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Calculations are described which relate to the change in the electronic band structure of copper with
change in lattice spacing. The calculations were performed using previously described constant-energy search
techniques based on the Korringa-Kohn-Rostoker method for band-theory calculations. Included in the
results are a total of 26066 points on each of three Fermi surfaces corresponding to lattice spacings a,
0.995u, and 0.99a, with a being the normal lattice constant of copper. Using the measured value for the
volume compressibility, our results give calculated changes in the Fermi surface with pressure which agree
very well with recent de Haas —van Alphen experimental results. The calculated results are also consistent
with the pressure dependence of reQectivity measurements, and with experiments thermodynamically
related to the pressure dependence of the density of states at the Fermi energy. These results are based
on band structures obtained from potentials calculated by a commonly invoked prescription using free-
atom charge densities and Slater exchange. When considering the uncompressed metal, this prescription
has been found to generate potentials giving widely varying band structures when different free-atom
charge densities are used. However, once free-atom charge densities have been found which generate a
reasonably accurate potential for the uncompressed metal, we conclude from the present results that the
potential prescription appears to be very promising in its ability to accurately describe changes in metallic
band structures with changes in lattice spacing.

I. INTRODUCTION

tSIN 6 the Korringa-Kohn-Rostoker (KKR) I s

method for investigating electronic energy bands
in metals, we have recently described' techniques for
tracing out constant-energy surfaces, within the Bril-
louin zone, from given one-electron band theoretic po-
tentials. Although previous work by Ham and Segall~7
had established the calculationa. reliability of the KKR
method, one of the innovations of Ref. 3 was the demon-
stration that a careful treatment of the computational
problems allows eScient calculation of the bands at a
large number of points in the Brillouin zone, with
modest expenditures of computer time. ' Our first appli-
cation of the resulting computer programs was the
determination of numerous constant energy surfaces
for metallic copper. 3 The present work is also concerned
with copper, but here the variation of its band struc-
ture with lattice parameter will be considered.

There exist various motivations for our consideration
of the general problem of variation of electronic band
structure as a function of lattice parameter, and in using
copper for this investigation. From previous work' ' '
there exists a detailed understanding of the band struc-
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' J. Korringa, Physica 13, 392 (1947).
' W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).
' J. S. Faulkner, H. L. Davis, and H. W. Joy, Phys. Rev. 161,

656 (1967}.
4 F. S. Ham and B. Segall, Phys. Rev. 124, 1786 (1961).
6 B. Segall, Phys. Rev. 124, 1797 (1961).' B. Segall, Phys. Rev. 125, 109 (1962).
' F. S. Ham, Phys. Rev. 128, 82 (1962).

At the time this research was performed, our programs required
less than 10 minutes on an IBM System/360 Model 75 Computer
to calculate the 561 h points necessary for a M(E) entry of Table
III.

' 6 A. Burdick, Phys. Rev. 129, 138 (1963).

ture of copper at normal lattice spacing, and this
knowledge is valuable when studying the variation with
lattice spacing. Copper is also a good example, owing
to recent experimental work of Templeton' who has
obtained the pressure variation of two de Hass —van
Alphen orbits on the Fermi surface of copper, and of
Gerhardt, Beaglehole, and Sandrock" who have meas-
ured the strain-induced change of the reQectance. The
precision of these measurements provides an excellent
check on the validity of any theoretical calculations.

A more general motivation concerns the problem of
the potential. In order to do calculations pertaining to
the variation of any electronic band structure with
lattice parameter when using a 6rst-principles method,
it is necessary to have some mechanism to change the
one-electron potential as the lattice parameter changes.
Even though some band-structure calculations have
been made as a function of lattice parameter and/or
deformation, " "and very extensive experimental data
exist which are directly or indirectly related to the vari-
ation of band structure with pressure, "very little de-
tailed quantitative understanding exists on how the
one-electron potential changes with lattice parameter.
However, a whole host of reasonably successful band-
theory calculations have been done for various materials
at their normal lattice spacing by using potentials gen-
erated by a relatively simple prescription" based on the

"I. M. Templeton, Proc. Roy. Soc. (London) A292, 413 (1966).
"U. Gerhardt, D. Beaglehole, and R. Sandrock, Phys. Rev.

