ТНЕ

PHYSICAL REVIEW

 ${\cal A}$ journal of experimental and theoretical physics established by E. L. Nichols in 1893

SECOND SERIES, VOL. 167, No. 3

15 MARCH 1968

Heat Capacity of Aluminum between 2.7 and 20°K*

W. T. BERG

Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee (Received 30 October 1967)

The heat capacity of aluminum has been measured between 2.7 and 20°K, and the results are in quantitative agreement with results derived from inelastic neutron scattering experiments. There is an initial increase of Θ_D at low temperatures which cannot be accounted for in terms of the elastic constants.

INTRODUCTION

T low temperatures heat-capacity measurements A provide a direct comparison with thermodynamic properties derived from inelastic-neutron-scattering experiments. Gilat and Nicklow¹ have made a detailed analysis of phonon-dispersion curves of aluminum obtained from the neutron-scattering measurements of Stedman and Nilsson,² and Yarnell et al.³ From this analysis Gilat and Nicklow have calculated the frequency distribution $G(\nu)$, and from $G(\nu)$ calculated the Debye temperature Θ_D as a function of temperature. An interesting result of their analysis is an initial increase in Θ_D at low temperatures.

Existing heat-capacity measurements⁴ on aluminum in the range 4-20°K are not sufficiently precise to compare with values derived from the neutron-scattering analysis. Phillips⁵ has measured the heat capacity of aluminum from 0.1 to 4°K and has deduced the value of γ , the coefficient of the electronic contribution to the heat capacity, and the value of Θ_0^{c} , the limiting value of Θ_D as T approaches zero. Dixon et al.,⁶ have also made measurements in the region below 4°, however their values of γ and Θ_0^c are somewhat higher than the values derived by Phillips. Giauque and Meads⁷ have

167 583

Copyright @ 1968 by The American Physical Society.

made heat-capacity measurements from 300° down to 15°K. This paper reports the results of heat-capacity measurements in the region of 2.5 to 20°K. The results show that neutron and thermodynamic measurements are in quantitative agreement when the experiments are carried out at low temperatures where anharmonic effects are small.

CALORIMETRIC SAMPLE

The calorimetric sample was taken from a large polycrystalline ingot kindly given by F. W. Young, Jr. of this laboratory. The ingot had been initially purchased from United Mineral and Chemical Corporation, New York, and was stated to be 99.9999% pure material. Spectrographic analysis showed this not to be the case. The analytical results are shown in Table I. As seen from Table I the purity is more nearly 99.99%.

The ingot was cut into cubes $\frac{1}{4}$ inch on a side. The pieces were then cleaned, heavily etched, and vacuum annealed $(1 \times 10^{-5} \text{ Torr})$ at 500°C for two hours. The grain size was 1-3 mm. The cubes were loaded into the calorimeter vessel and the vessel evacuated to 1×10^{-6} Torr. The vessel was then sealed with 2.8×10^{-6} mole of helium inside to serve as an exchange gas. There was no trouble with adsorption of the helium at the lowest temperatures. The time for thermal equilibrium to be established after addition of heat to the calorimeter and

TABLE I.	Analysis	of	aluminum	sample	(ppm).
					(I-1).

Ag	<1	Fe	5			
B	4	Mg	3.0			
Ba	10	Mn	0.2			
Ca	40	Na	3			
Cr	2	Ni	< 0.3			
Cu	0.4	Si	10			

^{*} Research sponsored by the U. S. Atomic Energy Commission

 ¹G. Gilat and R. M. Nicklow, Phys. Rev. 143, 487 (1966).
 ²R. Stedman and G. Nilsson, *Inelastic Scattering of Neutrons in Solids and Liquids* (International Atomic Energy Agency, Vienna, 1965) Vol. I, p. 211.
* J. L. Yarnell, J. L. Warren, and S. H. Koenig, in *Lattice*

Dynamics, Proceedings of the International Conference Held at Copenhagen, edited by R. F. Wallis (Pergamon Press, Inc., New

Copennagen, edited by K. F. wains (regainon Fress, inc., itew York, 1963), p. 57. ⁴ J. A. Kok and W. H. Keesom, Physica 4, 835 (1937). ⁵ N. E. Phillips, Phys. Rev. 114, 676 (1959). ⁶ M. Dixon, F. E. Hoare, T. M. Holden, and D. E. Moody, Proc. Roy. Soc. (London) A285, 561 (1965). ⁷ W. F. Giauque and P. F. Meads, J. Am. Chem. Soc. 63, 1897 (1041)

^{(1941).}

TABLE II. Experimental values of the heat capacity C_p in units of j/g at. deg.

