ,

~ Z x] +~ I ~ 23Icv~„& ~-& M~a, &1—exp( —p~~.) exp(p&~.)—1~

+ (incoherent background) . (49)

The two major points of diGerence are, first, that
the single-particle transitions contribute 5-function
peaks to S(k&o) rather than the smooth background in
S(k&a)z and, second, that the Debye-Wailer factor con-
tains a thermal factor involving the single-particle level
;spacing 0 rather than the phonon frequencies them-
selves. Again it can be seen that the Hartree approxi-
xnation contains insufBcient correlation to fully suppress
all the single-particle aspects in this response. Another

way to understand the difference between the two ex-
pressions is to recognize that it is precisely Eq. (48)
which is obtained if, in the Debye-Wailer factor and
incoherent background term of Eq. (49), the true
phonon spectrum is replaced by an Einstein spectrum
of frequency Q. The true incoherent background is a
smooth function of ~, without 5 functions, only because
the true phonon spectrum contains a spread of fre-
quencies. From this point of view, the Hartree ap-
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proximation is one which treats the one-phonon states
exactly, but treats the multiphonon states in the
Einstein spectrum model.

Because it is only the multiphonon states which are
incorrect in the Hartree approximation, the errors in
S(ho) are not overwhelmingly large numerically. The
weight of the 8 functions at ~=AQ relative to the
weight of the one-phonon peaks is of order (k'/2MQ)'for
k'«2MQ, and varies as e a" for PQ»1. The more serious
problem is the temperature dependence, especially of
the Debye-%aller factor which varies exponentially as
e t'" at low temperatures associated with the Einstein
model, rather than as the correct T' power law. Further-
more, although 0 does equal the rms phonon frequency
in the harmonic approximation,

Q'= (3E) 'Q a)s„',

the quantity Q 'coth~sPQ is always greater than the
average over the phonon spectrum of the same function,

Q ' coth-,'PQ & (3E) ' P cos„' coth-', P~~„

by a factor which might typically be of order two.

FIG. 8. Diagrammatic approxi-
mation for the single-particle
self-energy.

IV. COLLECTIVE FLUCTUATION
APPROXIMATION

A. Equilibri~m State

The analysis of the previous section makes it abun-
dantly clear that although the Hartree approximation
achieves success with the one-phonon modes, it does not
include suQicient correlation to modify the single-
particle-like collective modes into multiphonon modes,
or alternatively to modify the discrete Einstein-mode
spectrum of the background into a continuous spectrum.
As a consequence, the low-temperature properties of the
crystal have qualitatively incorrect temperature de-
pendence, and other quantitative discrepancies appear.
Furthermore, the Hartree approximation does not allow
for a 6nite phonon lifetime, which should arise from the
decay of the phonon into two or more other phonons of
the incoherent background.

For these reasons, we attempt an improvement to the
equilibrium description which we might term the col-
lective Quctuation approximation. Diagrammatically,
this is represented by the approximation for 2 illus-
trated in Fig. 8. The wiggly line is intended to denote a
collective mode, and the approximation is meant to take
account of an atom's being able to Quctuate by emission
and reabsorption of these virtual modes. The solid line
is the renormalized propagator G for which 2 is the
self-energy, via the Dyson equation (10a).

FIG. 9. Defining equation for the wriggly line in Fig. 8.

Difhculty is immediately encountered in making a
more precise de6nition of the wiggly line, V. The most
natural choice is just the same sum of bubbles which
produced the phonon in the RPA; namely, the integral
equation of Fig. 9. The corresponding response is then
given by Fig. 10. Although identical topologically to
I'ig. 7(b), the equation of Fig. 9 differs in that the solid
lines are again the renormalized propagators with 2 as
in Fig. 8. But such a choice very likely leads to disaster,
since it seems unavoidable that the poles of V, which

ought to give the phonon frequencies or&„, are no longer
momentum-conserving, or "acoustic, " because oro, /0.

To understand the problem involved, let us return
temporarily to the RPA and examine how the phonon
spectrum there is indeed acoustic, with ~i„o-k for small
k. Considering the steps leading from Kq. (40) to Eq.
(43), it can be seen that there is a nontrivial cancellation
which takes place between matrix elements of e~ and the
single-particle energy diGerences ~, such that only the
combination eo—v~ results. This cancellation takes
place particularly because of the sum-rule equation (42),
which in turn is a consequence of the single-particle
energies being taken with respect to the Hartree
potential.