Letters 19, 309 (1967).
Is F. S. Ham, Phys. Rev. 128, 2524 (1962)."L.G. Ferreira, Phys. Rev. 137, A1601 (1965).
'L. Johnson, MIT, Solid State and Molecular Theory Group

Quarterly Progress Report No. 42, 1961 (unpublished).
'~ See articles in Physics of Solids at High Pressure, edited by

C. T. Tomizuka and R. M. Emrick (Academic Press Inc. , New
York, 1965).

L. F. Mattheiss, Phys. Rev. 133, A1399 {1964).
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superposition of single-atom (ion) charge densities. Thus
it was felt an investigation was in order to see if this
simple prescription would also have the facility of gen-
erating potentials which would account for variation
of band structures with lattice parameter.

II. DISCUSSION OF THE KKR METHOD
AND NUMERICAL TECHNIQUES

Although not required by the basic formalism of the
KKR method, use of a muffin-tin potential greatly re-
duces the amount of labor and computer time required
to do band-theory calculations with this and other
methods. At the same time, calculations on models' and
real systems' "have shown that approximating a crys-
tal potential by a muon-tin potential does no great
damage to the resulting electronic band structure. Our
main interest in the present investigation is in relative
changes as the lattice parameter is varied, and use of
mu6in-tin potentials would be expected to have less
eRect on relative changes than on absolute quantities.
For the above reasons, muffin-tin potentials have been
used throughout the present investigation.

For a muffiin-tin potential, the one-electron wave
function within the muffin-tin spheres is expanded in
the KKR method in terms of spherical harmonics
V~ (8,$), with the expansion being truncated as some
l value denoted by l, . Results obtained by Ham and
Segall~~ have shown that errors of at most a few
thousandths of a Ry are made in energy eigenvalues at
particular k values when I, = 2 is used. We have pre-
viously shown' that the same truncation leads to errors
of only a few tenths of one percent in dimensions of
constant-energy surfaces in general and Fermi surfaces
in particular. We expect relative changes of the Fermi
surface and particular k energy eigenvalues to be less
sensitive to the value of t than absolute quantities.
For the above reasons, we believe use of /, „=2is more
than adequate for the present investigation, and all
calculations reported here have been done with this
truncation.

The numerical techniques used in this investigation
for the calculation of constant-energy surfaces were
the same as previously reported. ' With these techniques,
561 points were obtained in 1/48th of the Brillouin
zone for each of the constant-energy surfaces necessary
in the present investigation. By symmetry, this means
a total of 26, 066 points on each of the constant-energy
surfaces. Each such point is specified by a vector from
F, the center of the zone, to the constant-energy surface.
The directions of the vectors are specified by a search
pattern and are thus exactly known. After specification
of the value of l, , the numerical procedures used in
the calculation are such that we are able to claim
knowledge of the length of each of the vectors to at
least four figures. This precision enables the volume

'7 P. D. deCicco, Phys. Rev. 153, 931 (1967).

contained by a constant-energy surface and hence the
integrated density of states for the same energy to be
accurate to about four decimal places.

We also have available computer programs for con-
stant-k searches which use some of the same computer
subprograms used in the constant-E searches described
above. For clarity, it is best to emphasize exp.icitly
that all results quoted in this paper have been obtained
by direct numerical solution of the one-particle band
theoretic eigenvalue problem without any recourse to an
interpolation or extrapolation scheme.

III. CALCULATION OF POTENTIALS

The mufBn-tin potentials used in this investigation
were generated using a prescription described by Mat-
theiss. " In this prescription a crystal potential V(r)
is approximated as

and both the Coulomb part, V„„t(r),and the exchange
part, V, ,(r), are obtained using free-atom wave func-
tions. At a given lattice site, which is taken as the co-
ordinate origin, the Coulomb part is taken as the sum
of both the Coulomb potential located at the origin,
obtained from the free-atom wave functions, and con-
tributions from the same Coulomb potential situated
on neighboring lattice sites. The contributions from
neighboring sites are obtained by expanding the neigh-
boring Coulomb potentials in terms of spherical har-
monics about the origin, using Lowdins n-function
expansion. " When obtaining a mufIin-tin potential,
which is spherically symmetric, only the l=0 term in
this expansion need be retained. The exchange part of
the potential is obtained, using Slater's free-electron
approximation, "

(2)

The charge density, p(r), used in this expression is the
spherically symmetric superposition of the atomic
charge densities and is obtained in a manner analogous
to the method used. for V„„t(r).