Т	C_{p}	Θ_D	T	C_p	Θ_D
2.770	0.004264	428.8	10.400	0.04028	436.8
3.248	0.005224	429.8	10.575	0.04181	437.1
3.522	0.005833	428.7	11.518	0.05104	437.4
3.735	0.006322	429.3	11.574	0.05115	437.7
4.008	0.006992	429.5	12.581	0.06310	437.8
4.223	0.007543	429.8	12.644	0.06391	437.8
4.521	0.008366	429.8	13.609	0.07674	437.8
4.702	0.008880	430.4	13.768	0.07901	437.9
5.035	0.009901	430.7	14.786	0.09481	437.9
5.188	0.01040	430.6	14.581	0.09599	437.7
5.570	0.01171	431.2	15.836	0.1140	436.8
5.702	0.01219	431.4	15.898	0.1152	436.7
6.128	0.01383	431.8	16.815	0.1343	435.8
6.234	0.01426	431.8	16.923	0.1369	435.6
6.694	0.01623	432.6	17.763	0.1571	434.2
6.770	0.01658	432.7	17.926	0.1614	433.7
7.488	0.02015	433.2	18.702	0.1826	432.3
7.532	0.02038	433.3	18.915	0.1892	431.6
8.457	0.02572	434.8	19.753	0.2153	429.9
8.536	0.02623	434.8	19.952	0.2222	429.2
9.403	0.03221	435.9	20.755	0.2514	426.9
9.562	0.03341	436.0	21.024	0.2617	426.2

sample was a few seconds at the lowest temperatures, increasing to 2-3 min near 20°K.

The sample weight was 141.946 g (5.2609 g at.).

EXPERIMENTAL

The measurements were made in an adiabatic calorimeter similar to that described by Morrison et al.8,9 However, in the present apparatus the Simon bomb has been replaced by a 900 cc liquid-helium container, and the adiabatic shield is automatically controlled.¹⁰

The calorimeter vessel carried both a capsule-type platinum resistance thermometer and an Allen Bradley 10- Ω , $\frac{1}{2}$ -W carbon resistor. The platinum thermometer was calibrated by the National Bureau of Standards on the 1955 Provisional Temperature Scale.¹¹

The carbon thermometer was used as the working thermometer and was calibrated for each experiment by direct comparison with the platinum thermometer in the range $11 < T < 20^{\circ}$ K. Below 4° the carbon thermometer was calibrated on the 195812 helium vapor-pressure scale with a helium vapor-pressure thermometer attached to the adiabatic shield. From these fixed points, three were used (20, 14, and 4°K) to determine the constants in the interpolation formula given by Clement and Quinnell.13

$$\log_{10}R + (K/\log_{10}R) = A + (B/T).$$

⁸ J. A. Morrison, D. Patterson, and J. S. Dugdale, Can. J. Chem. 33, 375 (1955)

- Chem. 33, 375 (1955).
 ⁹ W. T. Berg and J. A. Morrison, Proc. Roy. Soc. (London) A242, 467 (1957).
 ¹⁰ T. M. Gayle and W. T. Berg, Rev. Sci. Instr. 37, 1740 (1966).
 ¹¹ G. T. Furukawa, T. B. Douglas, R. E. McCoskey, and D. C. Ginnings, J. Res. Natl. Bur. Std. 57, 67 (1958).
 ¹² F. G. Brickwedde, H. van Dijk, M. Durieux, J. R. Clement, and J. K. Logan, J. Res. Natl. Bur. Std. A64, 1 (1960).
 ¹³ J. R. Clement and E. H. Quinnell, Rev. Sci. Instr. 23, 213 (1952).
- (1952).

R is the measured resistance at temperature T; K, A, and B are the constants determined from the three fixed points. The shifts in resistance of the carbon thermometer each time it was cooled from room temperature were small, amounting to only a few tenths of an Ω at 4°K. The deviations of the carbon temperature scale from the thermodynamic scale were determined in separate series of experiments with a gas thermometer bulb attached to the calorimeter vessel.

Because space limitations prevented the inclusion of a hydrogen vapor-pressure thermometer, the accuracy of the platinum thermometer calibration at two of the fixed points (20 and 14°K) was obtained indirectly. The refrigerant used to cool the calorimeter assembly to 20° K was equilibrium hydrogen (99.8% para, 0.2%ortho). Helium exchange gas was admitted to the cryostat to bring the calorimeter vessel and shield into thermal contact with the liquid-hydrogen bath. The pressure was then reduced over the liquid hydrogen by means of a large vacuum pump. The pumping rate was such that at least an hour was required to pass through the triple point. During this time the drift rates of the platinum and carbon thermometers were zero and the indicated temperature difference between the calorimeter vessel and adiabatic shield was zero. Passage through the triple point was marked by the sudden onset of a cold drift by the thermometers. The pump was then turned off and the system allowed to warm through the triple point. This procedure gave identical values of the temperature based on the platinum thermometer; however this temperature was 0.01°K higher than the value due to Woolley et al.,14 who obtained 13.803°K, corrected to the N.B.S. 1955 Provisional Scale. Ter Harmsel et al.,¹⁵ give 13.802°K as the triple point from their measurements of the heat of vaporization of equilibrium hvdrogen.