The integral equation of Fig. 9 makes this cancella-
tion unlikely by modifying the energy di6erences, be-
cause of the addition of a nonvanishing self-energy 2,
without a corresponding modi6cation in the interatomic
potential. In more formal language, the single-particle
propagators are renormahzed without a compensating
vertex renormahzation. In this particular physical
situation, it seems crucial for ful6lling the requirement
of translational invariance to satisfy exactly the
Nard's identities between propagator and vertex
renormalizations.

This difEculty calls again into question a problem in
many-body theory which is usually believed to have
been settled; namely, the problem of constructing a
criterion for insuring that a given approximation satisfies
the conservation laws. As discussed in Sec. II, the work
of Baym and Kadano8' ' shows that in order to obtain

Fzo. 10. Integral equation for the response function in
the collective Quctuation approximation.

' G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).
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an approximation for the response of a system to a
disturbance from equilibrium which is conserving, it is
sufBcient to de6ne the approximation by specifying a
functional C (G} of the single-particle propagator. The
self-energy Z{G}of that propagator is then to be de-
termined from the functional derivative (schematically)
Z=N/8G, and the response in turn is related to the
second functional derivative, O'C/5G', as in Eq. (14).
Although the collective modes contained within this
approximate response are indeed conserving, it will not
in general be true that the collective-mode Auctuations
within the equilibrium Z are conserving. Such a situa-
tion also occurs in the interacting Bose gas, where it is
known as the diKculty of maintaining the Hugenholtz-
Pines theorem on the single-particle spectrum together
with particle-nuinber conservation.

One might be tempted to enforce conservation in both
equilibrium collective Quctuations and response by re-
quiring that the modes be represented by precisely the
same diagrams in both places. That is, the approxima-
tion is to be such that Z and L are consistent with each
other. However, since L is conserving if it is given by a
functional derivative of Z, the requirement of consist-
ency between Z and L defines a nonlinear functional
differential equation. Such an equation can be con-
structed by combining Kqs. (17) and Figs. 3 and 4 from
Sec. II; it has also been derived by de Dominicis and
Martin'

C
their Eq. (47)$. Unfortunately, this equation

cannot be satisfied by any perturbation-theoretic ap-
proximation. In fact, the equation dejiees the exact
perturbation-theoretic solution, in the sense that the
iteration of the equation generates a/l perturbation-
theory diagrams. ' Thus there cannot exist any sequence
of diagrammatic approximations which satisfy the con-
sistency equation; if such a sequence did exist, perturba-
tion theory itself would be non-unique. Our conclusion,
then, is that it does not appear possible to develop any
diagrammatic approximation for which both the equi-
librium fluctuations as well as the response are simul-

taneously and automatically exactly conserving, be-
cause such a requirement is equivalent to a definition of
the exact solution.

It should also be remarked that the area of lattice
dynamics is not the only physical context where col-
lective Quctuations are significant. Diagrams similar to
those of Figs. 8—10 have been used to calculate the
plasmon lifetime in an electron gas" and electron-
phonon interactions in a "jellium" metal. " In such
contexts, the approximation has been referred to' as the
shielded-interaction approximation. Related considera-
tions have been applied to the interaction of fermions
with collective spin waves. " Despite this widespread

' C. de Dominicis and P. C. Martin, J.Math. Phys. 5, 14 (1964).
P. C. Martin (private communication).

"D. I'. Du Bois, V. Gilinsky, and M. Q. Kivelson, Phys. Rev.
129, 2376 (1963)."T, Holstein, Ann. Phys. (N. Y.) 29, 410 (1964).

's
¹ F. perk and J. R. Schrieffer, Phys. Rev. Letters 17, 433

(1966); $. Doniach and S. Engelsberg, iMd 17, 750 (196.6).

usage, however, the problem of properly defining the
collective mode does not seem to have become widely
appreciated.