The main motivation of the present work is to see
how accurately this relatively simple prescription will
yield potentials that can be used to predict the experi-
mentally determined relative pressure effects on the
electronic band structure of copper. That is, we are not
attempting to answer the question, "How are atomic
charge densities to be determined which when used in
this prescription generate a reasonably accurate one-
electron potential for band theoretic studies?, "but only
the question, "Given atomic charge densities which
generate a reasonably accurate potential for normal
lattice spacing, how accurate is the prescription in
describing relative effects on the band structure with

"P. O. Lowdin, Advan. Phys. 5, 1 (1956)."J.C. Sister, Phys. Rev. 81, 385 (1951).
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changes in lattice parameter?" Of course, by using the
same atomic charge densities for different lattice spac-
ings, the only way lattice spacings effects will enter the
calculations are through changes in the lattice sums
used to obtain the Coulomb and exchange parts of the
potential.

The decision as to what atomic charge densities to
use in the investigation was made after consideration
of the following information. Previously we had investi-
gated the band structures corresponding to three dis-
tinct copper potentials, which had been obtained by
inserting three different atomic charge densities into
the above prescription. In calculating these potentials,
the atomic charge densities inserted into the prescrip-
tion were calculated for an assumed 3d"4s' configu-
ration from (1) the atomic Hartree-Fock-Slater wave
functions tabulated by Herman and Skillman" and
calculated for a 3d"4s' configuration; (2) the atomic
Hartree-Fock wave functions calculated by Synek" for
a 3d"4s' conlguration; (3) the atomic Hartree-Fock
wave functions calculated by Watson" for a 3d'4s'
configuration. The first of these potentials has been
found to yield a Fermi surface which does not make
contact with the hexagonal faces of the Brillouin zone, '
which disagrees with the experimentally established
fact that copper's Fermi surface does contact the hex-
agonal faces. The band structure calculated from the
second potential had its five lowest-energy d bands all
below the energy of the F~ state for the conduction
sp band ss which is in violent disagreement with well-
established features of copper's band structure. The
third potential is identical or very close'4 to a potential
used by Mattheiss" for the calculation of copper's band
structure along the 6 symmetry direction in the Bril-
louin zone. We have shown' that the third potential
gives a resulting band structure reasonably approxi-
mating the experimentally determined band structure,
especially in the vicinity of the Fermi energy where
the most direct comparisons can be made between
experimental and calculated quantities. "It is seen that
neither of the first two potentials provides an accurate
enough initial potential to serve as a basis for an investi-
gation concerning relative changes with change in lat-
tice spacing. But the third potential does provide an
adequate enough initial potential, so it thus was decided
to generate the potentials necessaryfor this investigation
by use of Watson's wave functions inserted into a
3d' 4s' configuration.

2() F. Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall, Inc. , Englewood Cliiis, New Jersey, 1963)."M. Synek, Phys. Rev. 131, 1572 (1963)."R.E Watson, Phy. s. Rev. 119, 1934 (1960).

23 J. S. Faulkner and H. L. Davis, unpublished results.
'4There may exist minor numerical differences between our

potential and the one used by Mattheiss in the third or fourth
significant figure due to different numerical methods."L.F. Mattheiss, Phys. Rev. 134, A9"/0 (1964).

"See Ref. 3 for a detailed discussion of the minor differences
which exist between the calculated and experimentally determined
band-structural information.

TAnrE I. Values of the potentials U(r) corresponding to the
three lattice spacings a, 0.995a, and 0.99a for selected radial
distances, r. The tabulated values are —rV(r}. The units of V
are rydbergs while r is in atomic units. The r, entries are the
muffin-tin sphere radii, and the Vo are the calculated average
values of the potentials in the void between the muffin-tin spheres.

0.10
0.20
0.30
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60

&s

Vo

41.262
31.478
24.703
19.741
13,046
8.946
6.490
4.998
4.052
3.438
3,049
2.825
2.739
2.773
2.923
2.4151

—1.1394

0,995u

41.262
31.479
24.704
19.742
13.047
8.948
6.493
5.002
4.057
3.445
3.058
2.840
2.759
2.800
2.959
2.4030

—1.1539

0.99u

41.262
31.479
24.704
19.743
13.049
8.950
6.496
5.006
4.063
3.453
3.069
2.855
2.779
2.828
2.997
2.3909

—1.1686

Tmxz II. Energy eigenvalues at some high-symmetry points
using the potentials corresponding to lattice spacings u, 0.995u,
and 0.99u. The energies are expressed in rydbergs. The energy
for the state I"1, is expressed relative to the same energy zero
used in specifying the Vo of Table I. All other state energies are
specified relative to 1 ~ for the potential of interest.