Next the platinum thermometer was used to calibrate the gas thermometer at 20°K and the comparison was repeated at the equilibrium hydrogen triple point. From two determinations the gas thermometer gave values of T_{Pt} - T_{gas} equal to 0.008 and 0.011°K. At 4°, temperatures given by the gas thermometer, calibrated at 20°K with the platinum thermometer, agreed to within 0.002°K with temperatures obtained from the helium vapor-pressure thermometer on the adiabatic shield. From these measurements the platinum thermometer cannot be in error by more than 0.008°K at 20°K.

RESULTS AND ANALYSIS

The primary experimental heat capacities are listed in Table II. C_p - C_v corrections are negligible over the temperature range of the measurements. The inaccuracy of the measurements is thought to be no worse than

¹⁴ H. W. Woolley, R. B. Scott, and F. G. Brickwedde, J. Res. Natl. Bur. Std. **41**, 379 (1948).
¹⁵ H. ter Harmsel, H. van Dijk, and M. Durieux, Physica **33**,

^{503 (1967).}

 $\pm 2\%$ below 4°K and $\pm 0.5\%$ for 10<T<20. Between 2.5 and 4°K the present results may be compared with those of Phillips.⁵ The largest difference between the two sets of data in this region is 0.3%. At 15°K the present results are 4% higher than those of Giauque and Meads,⁷ at 17°—0.9% higher, and at 20°K—9.0% lower.

At low frequencies the lattice frequency spectrum can be expressed as a power series

$$G(\nu) = N(\alpha\nu^2 + \beta\nu^4 + \mu\nu^6 + \cdots), \qquad (1)$$

where N is the number of atoms in the crystal. The corresponding expression for the lattice heat capacity is

$$C_L = aT^3 + bT^5 + cT^7 + \cdots,$$
 (2)

where a is related to the Debye temperature at 0° K.

$$\Theta_0^{c} = (1943.7/a)^{1/3}.$$
 (3)

For metals there is also an electronic contribution to the heat capacity, and simple theory gives this to be proportional to the temperature so that the total heat capacity C_v is given by

$$C_{v} = \gamma T + C_{L}. \tag{4}$$

To extract the lattice contribution from the experimental heat capacities the value of γ given by Phillips was used $(1.350 \times 10^{-3} j/g \text{ at. deg}^2)$. The Debye temperatures calculated from the heat capacities after subtracting the electronic part are given in Table II and are plotted as a function of temperature in Fig. 1. The smooth curve in Fig. 1 shows the Debye temperatures calculated from the $G(\nu)$ obtained form the analysis of the inelastic neutron-scattering data. The smooth curve of Fig. 1 is slightly different from the curve given in Fig. 3 of Ref. 1. This is because $G(\nu)$ has been recalculated^{16,17} with the object of obtaining increased accuracy at low frequencies.

The experimental heat capacities below 13°K with the γ value of Phillips were used to derive by a leastsquares analysis¹⁷ the coefficients a, b, and c in Eq. (2). These values Θ_0^{c} and Θ_0 calculated from the elastic constants,¹⁸ Θ_0 (elastic), are given in Table III. A plot of $(C_v - \gamma T)/T^3$ versus T^2 is shown in Fig. 2. The smooth curve is the resulting fit to the experimental results given by the least-squares analysis. Because the elec-

TABLE III.	The	coefficients	in	Eq.	(1),	Θ_0^c	and	Θ_0	(elastic).
------------	-----	--------------	----	-----	------	--------------	-----	------------	------------

	/:/ / 1 /	(2.402 · 0.045) · · · · 0.5
a	$(j/g \text{ at. deg}^*)$	$(2.483 \pm 0.015) \times 10^{-6}$
b	$(j/g \text{ at. deg}^6)$	$(-2.10\pm0.20)\times10^{-8}$
с	$(j/g \text{ at. deg}^8)$	$(6.5\pm1.5)\times10^{-11}$
$\Theta_0{}^c$	present work	$427.8 \pm 1^{\circ} K$
Θ_0^{c}	Phillips	$427.7 \pm 1^{\circ} K$
Θ_0^{c}	Dixon et al. ^b	436.4±0.7°K
Θ_0	(elastic)°	430.3°K
D (7		

* Reference 5. ^b Reference 6. • Reference 18.

¹⁶ G. Gilat and L. J. Raubenheimer, Phys. Rev. 144, 390 (1966).

¹⁷ G. Dolling (private communication).
¹⁸ G. N. Kamm and G. A. Alers, J. Appl. Phys. 35, 327 (1964).

