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Measurements at room temperature of the infrared reactivity of oriented samples of orthorhombic
NaNO& crystals have been carried out and analyzed by Kramers-Kronig relations to obtain the principal
dielectric response functions. The eight infrared dispersion frequencies found are well accounted for by
the expected polar vibrational normal modes of the NaNOg lattice, as are the observed mode polarization
directions. The range in magnitude of the dielectric polarization associated with the various normal modes
is exceptiona11y large, and this feature has been further investigated by the use of a formalism in which

apparent charges are assigned to the individual ions. The inhuence of dipolar local-6eld corrections on the
apparent charges is considered within the context of a simplihed "shell model, "leading to a set of apparent
ionic charges which explain the unusual intensity distribution within the modes in a natural way. The failure
to observe resonant contributions to the dielectric response from phonons or other elementary excitations
associated with the reorientation of the NQ group and the attendant ferroelectric-paraelectric transition
ss dkscussed.
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T low temperatures, sodium nitrite (NaNOs)
.I exists in an ordered ferroelectric phase consisting

of one formula unit per body-centered unit cell and
belonging to the space group Cs," (see Fig. 1). At
about 163'C, the spontaneous polarization disappears as
a result of reorientations involving the sense of the
NO2 group along the b axis. ' Because both the structure
and the structural nature of the spontaneous polariza-
tion appear to be relatively simple, NaNO& appears
quite well suited for in-depth studies of various phe-
nomena associated with order-disorder ferroelectrics.

Perhaps the most accessible and characteristic gauge
of the state of a ferroelectrically orderable lattice is its
dielectric response; thus studies of the low-frequency
(&3X10' Hz) dielectric dispersion and loss have been
made on NaNO2. ' ' Largely in the hope of detecting
certain elementary excitations predicted by a dynamical
theory of the order-disorder transition, about which
we shall have more to say later, we have extended these
dielectric response studies to cover the infrared region

by specular reQectance measurements.
Previous infrared studies of NaNO2 have not been

particularly concerned with the quantitative measure-
ment of dielectric response as such, and furthermore,
have concentrated on the high-frequency NO2 vibra-
tions. ~ During the course of this work, however, Vogt
and Happ~ published the results of a study of the in-

' See F. Jona and G. Shirane, Ferreelectrjc Crystals (Pergamon
Press, Inc. , New York, 1963}.

2 S. Sawada, S. Nomura, and Y. Asao, J. Phys. Soc. Japan 16,
2207 (1961}.' E. Nakamura, J. Phys. Soc. Japan 17, 9611 (1962}.' I. Hatta, T. Sakudo, and S. Sawada, J. Phys. Soc. Japan 21,
1612 (1966).' R. Newman, J. Chem. Phys. 20, ".".e (1951).' J. W. Sidman, J. Am. Chem. Soc. 79, 2675 (1957).' R. K. Weston, Jr., and T. F.Brodasky, J.Chem. Phys. 27, 683
(1957).' Y. Sato, K. Gesi, and Y. Takagi, J. Phys. Soc. Japan 16, 2172
(1961}.

'H. Vogt and H. Happ, Phys. Status Solidi 16, 711 (1966}.
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frared reQectivity of NaNO2 which they were able to
combine with existing Raman-scattering data to propose
normal vibrational mode assignments for the low-fre-

quency modes. The inability to cover certain spectral
ranges prevented a satisfactory discussion of the dielec-
tric response, however.

FIG. 1. The primitive body-centered orthorhombic unit cell of
NaNO&. The structural disorder at higher temperatures primarily
results in equal numbers of NO& groups with their apexes pointing
in the +b and —b direction.

Section II presents the experimental results obtained

by analysis of the spectral-reQectivity measurements.
The resonant lattice contributions to the dispersion are
analyzed in terms of normal vibrational modes, and
the dipole strengths of these modes are found and
commented upon. Section III contains a further dis-
cussion of the form of the normal modes, as well as a
minimal development of a phenomenological treatment
of lattice dispersion in order to introduce the concept of
apparent ionic charges. This is followed by a calculation
of the apparent ionic charges based upon a local dipole
6eld treatment of a lattice of polarizable ions and pro-
vides a microscopic basis for the understanding of the
observed mode dipole strengths. In Sec. IV the validity
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of these results is discussed and the failure to observe
the predicted excitations associated with the NO2
positional disordering is considered.

