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in electron-impact studies cannot hope to resolve clearly
the rotational structure or determine the widths of
auto-ionization lines. Although there does not appear
to be a simple theoretical relationship between photo-
ionization and electron-impact ionization of H (1s), it
does experimentally appear to exist for all the simple
diatomic molecules considered thus far, H2, D2, 02, N~,

NO, and CO.
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The nonrelativistic eigenvalues of the 1s'2p 'P states of the lithium sequence are calculated to be E(Z) =
—1.125Zs+1.09352614Z—0.52717136+0(Z ') a.u. , where Z is the nuclear charge; and the energy of the
1s'2p sP—ls'2s 'S transition is calculated to be liE(Z) =0.07072093Z—0.11902237+0(Z ') a.u. For large
nuclear charges, the addition of a 2p electron to the 1s 'S core increases the magnitude of the correlation
energy by 0.30 eV to give a value of 1.57 eV, most of which arises from the electron-pair energies.

r. INTRODUCTION

E have recently calculated the nonrelativistic
eigenvalue of the is'2s'S states of the lithium

sequence as a series in inverse powers of the nuclear
charge Z, using a method that expresses the correlation
energy as a weighted sum of electron-pair energies and
certain single-electron nonadditive terms. The addition
of the 2s electron to the is' '5 core increases the mag-
nitude of the correlation energy by 0.19 to 1.46 eV,
most of which arises from the pair energies.

The method can be extended to states of higher
angular momentum and in particular to the 1s'2p 'I'
states of the lithium sequence.

2. THEORY

We choose a set of units in which the scale of distance
is Z atomic units (a.u.) and the scale of energy is Z'

a. u. If r; is the position vector of the ith electron, the
Hamiltonian is given by

H=Hp+V/Z,
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where
8 8

H, = ——', P Vs—P— (2)

U=

Then to second order in Z ', the energy E is given by

E(Z) =Z'Ep+ZEt+Es,

Es=(A
I
l' —ErIlbt)

lbp and |Pr being the well-behaved solutions of

(Hp —Ep)fp=O,

(Hp —Ep)fr+ (l' —El)A= o.

The solution of (8) is

lbr(1ss2P 'P)= eLrsV3gp(2P 'E),|Pr(1s' 'S))
—(sV'6)fA(1 'S)Ar(1 2p '~))

+sr@2{|ps(1s'S),|p,(1s2p 'P)) $, (9)
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where 8 is the antisymmetrizer and

g s(NISL),kg(r4Vn "I"S'L')}
is a vector-coupled product of the single-electron zero-
order eigenfunctions 2Ps and the antisymmetrized two-
electron first-order eigenfunctions 2Pq.

If we define

analytically, and we obtain

85638229 14 6 50 5
(2p1slg2p)q= + ln-+ ln-

3 X54X7'X10 729 7 729 7

3512503 23 5
(Is2p Ig2p)s= +—ln = —Q.QQ35878357

3'X 10' 81 6

r

ys(p, 'yIr) =r ' ' p(s)v(s)s"+'ds

+r' P(s)y(s)s' sds (10)
(IslsI02p)2 ——

=0.0165827681,—15491589248 1
+—(6291456 ln2

316X53X 72 315

and

(nP I Ay)q= n(r)yq(P, y I
r)A (r)rsdr (11)

—116032 ln3+ 1431200 ln5 —3470336 lnj)

= —0.0738163180,

—1178867542 1

and use the procedures of Chisholm and Dalgarno, ' it (2pisIeis), =
313 53 72 2 313

follows from substituting (9) into (6) that

Eq(is'2P sP) = Eq(iss 'S)+ sEs(ls2P 'P)
+sEs(is2p 'P)+i, (12)

where

f =4(1 2plg2p). --:(2pi Ig2p).+-:(I 1 lh2p)
—-', (is1s I02p)r+-', (2p1s

I
01s)s——,

' (2p1s
I &is)s, (13)

in the labeling of the above matrix elements, Nl(r) repre-
sents the normalized hydrogen radial eigenfunctions, and

1 d' 2 d) 1 1——+-—
I

—+- g(r)
2 dr' rdr) r 2

+ye(is, is Ir)1s(r) —s1s(r) =0, (14)

and

X (3626 ln3 —14336 ln7+ 12523 ln5)

= —0.1218994986,

h(r) =p a,L,'(2pr)r exp( —pr),
j=3

20114286182 1
(2p1s I /is) I2

—— +
313X55X72 2X313

X (9877 ln5+8918 ln3 —14336 ln7)

=0.0817006367.