State

PJGI

X1
X3
Xg
XG

X4r

L3
L~(&)

L2
I1(uP)

—1.1474
0.4654
0.5211
0.3192
0.3657
0.5596
0.5730
0.7995
0.3207
0.4606
0.5621
0.5903
0.9677

0.995u

—1.1571
0.4709
0.5280
0.3212
0.3687
0.5674
0.5811
0.8074
0.3233
0.4660
0.5699
0.5954
0.9820

0.99u

—1.1661
0.4767
0.5352
0.3233
0.3720
0.5756
0.5897
0.8152
0.3260
0.4716
0.5782
0.6003
0.9965

2~ W. B.Pearson, A IIundbook of Lattice Spacings und Structures
of Metals and Alloys (Pergamon Press, Inc. , New York, 1958).

With small changes in lattice spacing, variations in
the resulting band structure are expected to be linear.
This expectation enables us to perform an additional
check on the calculational precision of our computer
programs. For this reason, we decided to do calculations
for lattice spacings of a, 0.995a, and 0.99a, with u being
the normal lattice constant of copper that has been
taken equal to the room-temperature value of 6.8309
au tabulated by Pearson. " Using these three lattice
spacings, potentials were generated by performing the
necessary lattice sums over seven neighboring shells
about a lattice site. To illustrate the minor changes in
the resulting potentials, they are given in Table I at
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TAnLE III. Integrated density of states M(E) and linear and a real constant-energy surface dimensions for energies in the immediate
vicinity of the Fermi energy for the potentials corresponding to lattice spacings, c, 0.995@,and 0.99a. The energies are in rydbergs and
expressed relative to the F& energy for each potential. The second energy for each potential is taken as the calculational Fermi energy.
The linear dimensions kqop and kyyp are the distances from p to the constant energy surface along the (100) and (110)directions, respec-
tively, measured in units of the radius of the free-electron sphere k&,. This unit changes with potential, since kf, = (3w'n) '", with a being
the number of lattice sites per unit volume. k „I,is the radius of the neck, as measured from L, in the same units. The neck is circular
to the quoted accuracy. The Aioo, A»~, and Asb are cross-sectional areas for the $100j belly orbit, the $111jbelly orbit, and the dog' s
bone orbit, respectively, in units of ok&,'.

&CHOO

~110

knecg
A Ioo

A11z
Adb

0.6754
0.98224
1.0605
0.9359
0.2066
0.9628
0.9310
0.4153

0.6796
0.99992
1.0658
0.9426
0.2146
0.9746
0.9434
0.4054

0.6839
1.01745
1.0710
0.9492
0.2225
0.9862
0.9558
0.3952

Lattice spacing =g

0.6841
0.98248
1.0621
0.9349
0.2090
0.9627
0.9304
0.4147

0.6884
1.00017
1.0673
0.9417
0.2170
0.9745
0.9429
0.4047

0.6927
1.01777
1.0726
0.9483
0.2248
0.9861
0.9553
0.3944

Lat tice spacing =0.995g Lat tice spacing =0.99a

0.6931 0.6974 0.7017
0.98216 0.99994 1.01763
1.0637 1.0690 1.0743
0.9337 0.9405 0.9472
0.2113 0.2192 0.2270
0.9621 0.9738 0.9857
0.9293 0.9418 0.9543
0.4143 0.4041 0.3938

selected radial distances. Also listed in Table I are the
mu6in-tin sphere radii for the three lattice spacings and
the values used for the constant potential Vo in the
voids between the muffin-tin spheres and the Wigner-
Seitz polyhedra. These Vo are used to adjust the zero
of energy in the calculation in order to have the po-
tential zero in the voids, and were approximated by the
average value of V(r) in the voids.

IV. ENERGY EIGENVALUES AT SELECTED
HIGH-SYMMETRY POINTS

Using the potentials described in Sec. III, the energy
eigenvalues of the resulting bands were determined at
the high-symmetry points I', X, and L in the Brillouin
zone using our constant-lr energy survey techniques.
The resulting energy eigenvalues are presented in Table
II

p
and linearity with lattice spacing is observed in

the energy eigenvalues to within a few ten-thousandths
of a rydberg.