II. EXPERIMENTAL

NaNO2 samples were prepared by slow cooling of
the molten material in a polyethylene crucible from
which single crystals with several cm' surfaces could
readily be salvaged. Large fiat (101) cleavage faces
furnished excellent surfaces from which the refIectance
for light polarized along the b axis was obtained.
However, for the spectra polarized along the a and
c axes, cut and polished (010) surfaces were used, and
considerable difhculty was encountered in the prepara-
tion of these surfaces. Visually specular polishing could

TmLE I. Summary of parameters characterizing the infrared
dispersion of NaNOg.
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FIG. 2. The measured room-temperature spectral reflectivity
of NaNO&. The circles which represent data are connected by a
smoothed curve. The three sets of data were taken with the
electric vector of the radiation parallel to the u, b, and c axes of the
crystal, respectively. Note the change of scale at 400 cm '.

~ Values of 6 taken from Ref. S.
Measured at frequency of 3)(109 Hz (Ref. 3).

readily be performed on heavy paper impregnated with
a volatile organic solvent with or without fine alumina
grit. However, such surfaces did not yield cleanly
polarized spectra. Much cleaner polarization behavior
was obtained by etching the polished crystals in a
water-methanol mixture, but only at the expense of
introducing some di6use scattering, particularly at
shorter wavelengths. In particular, the structure seen
in the u polarization in the 600-800 cm ' region and
near 1200 cm ' was very sensitive to surface treatment
and is presumed spurious. Thus, although some effort
was made to minimize refIectivity errors due to surface
preparation, they remain the largest single source of
uncertainty (& 5%) in some spectral regions. The
refIectivities were measured at near-normal incidence
using point-by-point comparison with an aluminized
surface in a Perkin-Elmer 301 spectrometer. Pile-of-
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FIG. 3. The principal infrared dielec-
tric response cg@=t~~ +zing~ . The circles
represent values calculated from the
measured reflectivity by Kramers-Kronig
analysis and are connected by a smoothed
curve. Note the change of scale at 400
cm '.
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plates polarizers of both polyethylene and AgCl were
used to cover the spectral range 50—4000 cm '. The
room-temperature results are shown in Fig. 2. The
principal dielectric response functions were derived
from the measured reQectivities by numerical integra-
tion of the phase-shift dispersion relations' with the
aid of an IBM 7094 digital computer. These results
are shown in Figs. 3—5.

Neglecting small corrections due to finite damping,
the frequencies of the long-wavelength transverse polar
modes, ~ (TO), are given by the maxima in the imagi-
nary dielectric response. The corresponding longitu-
dinal frequencies, ~ (LO), are given by the alternative
sets of frequencies for which «(cv) =0." The dipole
strength of the 0,th transverse mode is conveniently

characterized by its contribution to e;;, the static
dielectric constant. This contribution, l4;, , can be
found by computing the contribution of the mode to
the Kramers-Kronig integral

2

The division of mode strength between incompletely
resolved modes was estimated. These data, along with
the widths of the e" resonances at half-maxima, y, are
tabulated in Table I.

Symmetry considerations establish that there are
eight q=0 optical normal modes of the ordered NaNO&
lattice which are infrared active. (As is clear from
Sec. III, there is a one-to-one correspondence between
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FIG. 4. The principal infrared dielectric
response VM,.
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"F.Stern, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1963), Vol. 15, p. 333.
' A. S. Barker, Phys. Rev. 136, A1290 (1964).
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the number of such q=0 modes and the number of
transverse polar modes with a given small but non-
vanishing q vector which give rise to dispersion, and it
is simpler to do the group theory without worrying
about the finite propagation vector. ) These modes can
be characterized by the irreducible representations of
the point group t"~, according to which they transform,
or equivalently, and more physically, simply by speci-
fying the principal axis along which the dipole moment
lies."There are three A~ modes (polarization parallel
to b), three 82 modes (polarization parallel to c), and
two B~ modes (polarization parallel to a). Two of the
A& modes and one 82 mode involve predominantly
relative displacements within the nitrite group and
might be expected to be at considerably higher fre-
quencies than the remaining modes. There is one further
optic mode of A2 symmetry which is not infrared active
and therefore not of present interest. Raman-scattering
measurements place it at ~122 cm '."'4

The experimentally observed dispersion is in good
agreement with the above normal-mode analysis, as is
the predicted separation into low- and high-frequency
modes. Our measurements at lower frequencies are
generally in good agreement with those of Vogt and

Happ, and there can be little doubt that their mode
assignments, which are identical with ours, are correct.
The internal NO& modes have been previously identi-
6ed'~ and the only serious discrepancy is seen to exist
for the highest-frequency 82 mode. As discussed in
more detail by Tramer, " the wide variation of the ob-
served frequencies and other rather anomalous behavior
associated with this transition results from excitation of
other than purely transverse modes in some sample

"We follow the convention of Ref. 9 in the choice of axes insofar
as it sects the nomenclature of the irreducible representations.