In order to make further progress, we are forced to
commit some violence to the approximation under con-
sideration. The tactic we adopt is to specify the wiggly
line in Fig. 8 algebraically rather than diagrammatically.
We take Kq. (27) as a defining relationship, particularly
insofar as the singularities of Vq(z) are poles at the
collective-mode frequencies +toi, i, (k) given by the
RPA, three of which are indeed acoustic phonons. How-
ever, the single-particle eigenfunctions ~n) and eigen-
values e are allowed to diGer from their Hartree values,
so as to be consistent with the renormalization induced
by the improved choice of Z.

The Dyson equation (17a) for G is clearly nonlinear,
since both Ge ' of Eq. (17b) and Z of Fig. 8 themselves
depend on G. In order to solve this set, then, it is
necessary to make an ansatz for G which can be substi-
tuted into the internal lines of Go ' and Z, the ansatz
then to be justified a posteriori by inversion of Kq. (17a).
Since the singularities of G(z) are at single-particle
energies in the absence of 5, it is natural to assume in
the presence of Z that G (z) would continue to have poles
at renormalized single-particle energies, but of course
with smaller residue. If we denote the renormalized
single-particle energies by E, then the residue of G(z) at
E is diminished by the usual renormalization factor,

Z=rf-Z «)&-. (5o)

The remaining spectral weight 1—Z is made up by the
branch cut induced in G(z) by the branch cut of 2(z).
Thus the singularities of Z (z) are of vital importance for
maintaining conservation of probability.

Nevertheless, we have been unable to construct an
ansatz for the G of internal lines which accurately repre-
sents the branch cut. Instead, for most internal lines,
we make a "quasiparticle" ansatz in which we assume

G(z) merely to have poles at the E, with no further
singularities. In order to conserve probability, it is
necessary to ignore wave-function renormalization, i.e.,
Z ~ 1. The quasipartic1e propagator is thus

(51)

G(z)=G&i'(z)+Go" (z)(Z(z) —Z(E))Go"(z). (52)

Enough comment has now been supplied and ground
rules laid to plunge into the actual evaluation of Z(z).
Collecting the analytical expressions which are being
assumed for each element of the diagram of Fig.
8—namely, Eqs. {27) and (51)—we construci. the

But as will be detailed later, this ansatz is not every-
where sufhcient, and where necessary we approximate
the branch cut by a lowest-order iteration; schemat-
ically,
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formula

&nl ~(z) ln'&

i i 1=—ZE-Z, Z(nial»l v'&
a P " s' Eg v—v'

The contribution to Eq. (57) from the one-phonon
modes can be evaluated, since the projection operators
and frequencies are known via Eqs. (39) and (43).
Keeping just the one-phonon modes, and applying the
sum rule (41) vigorously,

P P, , (xx'l(k)l
E,—E~r ~f~i gl

&n I ~(E) ln'&=—
1 coth ppppp„

2S kv 2Mcok„

pp), ),'(k) —E..-'
X . (53)

(s—z ) —ppgyi (k)

Use has been made of the relationship

P»-—0.
k

(54)

Alternatively, (n l Z(s) l
n'& can be given equally well by

the expression (53) in which n and n' are interchanged
on the right-hand side. Carrying out the sum over s and
letting p —+ —~, we find

(nl ~(s) ln')

=X ' Q Q (n'Yl»ln&')8„', -&""'~(k)
khan' any'

P f,

(nial

vvsgln'y&. (58)

This expression is more easily interpreted by recognizing
within it a displacement-displacement correlation func-
tion Lrelated to the phonon propagator, Eq. (44)7, so
that

(nl ~(E) ln') = —
p Z (u,up):

p f,&np l
vvv(x x'+.—) l

n'p& (59).

I

We denote a phonon dynamical displacement coordinate
by u. If we also insert the quasiparticle propagator G~"
into the expression (17b) for Gp ', then we obtain the
simple form

(—E .f )'I' ppgg'(k) —E,-P

xl
Emf a—~ (s—E-)'—pp '(k)

coth-', ppp), ),, (k) 1)
(55)

2(oyyi (k) 2)

or alternatively an expression with n ~ n'.
The energy renormalization is obtained by putting

Z(z) onto the mass shell. We evaluate (nlZ(s) ln') at
z=E and (n'l Z(z) ln& at s=E, and then average the
two results. It is important to note that