V. DENSITY-OF-STATES RESULTS

By calculating the volume enclosed by a constant-
energy surface within the Brillouin zone, the integrated
density of states M(E) may be obtained for a given
energy E.Since our primary interest in the present work
is the variation of copper's Fermi surface with lattice
parameter, M(E) needed to be calculated only in the
immediate vicinity of the Fermi energy for each of the
three potentials being considered. From inspection of
the energy eigenvalues given in Table II, one expects
the Fermi energy to vary only slightly for the potentials
considered here. At the start of this investigation we
had an accurate knowledge of the Fermi energy for the
potential corresponding to normal lattice spacing a.'
It was thus possible to estimate energies which would
bracket the Fermi energies for the potentials corre-

~ Some of the results quoted in this paper for the potential
corresponding to the lattice spacing a have already been reported
in Ref. 3. They are also reported here for ease of comparison with
the results obtained from the other two potentials.

sponding to the lattice spacings 0.995a and 0.99a. The
M(E) were calculated for these energies, and a simple
interpolation then enabled 6ner bracketing energies to
be obtained. The M(E) were calculated for these new
energies. and the process repreated until the Fermi
energies were obtained to four 6gure accuracy for each
of the potentials.

In Table III some results of the M(E) calculations
are given for energies in the vicinity of the Fermi energy
for each of the three potentials. " The results in this
table are expected to be accurate to about four 6gures.
The Fermi energy for a potential has been taken as the
second of the three energies tabulated since, as is seen
in Table III, M(E) for that energy equals unity to one
part in 10'.

By numerical differentiation of the M(E) results, we
find the density of states at the Fermi energy p(Ef)
equals 4.16, 4.13,4.11 states/atom-Ry for the potentials
corresponding to lattice spacings of a, 0.995a, and 0.99a,
respectively. These values give 0.720, 0.716, 0.712 mJ/
mole-'K', respectively, for the low-temperature elec-
tronic speci6c-heat coefficient y. Because of loss of
precision in obtaining numerical derivatives, the values
obtained for p(Er) and y are expected to be precise to
three figures, and linearity with lattice spacing is ob-
tained to this precision.

VI. DIMENSIONS OF CONSTANT-ENERGY
SURFACES

The procedures described above give more infor-
mation than values of M(E) and p(E) for a given po-
tential, since they enable linear dimensions and cross-
sectional areas of a given constant-energy surface to be
obtained to at least four 6gure accuracy. The im-
portance of such linear and areal dimensions is im-
mediately evident, since they are related to quantities

"Ifthe demand is not too great, we can make available to those
who have a use for them, decks of IBM cards containing all of the
calculated points on some of the constant energy surfaces obtained
in this investigation.
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measured e.g., in, magnetoresistance, magnetoacoustic,
de Haas —van Alphen, and cyclotron resonance experi-
ments.

In Table III we present a limited listing of linear and
areal dimensions which have been obtained in this work.
Linearity with energy for each lattice parameter is
obtained over the small range of energies tabulated in
Table III, and linearity in the change of the dimensions
of the Fermi surface with lattice parameter may be
exhibited by expressing such dimensions in atomic
units. In addition to the areal dimensions given in Table
III, we have also investigated the changes in cross-
sectional area for slices of the Fermi surface perpendic-
ular to the (111) direction, moving away from the
slice containing F. For the potential corresponding to
the lattice spacing a, we find the slice which is 1.563%,
from 1", of the distance between F and I. to have a
cross-sectional area of 0.9642 in the same areal units
used in Table III. For a slice removed 3.125%%u~ the
cross-sectional area is 0.9851. Thus, we calculate the
$111$ central extremal area to be a minimum. This
agrees with Roaf's" analytical 6t to Shoenberg's" de
Haas —van Alphen data and recent data of Joseph,
Thorsen, Gertner, and Valby. "

Using the dimensions for the constant energy surfaces
given in Table III, some de—Hass van Alphen frequen-
cies and cyclotron reasonance masses have been calcu-
lated and are expressed in Table IV. Since the energy
derivatives required to obtain the cyclotron masses were
obtained numerically, it was initially expected that the
masses would be precise to only two decimal places.
However, it is seen that approximate linearity with
lattice spacing does appear in the third decimal place
in the calculated masses, and our feeling now is that
the masses are precise to slightly more than two decimal
places. In any event, the trend of the change of these
masses with lattice spacing is undoubtedly an accurate
representation of the potentials used in this work.