"A. Tramer, Compt. Rend. 248, 3546 {1959).' E. V. Chisler and M. S. Shur, Phys. Status Solidi 117/ 163
I', 1966).

geometries, e.g., powders. Such modes lie within a band
of width (ruLo —~ro), which is in this case large because
of the unusually large dipole strength of the transition. ""

The present determination should be nearly free of such
eSects.

Having obtained the complete lattice dispersion,
several more quantitative comparisons of the data
can be made. Table I compares the sum of the optical
plus infrared contributions to the static dielectric
response with the measured low-frequency dielectric
constant. The agreement is good in the u and b polariza-
tions, showing that no important sources of dispersion
exist between 50 cm ' and the frequency of the micro-
wave determination. (At still lower frequencies there is
additional dispersion associated with the unclamping
of the crystal and with the relaxation of the ferroelectric
6uctuations. ) The agreement is much poorer in the c
direction, but we are inclined to dismiss the possibility
of additional dispersion here as well, for as we have
seen, all of the vibrational contributions are accounted
for, and any "extra" contributions due to ferroelectric
reorientations would be expected to appear predomi-
nantly in the b polarization.

Also, rather unsatisfactory is the accuracy with which
the LO and TO mode frequencies in the u and c polariza-
tion satisfy the Lyddane-Sachs-Teller relation, which
for orthorhombic crystals is

the product being restricted to modes polarized in the
ith direction. " It is quite possible that the lack of
agreement largely reRects errors due to surface prepara-
tion, the agreement in the b polarization is considerably
better.

's J. D. Axe, Phys. Rev. 15'7, 429 (1967).
"W. Cochran and R. A. Cowley, J. Phys. Chem. Solids 23, 44/

(&962).
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Probably the most striking result of Table I is the
unusual strength of the 82 mode at 1235 cm ', some
consequences of which have already been described.
The quantum-mechanical transition probability asso-
ciated with creating a phonon in this mode (propor-
tional to he;, 0 ') is some 10-60 times greater than for
the remaining modes. In an effort to understand the
reasons for such large differences in the mode dipole
strength, in the following sections we apply to NaNO&
a quantitative microscopic treatment of infrared dielec-
tric dispersion. After defining, in a purely phenomeno-
logical manner the concept of an apparent ionic charge,
we calculate the apparent charges for an NaNO2
lattice composed of distinct electrically polarizable
atomic ions and show that these considerations afford
not only a natural explanation of the observed mode
intensities, but indirectly some information on the form
of the normal modes themselves.

III. APPARENT CHARGES IN A POLARIZABLE
LATTICE

&'= (1/~) ZQ's'ut(k)+ Zx tEt, (2)

E=—4z (q P/~ q ~') q+E', (3)

where u(k) expi(q 1) is the displacement of the kth
ion in the 1th unit cell and E expi(q 1) and P expi(q 1)
are, respectively, the macroscopic electric field and
dielectric polarization. If there are e atoms in a unit
cell, the dynamical matrix M is 3m&3m, the apparent
charge matrix Q is 3rt&&3 and y is by deGnition the
3)&3 high-frequency susceptibility tensor. The meaning
of the apparent charges is just Q;;"=88;/ctu;(k). trna is
the mass of the 4th ion. The electric 6eld is the sum of
the external Geld E'expi(q 1) and that due to the
polarization charge —divg expi(q 1)$.

For a complex lattice it is often convenient to re-

express the displacements of the n bravais sublattices
u(k) in terms of symmetry mode vectors s" which

"M. Born and K. Huang, Dymamicat Theory of Crystal Lattices
(Oxford University Press, New York, 1964).Equations (13)-(18)
can also be formally obtained from a more general so-called "shell"
Inodel by allowing the shell charges V& and the shell core coupling
constants 1CI, to 1nerease without limit in such a way that the net
ion charges Zq and polarizabilities Fc'/Xs remain finite. Phys-
ically, these assumptions have the effect of suppressing polarization
effects due to nonelectrostatjc sport-rpnge forges, Sqe Ref. 25 for a
jqrtl~er djscussjon,