(nl Gp '(s) ln') =(nl s—(—1/2M)vpln'&

Combining Eqs. (59) and (60) into the Dyson equation
(17a), it would seem that the quasiparticle ansatz for
G(z) is consistent provided only that the renormalized
single-particle eigenfunctions and eigenvalues satisfy
the renormalized Hartree equation,

(—1/2M)vp+p p f, d'x'l p (x') l'

Q»P'""'(k) =0,

because of Eqs. (26) and (54). The result is that

(nl ~(E) ln')

(56)
X (1—-', (u,up): VV)v(x —x +c) &p (x)

= s(nl (~(E.)+~(E..)) ln'&

1 cothpppp), ),.(k)=—Z
& ~xv 2pp&, q. (k)

X Z l(&nial»l ~'&&-,- ='""'(k)
any'

XE;;( E,„f„/ E;—;f;;)'I'+(— ')). (57)

It is evident that (n l
Z (E) l

n'& is purely real, so that no
quasiparticle lifetime appears in this approximation.
This feature is consistent with the ansatz for 6
l Eq. (51)7.

While this form does show many of the physical
features which the diagram approximation was intended
to incorporate, and which will be discussed shortly,
there is one serious Qaw which must be attented to first.
The problem is that expression (59) is not transla-
tionally invariant; i.e., a uniform translation of the
crystal as a whole does not leave (u,up& invariant, since
it is not a function solely of the coordinate diBerence
u —Qp. The cause of this defect is subtle, but can be
traced to the inadequacy of the quasiparticle ansatz for
the G internal line occurring in Gp '. The trouble can be
corrected by appending to G~& a contribution of the
branch cut, with the itera, tive expansion equation (52)
being suQicient for this purpose. Thus there is the
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additional contribution to the single-particle self-energy shown in Fig. 11, and given by

(~I~Go-'l~'&=+2K(~el»2I~Y)2P 'Z(» —E,) '(»—E.) '&vl&(») —&(E) lv'&

Substituting Eq. (55) for (y I 2(») Iy'&, and for brevity dropping all arguments k and V.',

o)'—E~ -'
&~l &Go-'l~'&=+2 Z &~el ~OILY&2P 'Z(» E—)-'(»—E ) ' —h I &&E) l~'&+—& &

I g Zasta arm'

n(a&)

» Ea+GO

n(—(o) -( E...f.—. )'/2
6'0

I » I
~/r'&~- .2-

z—E.-—~ 5 E;.f—, .)--
where n(~) = (e—xp(pa&) —1) ' is the boson thermal weight factor. Next, the sum over» can be carried out:

&~I~Go 'I '&= Z&~vl~ol~Y&— 6 l~(E) lv')+ —2 2
jV g RXX' a2ra'

f,n( ) f(E M)n(co)- —

E2 (E7 +or) E2-, (E„+co) (E,-~)(E, cv)J—
But f(E—&u)n(~) =f(E)n(—ru), and hence some rearrangement gives

( E,f, 1/2

XI
" "

(v~l2. 1~~'»...„-. ,
Ev =fv=—

f„; 1 COth2'P~ fy'E2'a & +E2aEy'a) fy'a
&~I~Go 'l~'&= Z&~vl»l~'v'& — hl~(E) l~'&+—2 2 f~—

VV' 2 Q kxx' aaa' 210 E&&~ E2a~—Ev~a ~ 2Ey2'-

,f, q
1/2

x
" "

I /v I"I- ')~.. ..;+h v') I.

The term not containing the factor coth 2pco vanishes according to Eq. (56). Substituting Eq. (57) for (nI Z(E) ly'&,
we obtain

1 coth2P&o f,+f; co2+E,E;-
(12lhG// 'I12'&= 2(/2V l&ol/2'V'& 2 T E2'n f~

VV' g k)x' 2~ aro'

( E,f, 1/2

xl h~l»l~~'&&. . ., ;+(v~v')l .
k —E,.-f, .-

Finally, using the collective-mode eigenvalue equation to eliminate e&,

1 coth-', pcs I',
&~lhGo 'l~'&= 2 (~vl~ol~'v'& —Z

afar P (E -f E„, f, )''---
/f'+f' "'+E"E

X ( -E„;)I E, ;-f; I+(v ~)

1 cotll 2 pC011,~ (k) ~),1'(k) )
Z&~~ I

~2
I
~'v'&I'. =..'-'""'(k)

I 1+
V 2u 2~» (k) E„,E, .-)

&&2L~~a(—E'If' .!-E.f. )"'+b -v') j (62)
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%bile this expression does not seem to resemble very
closely the (nI Z(E) Irr') as given by Eq. (57), the one-
phonon contribution becomes more familiar:

FIG. 11. Correction to the single-
particle self-energy.