FIG. 1. The Debye temperature plotted as a function of temperature. The vertical bars show the effect of a 2% change in the heat capacity, keeping the electronic contribution constant. The filled circles are the results of the present work. The smooth curve represents results derived from inelastic neutron-scattering experiments (see text).

tronic heat capacity is over 75% of C_v at 4°, an attempt was made to get an approximate value of γ . The leastsquares analysis was repeated with the variables γ , a, b, and c to be determined. The resulting value of γ was $1.348 \times 10^{-3} j/g$ at. deg² in good agreement with Phillips's value of 1.350×10^{-3} .

DISCUSSION

 Θ_0° derived from the present results is in excellent agreement with the value quoted by Phillips and 2%lower than Θ_0° given by Dixon *et al.*⁶ Agreement of Θ_0° with Θ_0 (elastic), although outside the uncertainty limits, is within 0.6%. Also, Θ_D values from the heatcapacity measurements and inelastic neutron-scattering work are in agreement at these low temperatures.

The feature of an initial increase of Θ_D at low temperatures is the result of the negative value of b in Eqs. (2) and (4) and hence a negative value of β in Eq. (1). This type of temperature variation of Θ_D at low temperatures is somewhat unusual. From a continuum model, Blackman¹⁹ has shown that an initial increase of Θ_D can arise if certain relations among the elastic constants fulfill rather stringent requirements. Bhatia and Horton²⁰ in their work on silver have used a model that gives a maximum in Θ_D at low temperatures by making the proper choice of elastic constants.

The elastic constants of aluminum fall far short of satisfying these requirements. Blackman²¹ has pointed out that once the lattice frequencies are sufficiently large so that $G(\nu)$ cannot be described by an elastic continuum, no general rule can be given about the sign of β .

M. Blackman, Proc. Roy. Soc. (London) A164, 62 (1938).
 A. B. Bhatia and G. K. Horton, Phys. Rev. 98, 1715 (1955).
 M. Blackman, Proc. Cambridge Phil. Soc. 33, 94 (1937).

2.50 2.45 $40^{5} \left(\frac{C_{V} - \gamma^{T}}{T^{3}}\right)_{t} \xrightarrow{j} \frac{j \text{ oulo}}{1 \text{ old}^{4}}$ 0.5% OFC 2.35 . 200 100 300 100 486 100 2.30 50 100 150 200 250 300 7²

FIG. 2. A plot of $(C_{\bullet}-\gamma T)/T^{\circ}$ versus T^{2} . The smooth curve shows the resulting fit of a least-squares analysis to the experimental points at the lowest temperatures. The vertical bars show the effect of a 0.5% change in the heat capacity, keeping the electronic contribution constant.

The cause of negative β is not obvious from the dispersion curves themselves. Dolling¹⁷ has investigated the effect on Θ_D of replacing that part of $G(\nu)$ from $\nu=0$ to various values of low frequency, ν_i , by a term proportional to ν_i^2 . No qualitative changes in the shape of the curve were produced by varying ν_i from 0.1 to 1×10^{12} cps. The smooth curve in Fig. 1 corresponds to $\nu_i = 0.3 \times 10^{12}$ cps. This indicates that rather high frequencies are important in determining the temperature dependence of Θ_D at low temperatures.

586

Martin²² has measured the heat capacity of gold from 0.4 to 1.5°K and from 3 to 30°K and found the initial temperature dependence of Θ_D similar to that of aluminum. In this case the elastic constants of gold ²³ are much closer to satisfying the conditions of the models used by Blackman and by Bhatia and Horton. As we have seen in the case of aluminum, however, this kind of temperature dependence of Θ_D can arise from $G(\nu)$ as

determined from the precise behavior of the phonondispersion curves at relatively high frequencies. This behavior cannot be predicted from a knowledge of the elastic constants alone. If the phonon-dispersion curves could be measured for gold by inelastic neutron-scattering techniques, it would be of interest to carry out an analysis for $G(\nu)$ and Θ_D similar to that for aluminum. It seems quite possible that the origin of the "anomalous" behavior of Θ_D of gold at low temperatures is the same as that of aluminum.

ACKNOWLEDGMENTS

The author wishes to thank Dr. G. Dolling, Dr. L. S. Salter, and Dr. R. M. Nicklow for valuable discussions and comments. He is also indebted to Dr. F. W. Young, Jr. for the aluminum sample. The author expresses appreciation to L. C. Templeton who assited in making all the experimental measurements, to the personnel of the Spectrochemical Laboratory for the analysis of the sample, and to J. W. Brashier for his invaluable help in constructing the cryostat.

²² D. L. Martin, Phys. Rev. 141, 576 (1966).

²³ J. R. Neighbours and G. A. Alers, Phys. Rev. 111, 707 (1958).