The concept of an apparent ionic charge derives
naturally from a phenomenological discussion of dielec-
tric dispersion in complex lattices first given by Born
and Huang. '7 They show that the equations which
describe the long-wavelength (q—&0) vibrations of a
lattice can be written as

—ttt ii;(k) =QM, ,""'u;(k') —QQ, csE;,

transform irreducibly under transformations which
leave the lattice unchanged.

u(k) =gS s ". (4)

S, the symmetry coordinate of the 0.th symmetry
mode, contains the time dependence of u(k). The
components of s ~ can be chosen to satisfy the orthogo-
nality and completeness relations

plass;sp;s=M8 p, (3)

and

mpS~ j S~j —MSIj,ps8z jp

where i, j=a, b, c and we choose to define the normal-
ization constant M =girls.

Although M, Q, and y are .independent of q, the
eigensolutions of Eqs. (1)-(3) depend upon q through

E(q) in Eq. (3), making solutions for general polariza-
tion and propagation directions complex. Fortunately,
for lattices with orthorhombic or higher symmetry,
the dielectric dispersion can be discussed by explicit
consideration of only the modes with dipole moments
along the three principal crystal axes and transverse to
their propagation vector q. The eigenfrequencies asso-
ciated with such modes are known as dispersion fre-
quencies. For such modes, K=0 if there are no external
fields; the modes are then simply eigensolutions of
the dynamical matrix M. %e denote mode vectors which
diagonalize M as normal mode vectors op~ and normal-
ize them to obey Eqs. (5) and(6) . The np" of a given

symmetry type are then related to the s ~ of the same
symmetry type by a linear orthogonal transformation.
In terms of the nonzero dispersion frequencies Qp, the
dielectric response of the lattice can be written as"

e (M) =e''"~+Qt1e'PQp2/(Q 2 co2)

P

he, ,P = (4srXPXsP/MQ p'v)

e,t =1+4srx;, ,

(7)

(g)

(9)

18The development of symmetry. mode coordinates is, with a
change of notation, that of D. A, Kleinmap hand &. G. Spitzer,
Phys, Itev, 125, 16 (1961),

where we have defined a dispersion mode charge vector
X& given by

X/= QQ;s"np . (10)
I j'

Physically, X& is seen to be directly proportional to the
dipole moment associated with the Pth normal mode.
Although Xt' is in general a vector, it is clear by inspec-
tion of Eq. (8) that for crystals with orthorhombic and
higher symmetry, a given mode vector has but a single
component along one or another of the principal axes.
We will subsequently treat X& as a scalar.
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TAsr, z II. Polar symmetry mode vectors s,s for NaNO&. The results, normalized according to Eq. (5), are tabulated as row vectors with
components along the a, b, c crystal axes.

Na
b

Og
b

ocr
b

Ar (sym stretch)

A&(bend)

A~ (trans)

Bg (lib)

B~ (trans)

BR (asym stretch)

BR (lib)

BR (trans)

~ ~ e 1 414

414 ~ ~ ~

~ ~ —1.414

~" —1.629 ~ ~ ~

~ ~ ~ —0.879 ~ ~ ~

0.707

1.853

0.707

1.745

0.616
0.707

0.810

0.707

0.712 0.696

0.384 —1.295

0.707 ~ ~

—0.487 —0.763

1.387 —0.269
~ ~ ~ 0.707

0.810

0.707

0.712 —0.696

0.384 1.295

0.707

0.487 —0. /63
~ ~ —1.38/ —0.269

0.707

Q(NR)—

(g &N&

Q (NR)

0 g..")
Q (N)— () Q (N) 0

g &N&)

(g &0& 0 0

Q(o r)— () Q00(o) Q0 (0)

Q(or r)—
(g,,&0&

g, &o& g &o& )
0 0

Q~(o) —Qs (0)

g, &0& g.,» )
Note that Q' is not in general symmetric. Translational
invariance imposes the additional restraint QRQ;, =0.
There are thus eight independent apparent charge
parameters necessary to describe the lattice dispersion
in NaNO2.