1 cothsprpg„
(nIBGp

—'In' )= P eg„e~, .2S» p3IAps„

2 f~(~~ I
VV

This term is just what is needed to restore translational
invariance to the total self-energy, such that

(uIlIGp '+Z(E) Irr')

co tll sPQ) s qe,e „:+f„( yl VV(v, —v, ) I
''7)

2g kv 2Q)k„

=-' Z ((u —uo)(u. —u )):

Q f,(nyI VVv(x —x'+e) In'y),

which is a function only of coordinate differences as
desired. Thus the single-particle wave functions and
energies are consistent if they are determined from the
more satisfactory renormalized Hartree equation

analogy to those of KeGer and Loudon" concerning the
temperature dependence of spin-wave interactions.

The interpretation of the modified potential is rein-
forced by the following speculation. Although we have
not been able to exhibit the complete set of collective
modes in full generality, it is likely from the analysis of
Sec. III for the harmonic approximation that the modes
other than the three one-phonon modes are in a one-to-
one correspondence with multiphonon modes. Hence it
is possible if the complete set of modes could be used to
evaluate Eqs. (57) and (62), rather than just the one-
phonon contribution, that a density-density correlation
would result. That is, the modified potential of Eq. (65)
might rather have something lik.e the exponentiated,
many-phonon form

v, (x—x'+ v)

=exp(-,'((u, —up)(u, —up)): VV)v(x —x'+v). (66)

If this were so, then well-known theorems about func-
tions of phonon dynamical coordinates would lead to

(—1/2~) V'+2 2 fg d'~'I p, (x') I' v, (x—x+v) = (exp(u, —up) V)v(x —x'+~)
= (v((x+u, +v) —(x'+up) )) . (67)

X (1+$((u,—uo) (u, —uo)): VV)

Xv(x—x'+v) y (x)=E pp (x), (64)

rather than from Eq. (61).
This equation has a simple and important physical

interpretation. It indicates that a single-particle be-
havior of a given atom is determined from a modified
interatomic potential, in this case

v, (x—x'+~)
=—(1+-,'((u, —up) (u, —up)): VV)v(x —x'+v), (65)

which incorporates the correlation in position between a
given pair of atoms due to the thermal occupation of
phonon collective modes. As a consequence, the modi-
6cation provides a more reasonable temperature de-
pendence for physical quantities: The displacement-
displacement correlation function varies as T4 for
temperatures well below the Debye temperature, in
contrast to the e &~ dependence from single-particle
excitations. The T4 dependence has already been de-
duced by Kaplan" from physical considerations in

"J.L Kaplan, Phys. Letters 17, 227 (1965).

This last expression shows quite clearly that two atoms
at lattice sites separated by c would interact via a
correlated potential, allowing for relative displacements
which are consistent with a thermal-equilibrium popula-
tion of phonons.

Another significant feature of Eq. (64) is that the
smearing of the potential due to thermal phonon vibra-
tions is superimposed upon the smearing already present
from the Hartree approximation due to single-particle,
thermal excitations. In the present approximation the
introduction of collective fluctuations does not transform
away the single-particle representation. Of course it
might be argued that this result was forced artiicially
by the nature of the single-particle ansatz 6@&, which
deliberately inserted into internal lines a propagator
with discrete spectrum without any renormalization
factor Z diferent from unity. It is certainly true that
Z'(E), evaluated from Eq. (55), does not vanish; and
furthermore it was just shown that some attention to
the continuous spectrum is required to preserve trans-
lational invariance. On the other hand, even if the G(s)
for each and every internal line was allowed to have a
continuous spectrum, it is unlikely that the single-
particle poles would be suppressed entirely, with Z=O.

~4F. KeGer and R. Loudon, J. Appl. Phys. Suppl. 32, 25
(1961).
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FxG. 12. Integral equation for the response function
with ladder vertex correction.