The largest relative change with lattice spacing in
the de Haas —van Alphen frequencies is seen to occur
for the neck orbit. However, if an error of +0.002 Ry
had been made in obtaining the Fermi energy for the
potential corresponding to the lattice spacing a, and
an error of —0.002 Ry made in obtaining the Fermi
energy for the potential corresponding to the lattice
spacing 0.99a, the calculated change in the neck fre-
quency would have been a decrease with decreuse in
lattice spacing. The precisely calculated change, from
Table IV, is anirlcrease with decrease in lattice spacing.
Similar errors of &0.0015 Ry would also similarly affect
the relative change in the dog's bone frequency. Also,
errors of the same order in Fermi energies would wash
out the trend observed in the cyclotron resonance
masses. These examples serve to illustrate the advan-

'o D. J. Roaf, Phil. Trans. Roy. Soc. London A255, 135 (1962).
~' D. Shoenberg, Phil. Trans. Roy. Soc. London A255, 85 (1962).
'2 A. S. Joseph, A. C. Thorsen, F.. Gertner, and L. E. Valby,

Phys. Rev. 148, 569 (1966).

TABLE IV. Calculated de Haas —van Alphen frequencies and
cyclotron resonance masses for the three potentials corresponding
to lattice spacings u, 0.995a, and 0.99u. The de Haas-van Alphen
frequencies Fioo, Fno, Fueck and Fzs are for the [100jbelly orbit,
the L111) belly orbit, the neck orbit, and the dog's bone orbit,
respectively, and are expressed in units of 10 G. Similar notation
applies to the cyclotron masses m*, which are expressed in units
of the free electron's mass.

~100
~ill
J"ab

~neck
m 100

ill
m Qb

m neck

5,920
5.731
2.462
0.280
1.429
1,515
1.228
0.417

0.995u

5.979
5.785
2.483
0.289
1.433
1.521
1.243
0.418

0.99cs

6.036
5.837
2.505
0.298
1.440
1.529
1.250
0.420

tages and sometimes the necessity of being able to cal-
culate the Fermi energy and Fermi surface dimensions
to the four-6gure precision used in the present work.

VII. DISCUSSIOH

A number of experimental results can be compared
with the calculations presented in Tables II, III, and
IV. First, Templeton" has recently measured the change
with hydrostatic pressure of the de Hass —van Alphen
frequencies for theneck and [111jbellyorbits of copper's
Fermi surface. These measurements enabled him to
quote values for the relative pressure change of the
cross-sectional areas, (hA/A)/hP, of +1.93X10 '
cm'/kg and+4. 21X10 ' cm'/kg for the neck and $111$
belly orbits, respectively. Using the results of Table
III and the experimental~ volume compressibility,
(&V/V)/&P= —6.907X10 ' cm'/kg, our calculations
give +1.50X10 ' cm/kg and +4.27X10 r cm'/kg,
respectively, for the same quantities. Reasonably good
agreement between calculation and experiment is thus
obtained, in contrast with a previous attempt'4 to cal-
culate one of these quantities which predicted (hA/A)
/~ to be tsegafive for the neck orbit.

Ke feel that the fact that the present calculation
underestimates the value of (M/A)/hP for the neck
is predominantly due to the potential corresponding to
the uncompressed lattice predicting a neck area about
28% larger than the experimentally observed neck
area rather than to the method used to obtain the po-
tentials for the three lattice spacings. That is, if the
potential, corresponding to the lattice spacing u, had
led to a smaller cross-sectional area for the neck, we
would expect the calculated relative change with pres-
sure to be larger and move toward better agreement with
Templeton's experimental value. No such dBBculty is
encountered with the calculated value for the C111j
belly orbit, since the potential corresponding to the
uncompressed lattice overestimates the experimentaP'

3' W. C. Overton and J. Gatfney, Phys. Rev. 98, 969 (1955).
'4 D. Caroline and J. E. Schirber, Phil. Mag. 8, 71 (1963).
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de Hass —van Alphen frequency, 5.742&10' G, by less
than 1% (see Table IV).

The calculated (AA/A)/DP for the [100]belly and
the dog's bone orbits are, respectively, +4.53X10 '
cm'/kg and +3.96X10 ' cm'/kg. After the calculation
was made, O' Sullivan and Schirber" measured this
quantity for the dog's bone and obtained 4.0+0.2&& 10 '
cm'jkg, giving agreement with the calculation. We
should like to suggest further experimental work to ob-
tain the value for the [100]belly orbit and the va, lue
for the dog's bone orbit to higher precision, in order to
see if the relative ordering in magnitude calculated in
this work for (AA/A)/AP for the neck, [100] belly,
[111]belly, and dog's bone orbits has the excellent
agreement with experiment all present work appears
to indicate.