Since the high-frequency A& and 8& modes are largely
"internal" NO& vibrations, the dynamical matrix can
be approximately factored into high- and low-frequency
parts by choosing "external" symmetry vectors involv-
ing translations and rotations of the rigid NO2 group
and internal symmetry vectors orthogonal to them.
Insofar as the internal NO2 vibrations are concerned,
it is possible to be even more restrictive. Weston and
Brodasky~ have measured the internal vibrational fre-
quencies of N"0& and N"02 in a variety of diluents.
From these data they were able to determine the

The apparent charge tensors must be invariant to all
the symmetry operations of the unit cell, which in the
case of NaNO2 restricts the form to

0

constants in a general valence potential function,

2&=fd(~A'+ ~ds') +2f~~~dr~ds+ fs~o('

+2fgg(&dr+ &ds) her& (12)

where Ad~ and dd2 are changes in the N—0 bond
lengths and din is a change in the 0—N—0 bond angle.
They find this truncated potential to be reasonably
adequate, as one might infer from the observation that
the internal vibrational frequencies diGer by a few per-
cent at most in widely different environments. '~ We
can take advantage of the fact that the NO2 vibrations
are largely internally determined by choosing the inter-
nal symmetry coordinates which diagonalize the valence
potential function. This particular choice of internal
symmetry coordinates should be a good approximation
to the true internal normal modes and we shall treat
them as such. Of the remaining symmetry mode
vectors involving Na+ displacements and rigid NO.„
translations and librations, two, At(trans) and As(lib),
are uniquely determined by symmetry considerations
and the requirement that they be orthogonal to the
internal NO2 mode vectors, and are thus approximate
normal modes as well. (In fact, the form of the As
mode is precisely determined by symmetry considera-
tions alone, but because it has no dipole moment it is
not of present interest. ) It is only for the two low-
frequency 8& modes and 82 modes that the choice of
symmetry mode vectors remains arbitrary. For the
present we make the simplest choice consisting of a
pure NO2 libration and a pure Na+—NO& translatory
motion. We will later have an opportunity to examine
how physical this choice is, i.e., how closely these ideal-
ized motions approximate normal modes. The symmetry
mode vectors are given in Table II.

The apparent ionic charges are useful in "understand-
ing" the over-all infrared dispersion of a system. In
general, however, they are not unambiguously defined
by dispersion measurements alone. This forces us to
examine the factors determining the Qs in greater
detail, and to attempt to estimate them on the basis
of a rather simple model.
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TABLE III. Lorentz factor matrices between bravais sublattices in NaNOg. yk k'= yk' k.

' '6.041 0
k

0

+Na, wa —+N.N —+oz,oz —+ozz, ozz —~~, p

k', 0

3.314 0

3.212
' 0.069 0

gNa, N —,p 8.369 0

, 0 0
' 4.095 0

4. 128 )

0

gNaoozz = i p 3.782 4.795

, 0 4. 795 4.689 J
' —22. 719 0 0

' 4.095 0

~Na, oz —j 0

, 0
' —22. 719 0 0

+Noz —) 0 0.628 39.508

39.508 34.656,

0

0
' 12.148 0

3.782 —4.795

—4.795 4.689,

yN, ozz —) 0 0.628 —39.508» &oz,ozz= ~ p 0.862 0

0 —39.508 34.656, 0 13.832 )

Suppose that the electrons in an insulating solid could
be apportioned to the individual nuclei in some mean-
ingful way so that each ion has some net static charge
Zk. Then, if the nuclei carried their charge distributions
rigidly with them during displacement, the eGective-
charge tensor would be diagonal with Q, ,"=Zk. In
reality, the periodic dipole array set up by a given
sublattice displacement produces local electric fields"
at the sites of all the sublattices, and because the ions
are themselves electrically polarizable, this gives rise to
additional polarization. This effect makes an important
contribution to the apparent charges of polarizable ions,
and is rather simply calculated in the local dipole field
approximation, in which it is assumed that each ion
makes an electronic contribution to the dipole moment
(in addition to that caused by nuclear displacements)
just proportional to the local electric field at the ion
site. Born and Huang' have derived expressions for the
high-frequency susceptibility and the apparent charge
tensor of a lattice in this approximation, and they can
be written as follows:

X~+= (k~P —1)/4v- = (1/v) QI';, kk', (13)
k, k~

Q' "=Zkl:1 —Z(~l') ' ""j (14)

where C and j. are closely related to the I.orentz
factor matrix y relating Fk, the local held at sublattice
k, with Pk', the dielectric polarization at sublattice
k', i.e.,

F .k g(.k+ Q~ . kk~P .k~.
j.k~

In terms of y and a polarizability matrix 0,;;kk'=0.;; 8»,
where ek is the electronic polarizability tensor of the

'~ These local fields vary rapidly within a unit cell as opposed
to the long-wavelength macroscopic field.

kth ion, F is dehned by

(P—1) . kk~ —[(~—1) kk~ (1/v) ~. ,kk~j

and

C . .kk —
( 1/v) ~, .kk for k=k', (17)

~ B. Szigeti, Proc. Roy. Soc. (London} A204, 51 (1960).
~'F. W. DeWette and G. E. Schacher, Phys. Rev. 137', A78

(1965).
» M. I. Ray and B. C. Frazer, Acta Cryst. 14, 56 (1961).