It is more probable that a balance between single-
particle and collective motion is established, and that
both types of thermal average appear in an equation like
(64) but with relative weights adding to unity. An im-

portant goal for future investigation is to obtain a
definite answer to this question.

B. Response from the Equilibrium State

As shown in the previous subsection, reasonable suc-
cess has been achieved in circumventing the diS.culty of
defining a conserving collective Quctuation in the equi-
librium single-particle self-energy. However, the difIi-
culty is compounded when attention is turned to the
response to a disturbance from the equilibrium state.

As the RPA demonstrated, maintaining the trans-
lational invariance of the collective modes is decidely
nontrivial. Furthermore, the correct wave-vector de-
pendence of the mode frequencies in a given approxima-
tion cannot be verified at a glance, but can only be
confirmed through the detailed application of sum rules.
Thus it is necessary to generate approximations only by
means which automatically guarantee that the con-
servation laws are satisfied. The "C-derivable" criterion
of Saym' is the only approximation procedure to our
knowledge which does this systematically.

Repeating brieQy the discussion of Sec. II, the C-
derivable criterion states that a response is fully con-
serving if it is obtained from the second functional
derivative of a functional C {G),where G is the Green's
function whose self-energy is the first functional deriva-
tive Lsee Eq. (12)g. This criterion implies that approxi-
mations must be specified entirely as fuectionals, not as
functions. But in contradiction, we have been forced to
define the equilibrium collective Quctuation alge-
braically, rather than diagrammatically. As a conse-
quence, we cannot use the 4-derivable criterion to write
down with certainty the correct conserving response to
this approximate equilibrium state.

We can, however, make some educated guesses, based
on the C-derivable approximation of Figs. 8—10, even
though the approximation is not adequate for the
equilibrium state. Referring to Fig. 10, it can be seen
that the first term in the kernel for L arises from
functionally differentiating with respect to the G con-
tained in G0, the second term in the kernel arises
similarly from the explicit G line in the Z of Fig. 8; and
the last two terms in the kernel arise from the two G
lines in the bubble of Fig. 9. The first two terms in the
kernel would have essentially the same structure even if
the entire problem were being solved exactly, whereas
the last two terms are doubtful since they are a direct
consequence of the bare-bubble sum (Fig. 9) for

Furthermore, since the two terms in the kernel of Fig. 12
are functional derivatives of Go ' and Z, respectively, it
is likely that they combine in a similar way. If so, then
the ladder vertex corrections generated by the second
term merely affect the alteration (68) in the first term.
We thus argue that an approximate solution of Fig. 12
would have the same structure as the solution (29)
(together with Eqs. (24) and (25)j of Fig. 6, except for
the replacement (68) in Eq. (24). In particular, the
modified phonon frequencies would then be given by the
generalization of Eq. (43),

cog '8 =eg„M-'P(1-cosk ~)

with
&& VV((e(x—x'+~))) eg. , (69)

((n.—uo) (n.—&o))

=g (2M~~„) ' coth-,'pa&~„(1—cosk ~)e~„ek„. (70)
kv

At the present stage, the phonon frequencies and
polarizations in Eq. (70) are those given by the RPA,
and are not the same as those determined by Eq. (69).
However, there is nothing in the philosophy of defining
the equilibrium collective Quctuations algebraically
which forbids us from altering the definition so that the
frequencies and polarizations are identical in the two
equations, and hence are determined self-consistently.
Indeed, this alternative procedure would seem more in
keeping with the ideal of consistency between equi-
librium Quctuations and nonequilibrium response.

Since we are not yet in a position to do more than
speculate about the response equation of Fig. 12, we
certainly are not yet ready to attack Fig. 10. Nonethe-
less, it should be remarked that the third term in the

the collective Quctuations, which is itself certainly
inadequate.