To solve (15) for h(r), we expanded according to

with p=-', gj. Then1 d' 2d 2 1 7———+—————+— h(r)
2 dr' rdr r' r 8

—sy&(2p, is Ir)is(r) =0, (15)
where

2'8 1
(Isis

I
h2P) 2

=—g J22, (19)3" '= ~(~ —I)(~—2) (JP 1 P)——

1(d' 2 d 2) 1 1
+ I

—-+- 0(r)
2(dr' r dr r') r 8

aIld

+ syr (Is,2p I
r) 1s(r)+ye (is, is

I r) 2p (r)

—(1705/6561) 2p (r) =0, (16)

1 d2 2d 2 1 1
+ —-+- 4(r)

2 dr' rdr r' r 8

+-',yr(is, 2p I
r)1s(r) —ys(is, is

I r)2p(r)

+ (1481/6561)2p (r) = 0. (17)

The solutions g (r), 8(r), and p(r) are linear combina-
tions of the first-order Hartree-Fock (HF) orbitals,
listed by Cohen. ' The matrix elements can be evaluated

' M. Cohen, Proc. Phys. Soc. (London) 82, 778 (1963).

(I+P) 1 P' J(1+-P) I-Pi-
J =(j-2)

1+P 2P 1+P)

(5+2t5) 5—2t5 j(5+221)(5—
2I5)

' '
—(i—2)

4P 5+2P 4P 5+2P

3 5—2P
2'-' 5—2Pq2-'

-2&V-2)
4P 5+2P 5+2p)

5—2p)2 9
+(i—I)(i—2) I + i(i—1)(i—2)

5+2P) 32P'

4p 4 5—2p 2'' 27

"("-' ')(, ', )'(,',") ' "
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negative powers being excluded. The series (18) is
rapidly convergent, and the dispersion term has the
magnitude

(1sis
i h2p) =+0.0084131502 .

Finally, using'

E2(1s' 'S) = —0.157666405,

E&(1s2p 'P) = —0.15702294,

Eg (1s2p 'P) = —0.07299739,
we obtain

Eg(1s'2p 'P) = —0.52717136

to which the pair energies contribute —0.34567396 and
the nonadditive terms —0,18149740. The theoretical
value is in harmony with the semiempirical value of
—0.529, which we derive from an analysis of the exact
nonrelativistic energies tabulated by Weiss. 4

3. DISCUSSION

To second order the nonrelativistic eigenvalue of the
(1s'2p 'P) states is given by

E(Z) = —1.125Z'+1.09352614Z—0.52717136 a.u. (21)

and the HF eigenvalue is given by'"

EHF(Z) = —1.125Z'+1.093526Z—0.469462 a.u. (22)

Thus, the correlation energy tends to a constant value
of —0.057709 a. u. or —1.57 eV as the nuclear charge
increases. The correlation energy of the helium 1s' 'S
sequence tends to a constant value of —1.27 eV',
so that the addition of a 2p electron increases the cor-
relation energy by 0.30 eU compared to the increase
of 0.19 eV found for a 2s electron. '

As for the 1s'2s'S states, most of the correlation
energy arises from the pair energies. Thus, if we write

E&H~(1s'2p 'P) =E2H~(1s' 'S)+-,'E~H (1s2p 'P)
+-,'EpF(1s2p 3P)+1 HF (23)

3 C. W. Scherr, F. C. Sanders, and R. E. Knight, in Perturbation
Theory and Its APPLicotions in Quantum Mechanics, edited by C.
H. Wilcox (John Wiley R Sons, Inc. , New York, 1966), p. 97.' A. W. Weiss, Astrophys. J. 138, 1262 (1963).' C. Froese, Astrophys. J. 141, 1206 (1965).' A. Dalgarno, Proc. Phys. Soc. (London) 75, 439 (1960).

—f' Hp=0 00. 1852 a. u. =0.050 eV, while the contribu-
tion from the pair energies is —0.059561 a. u. = —1.62
eV. The comparable values for the 1s'2s'S states are
0.001682 a. u. =0.046 eV and —0.055281 a. u. = 1.50 eV.

TA~LK I. Nonrelativistic binding energies of the
1s'2P '8 states (in a.u.).

Measured

7.41016
14.17932
23.20442
34.48193
48.01055
63.78971

Hartree-
Fock

7.36507
14,13085
23.15370
34.42986
47.95775
63.73666

Multi-
configuration

7.40838
14.17466
23.19936
34.47597
48.00411
63.78314

Eq. (21)

7.37159
14.15307
23.18454
34.46605
47.99749
63.77896
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Table I compares the results of Eq. (21) with the
nonrelativistic eigenvalues derived by gneiss from spec-
troscopic data, from HF calculations, and from 45-
term multiconfiguration variational calculations. Equa-
tion (21) is superior to the HF approximation for
Z&3, but the higher-order terms in the Z expansion
remain suSciently important that (21) is not more
accurate than the 45-term multiconfiguration calcula-
tion until Z exceeds about 10. It appea, rs that E3(Z)
must be about —0.07/Z.

Taken in conjunction with the results for the 1s'2s '5
states, Eq. (21) gives for the nonrelativistic energies
of the 1s'2p 'P 1s 2s 'S tra—nsition

AE(Z) =0.07072093Z —0.11902237+0(Z ') a. u. (24)

The HF approximation gives

AHFE(Z) =0.07072093Z—0.114913+0(Z ') a. u. , (25)

showing that a large cancellation of error occurs in the
prediction of the transition energies.