The present calculations give definite predictions
concerning the pressure change of the density of states
at the Fermi energy, and hence the electronic specific
heat. We know of no direct experimental results on the
change of the electronic specific heat of copper with
pressure. However, as is discussed, e.g. , by Green, "
thermodynamic considerations lead to the desired result
being related to the electronic Griineisen constant

(c) in'/cl lnV) r=3n,VE/(yT), (3)

where y is the electronic specific-heat coeS.cient, V is
the molar volume, T is the temperature, n, is the elec-
tronic part of the coefficient of thermal linear expansion,
and E is the bulk modulus. We calculate the left-hand
side of Eq. (3) to be +0.43. By measuring n, for copper,
Carr, McCammon, and White" were able to calculate
the right-hand side of Eq. (3) from experimental quan-
tities, obtaining +0.63+0.06 which is to be compared
with the ideal free-electron value of —,. The agreement
between calculation and experiment is only semi-
quantitative, but it is gratifying considering the pre-
cision required to calculate the p's and the possibility
of errors in interpreting experimental measurements to
obtain the value of 0,, due to the necessity of separating
it from the total coeKcient of thermal linear expansion.
Also, as mentioned in Ref. 3, the potential correspond-
ing to lattice spacing u overestimates the experimental
value of p by 3%, which might explain some of the
discrepancy between the calculated and experimental
results for Eq. (3).

In a "Note added in proof" Green" has indicated
that rigid-band interpretation of specific-heat data on
copper-based alloys gives a negative value for the left-
hand side of Eq. (3). In an attempt to rescue the rigid-
band model, Green mentioned possible changes in
(8 lny/ci lnV)r due to electron-phonon enhancement.
As'discussed in Ref. 3, we do not expect electron-phonon
enhancement to affect y at normal lattice spacing by

35 W. J. O' Sullivan and J. K. Schirber (private communication)."B.A. Green, Jr. , Phys. Rev. 144, 528 (1966)."R.H. Carr, R. D. McCammon, and G. K. White, Proc. Roy.
Soc. (London) A280, 72 (1964).

more than a few percent. The above comparison be-
tween calculated and experimental results also seems to
indicate that electron-phonon enhancement will not
greatly affect (c) in'/c) ln V)r, especially enough to
change its sign.

Zallen" has observed the shift with pressure of the
re/ectivity edge in copper and put an upper limit on
the pressure dependence of (top of d-band) —(Fermi
energy) separation of 1.0X 10 s eV/bar. More recently,
Gerhardt, Seaglehole, and Sandrock, " using piezo-
optical measurements, have obtained0. 80(&0.07)X 10 '
eV/bar for the same quantity. The states Xs, Xs, and
1.3(" are at, or in the immediate vicinity of, the top of
the d-band, and the pressure shifts for the separations
(Ef Xs), (Et Xs), a—nd (Et—Ls&"), are calculated
to be 0.5 to 0.6X10 ' eV/bar. The pressure shift of
reflectivity structure near 4.2 eV has also been meas-
ured by Zallen who obtained 7.0(&1.5)X 10 ' eV/bar,
while Ref. 11 quotes 7.5(&1.1)X10 ' eV/bar for the
same quantity. We calculate the pressure shift of
(L&'"»—Ls ) to be 6.0X 10 ' eV/bar, and (Lti"» —Et)
to be 3.5X10 ' eV/bar. Although the potential cor-
responding to the lattice spacing a gives 5.1 eV for the
separation (Lt i"» —Ls.), we feel the calculated pressure
shift for this separation adds support to Beaglehole's"
assignment of the reQectivity structure at 4.2 eV to the
transition 1.2. —+ 1.~("».

Another possible application of the data of Table
II is purely theoretical. Although not attempted by us,
from the results of Table II, it is possible to use either
of the two recently proposed~ ~ interpolation schemes
to obtain an interpolated description of the total band
structure. This interpolated band structure could then
be used to calculate the same quantities given in
Table III. Comparing such results with the numerically
exact results in Table III would give an excellent
mechanism for judging the size and type of errors which
are present in the interpolation schemes.

The above comparison between the results of our
calculations and experimental measurements can serve
to answer the question asked in Sec. III concerning the
accuracy of the potential prescription when used to
describe relative effects in band structure with change
in lattice spacing. In all, we have found quite excellent
agreement between calculational and experimental rel-
ative changes with lattice spacings. Large discrepancies
appeared between the two only where either the initial
potential gave a bad absolute description of copper's
band structure or the experimental quantities were un-
certain. Thus, we conclude the potential prescription

es R. Zallen m Optica/ Propertees aad Etectronec Strgctlre of
Metals artd A/toys, edited by F.Abeles (North-Holland Publishing
Co., Amsterdam, 1966), p. 164.