It is thus tempting, as a first approximation, to ignore
the last two terms in the kernel and to consider only the
equation of Fig. 12. This truncated equation cannot any
longer be guaranteed conserving, but we believe that
translational invariance is maintained to the same
degree of accuracy as the algebraic definition of the
wiggly line. We do not attempt an exact solution even of
this simplified equation, however, because of the un-
certainties detailed in the previous subsection as to the
exact analytic structure of G(s). Nevertheless, we can
extrapolate the partial solution for G(s) to speculate
about the solution for L. We note that the quasiparticle
pole in G(s) was a consequence of a subtle interplay be-
tween Go ' and Z, leading ultimately merely to the
replacement

r (x—x'+~) -+ r, (x—x'+~) .
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kernel for L introduces the lowest-order contribution to
a finite phonon lifetime. By putting intermediate states
onto the energy shell, it can be seen that this term
contributes to the process of one phonon decaying into
two, with an effective matrix element involving three
separate single-particle level transitions by an individual
atom. It is certainly an important goal of a many-body
theory of lattice dynamics to calculate this decay
process in detail, but such a calculation must await
more satisfactory answers to the other questions of
principle raised in this section.

V. DISCUSSION: COMPARISON WITH THE
SELF-CONSISTENT PHONON THEORY

Both the results demonstrated in the previous section
and the speculations extrapolated from them bear an
important resemblance to an alternative many-body
theory of lattice dynamics which we might term the
self-consistent phonon theory. This alternative theory
has been derived independently by several recent
authors, using a variety of techniques. Variational
principles have been employed by Koehler" at zero
temperature and by Boccara and Sarma" at 6nite tem-

peratures. A diagrarrnnatic expansion and resummation
procedure has been used by Choquard and Ranninger, '~

and by Horner. "An intercomparison and summary of
the di6erent techniques has been given by Gillis,
Werthamer, and Koehler. "The key result of this theory
is that phonon modes are determined to lowest order by
the eigenvalue equation

res 'es„——M 'P(1—cosk ~)(VVs(u, —us+~)) el, „, (71)

where the brackets denote thermal average with respect
to phonon dynamical displacements u, in the same sense
as Eqs. (67) and. (70). The theory is self-consistent in
that the phonon thermal average employs the same fre-

quencies and polarizations as Eq. (71) determines.
The most significant feature of this result is that it

incorporates a smearing of the potential due to phonon
excitational motion, in a manner similar to that of the
collective Quctuations just considered, but it does not
contain any trace of single-particle motion. In fact, an
assumption underlying all the derivations of Eq. (71) is
that the dynamics of the crystal can be described

entirely in terms of phonon normal modes, without any
attention to single-particle excitations. The apparent
contradiction between these two approaches is a major
paradox for many-body theory of lattice dynamics at its

» T. R,. Koehler, Phys. Rev. Letters 17, 89 (1966).
re N. Boccara and G. Sarma, Physics 1, 219 (1965).
»P. Choquard, Eqeeebhressm Theory of Arsharmorsec Crys&als

(lhr. A. Benjamin, New York, to be published); J. Ranninger,
Phys. Rev. 140, A2031 (1965).

&e H. Horner, Z. Physik 205, 72 (1967).
'f'N. S. Gillis, N. R. Werthamer, and T. R. Koehler, Phys.

Rev. 165, 951 (1968).

present stage of development. It is certainly true that
both approaches, if they could be worked out exactly to
all orders, would necessarily give identical answers,
since the starting Hamiltonians are equivalent. Further-
more, it is also true that the phonon modes provide a
complete set of dynamical coordinates, just as the
Hartree states are also a complete set. The difference
between the two approaches is basically just in the
choice of unperturbed representation in which to ex-
press perturbation theory. It is likely that low-order
approximations in the two approaches di8er primarily
in the description of motion which is not merely a single
phonon: motion which is alternatively typed as "multi-
phonon" or "single-particle" in character.

On a practical level, the self-consistent phonon theory
enjoys a decided advantage over the collective-Quctua-
tion approximation in terms of its relative ease of
implementation for numerical computation. "' "How-
ever, some refinements in the physical description can
probably best be treated from a single-particle wave-
function approach. One aspect in particular is the
formation of vacancy-interstitial pairs at high tempera-
tures. From the Hartree-well viewpoint, a vacancy-
interstitial pair is easily interpreted as an individual
atom being excited from a bound level into a continuum
state above the top of the potential well. Describing
such behavior in terms of multiphonon modes is diK-
cult, if not unnatural, and is normally done using
classical arguments divorced from lattice dynamics.