~~ D. Beaglehole, in Optica/ Properties hand E/ectronic Strgcture of
Metals and Alloys, edited by F.Abeles (North-Holland Publishing
Co., Amsterdam, 1966), p. 154."L. Hodges, H. Ehrenreich, and N. D. Lang, Phys. Rev.
152, 505 (1966).

4' F. M. Mueller, Phys. Rev. 155, 659 (1967).



BAN D STRUCTURE FOR Cu 607

appears to be very promising in its ability to describe
relative changes of metallic band structures with change
in lattice spacing, especially in the vicinity of the Fermi
energy, once a reasonably accurate potential has been
found for theuncompressedmetal. This conclusion seems
to imply that the predominant change in band-theory
potentials as the lattice spacing changes is simply due
to a superposition of single-atom charge densities,
while the change in these charge densities with small
changes in lattice spacing is, at most, a second-order
eRect. Of course, this conclusion is based only on this
study of the change of copper's band structure, and we

hope to have the opportunity in the near future to
perform similar studies on other metals.
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Towards a Quantum Many-Body Theory of Lattice Dynamics.
II. Collective Fluctuation Approximation
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A novel viewpoint towards the lattice dynamics of an anharmonic crystal, put forward in a previous
paper of the same title, is enlarged and extended. This viewpoint 6rst focuses attention on the motion of a
single atom in a static environment, and develops the collective modes of the crystal as a whole from a
superposition of the motions of the individual atoms. It is shown that of the many collective modes for a
given wave vector, three are identifiable as one-phonon modes in that only these contribute to the dis-
placement-displacement response, and a simple expression for the eigenfrequencies of these modes is ex-
hibited. The other modes are shown to be associated with single-particle transitions, and their contribution
to the neutron structure function S(k,~) is derived in the special case of a purely harmonic lattice. The
many-body approximation is extended to include collective fluctuations in the equilibrium state. Serious
diKculties in principle are encountered, associated with maintaining translational invariance, but are
partially overcome by an ad hoc procedure. Collective-mode frequencies renormalized in this way are
compared with those obtained from an alternative theory which deals exclusively and from the outset
with collective coordinates only.

I. INTRODUCTION
' N a previous paper' of the same title, a novel view-
s - point towards the lattice dynamics of a crystal was
put forward. This viewpoint first focuses attention on
the motion of a single atom in a static environment, and
then develops the collective modes of the crystal as a
whole from a superposition of the motions of the indi-
vidual atoms. The philosophy is the same as that of the
random phase approximation (RPA) which is also the
starting point of the theory of most other many-body
systems.

No assumption is made in this theoretical approach
about the smallness of the atomic displacements relative
to the interatomic spacing. Hence this theory is ap-
propriate for highly anharmonic crystals, a leading ex-
ample of which is helium. Here the traditional quasi-
harmonic theory fails, due to the light mass and weak

~ D. R. Fredkin and N. R. Werthamer, Phys. Rev. 138, A1527
(1965), hereafter referred to as I. Similar ideas have also been
discussed by W. Brenig, Z. Physik 171, 60 (1963), and more
recently by G. Meissner, ibid. 205, 249 (1967).

restoring force, and consequent large zero-point motion
of the atom. Yet the present picture gives a good ac-
count' ' of the phonon spectrum and attendant thermo-
dynamic properties.

Despite the success of the RPA approach in giving at
least qualitatively correct results for the phonon spec-
trum, some other aspects of the lattice dynamics are not
treated adequately, notably the temperature depend-
ence. This is because the phonon collective modes are
only obtained from the response of the crystal to a
disturbance. In the absence of any disturbance, i e., at
equilibrium, the RPA regards the crystal as an array of
nondynamically interacting atoms with a discrete
single-particle excitation spectrum. Consequently, there
are no Boltzmann factors of the form expL —(phonon
energy)/k&Tj as should be expected, only factors
expL —(single-particle excitation energy)/AsTj, which

~ L. H. Nosanow and N. R. Werthamer, Phys. Rev. Letters 15,
618 (1965).

3 F. W. de Wette, L. H. Nosanow, and N. R. Werthamer, Phys.
Rev. 162, 824 (1967).