A second aspect of real crystals for which a single-
particle representation should be useful is the short-
range correlation between neighboring atoms induced

by a hard-core repulsive potential. Although the work
reported here has only considered nonsingular poten-
tials, the inclusion of a set of multiple-scattering dia-
grams ("ladders" ) in close analogy with the theory of
nuclear matter shouM be adequate to compensate for
hard-core repulsion. It is not at all obvious how to
accomplish this within the framework of phonon excita-
tions, especially since the short-range correlations should
interfere seriously with short-wavelength phonons. As
an added benefit, the nuclear-spin exchange integral in a
crystal such as He' should be estimated reasonably well

by antisymmetrizing the scattering amplitude between
nearest neighbors. Again, there does not seem to be a
natural way to introduce the Pauli principle, antisym-
metry, and exchange into the self-consistent phonon
scheme. )Pote added in proof. This last objection has
been successfully overcome by L. H. Nosanow and
C. M. Varma (unpublished). j

APPENDIX: EVALUATION OF 8(iso)

Beginning with Eq. (46), we erst carry out the sum
over X in the Grst term. Using the expression for the
wave functions of a harmonic oscillator in terms of

"T.R. Koehler, Phys. Rev. Letters 18, 654 (196/); Phys. Rev.
165, 942 (1968).
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Hermite polynomials, we obtain the matrix element

z, ,=- I&&le'&*I&+a) I&

exp (——',Mnx') Hg ((MQ)'»x)
dS

(29, I (sr/MQ)'»)'I'

exp( —-'Mnx')H), A((MQ)'»x) '
Xe"—

(2"+A(le+ A)!(~/Mn)'»)'"

exp( —k'/2MQ)

2'"+A!).!(X+A)!s

-'ik 2
2

du exp —u+ K, (u)HA+A(u)
(MQ)'»

Using other better-known theorems about harmonic
oscillators together with the sum rules of Eqs. (41) and
(42), the sum over n is also easily evaluated,

I2 P&nle"*In+1)Q(1—e ~n)'e ~ "M'»&nlxln+1)l'
a=0

=
I Z&nle"*In)( e—-f- )M'"&nl*ln') I'

0;a'

= (k'/M)
I 2 f-&nl e'"*In) I'

= (k'/M) exp( —A2kP P f~&n I
+ In))

= (k'/M') exp( —(k'/2MQ) coth-', )9Q).

But the Hermite polynomials have the properties that Putting these formulas together, we obtain the final
expression for the one-dimensional S(ko)),

H), (u—up)= Q I (—2up)" "X!/m!(lc—m)!jH (u),
!—k'

s(k )= exp~ cath-,'sp)
(2MQ

Hence

du exp( —u')H (u)H (u) =i)', .2"m!w'».

k'
~ t

k' ' l). !

231!!)42scP) (K+A)!

k' s ( b(o)—cpA) b(o)+o),)x ——
I

M cp A 41—exp( —PcpA) exp(Pp) A)
—1J

+ P ~P(~—~n)e»n»+s(~+~n)e-eA«Pj
A=1

(le+A.)!( A k2 )m
xl& —

I I
2MQP m! (lc—m)!(m+A)! ~

k'/2MQ kP/2MQ-
X Iz — —bg, 1

sinh pPQ sinh~rPQ
I)' k& ) /

kP '))A gI —
( ke

=expl-
2MQP (2MQ) (le+A)! (2MQP The three-dimensional expression is simply the sum of

products of three such one-dimensional forms, each
where LxA 1s an associated Lag erre polynomial A evaluated with k replaced by a Cartesian component of
standard formula of analysis" then enables us to k. The only nontrivial complexity arising is an expres-
evaluate the sum on X, sion of the form

p (1 e ~")e e—""K—
A

A-
RM

k' I)'k'/2MQy=expl — coth-,'PQ eeAnl'IAI
5 2MQ ksinh2PQJ

where Iq is a modified Bessel function.

'~3ateman Manuscript Project, Higher TrurlscerIdenta/ FurIc-
gsoms &McGraw-Hill Book Co., Inc. , New York, 1955), Vol. 2,
p. 189.

bAy+As+A)!, AIAc (Kl )IAs(K2 )IAI (K3 )
A1, Am, 43=0

=I ( Al +K222+KP)K

the evaluation of which is accomplished using the
standard integral representation for the modi6ed Bessel
functions and a Fourier-integral representation for the
ll function. The final result for S(kcp) is quoted in the
text LEq. (48)$.