Z„C..kk g Z„,g. .kk~

k~Qk

e being the volume of the unit cell. For diagonally cubic
crystals (each ion having tetrahedral or higher sym-
rnetry), Eq. (12) gives the familar Lorenz-Lorentz
result, X,, =b,,(g k,o/ k)/v(1 —4v-+kn, ;k/3v), and Eq.
(13) reduces to Q,;"=~3LB,,Zk(k, , +2)j.

The work of Szigeti" has demonstrated that the
simple considerations of the previous paragraph are
capable of nearly quantitative understanding of dis-
persion in simple ionic lattices, there being a residual
10—30% discrepancy associated largely with polarization
e8ects arising from short-range forces. We shall
proceed to apply this formulation to NaXO&, and post-
pone discussion of the obvious conceptual difhculties
associated with ionic charges and polarizabilities in
materials with mixed ionic and covalent bonding.

The dipole sums occurring in the calculation of the
Lorentz-factor matrix y were performed with the aid of
an IBM 7090 digital computer using the planewise
summation method of DeWette and Schacher, " and
published structural data."The results given in Table
III depart greatly from the well-known cubic result,
7;,kk'= —gee;;. The next step involved the assignment
of electronic polarizabilities to the individual ions so as
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TABLE IV, Apparent ionic charges for NaNO&. All charges are
in units of ( e

~
=+4.8X10 I esu.

Zwa= 1 ZN=O. S Zo= -0 7

Q Na=1 32

Q,N = —0.22

Q..o= —0.55

QM,
Na= 1.26

QMN=0. 52

QM,
O= —0.89

Q N'=158
Q N=2.32
Q~o= —1.95

Q&O — 0 44 QcbO 0 76

to give reasonable agreement with the observed high-
frequency dielectric response through Eq. (12). ln so
doing, the following assumptions were made:

(1) All polarizabilities were taken to be isotropic,
. .k kx. .aug =n u~„

(2) For Na the Tessman-Kahn-Shockley value,
atN'=0. 40 A.' was used.

(3) Because a high formal charge and consequent
low polarizability were anticipated for the nitrogen by
comparison with the oxygens, 0.N was set equal to zero.
This leaves a single adjustable parameter 0, , with which
to 6t the three components of e . The 6tting was done
by trial and error, and it was found that over a small
range of values of n rather good agreement was possi-
ble. For subsequent calculations ao=1.45 A.' was
chosen, giving e =&M, =1.92 and e„=2.49, to be
compared with the measured5 values e =1.82, &M,

"=
1.99, and e„=2.62.

Having arrived at a set of polarizabilities, it is only
necessary to specify a set of static charges Z& in order
to calculate the apparent charge matrices through Eq.
(13).Here we accepted ZN, =+

I
e

I
as sacrosanct, so

that the remaining static charges could be written
ZN = (3—25)

I
e

I
and ~o = —(2—8) I

e
I

The apparent
charge tensors were then calculated as a function of 8,
and upon combining the Q(b) so calculated with the
symmetry mode vectors s ~ of Table II according to
Eq. (10), a set of symmetry mode charges X~(B) were
obtained. But according to the previous discussion, four
of the eight symmetry modes should be reasonable ap-
proximations to the true normal modes, and the
calculated symmetry mode charges for these modes
can thus be meaningfully compared with the actual
X& determined from the measured values of De& and
Q~ by Eq. (8). The result of this comparison is that
only for values of 8 near 1.25 is reasonable agreement
possible. Table IV gives the resulting apparent ion
charges and a comparison of the resulting calculated
mode charges with the corresponding experimental
quantities. Additional comparisons were obtained from
a useful sum rule,

Z I
XP I'=Z(~/~s)

I Q" I' (19)
P I j'

which follows immediately from the definition of X&

and the completeness relation between the normal mode
vectors n„s, Eq. (6).

There are several points in Table IV worthy of note.

TABLE V. Comparison of calculated symmetry mode charges and
observed normal mode charges.

Symmetry
mode

Normal
mode freq

(cm ')

31(stretch)
A1(bend)
A1(trans)
Bg (stretch)
a, {hb)
B2 (trans)
Bg(lib)
B1(trans)

Z JXe)'
Al modes

/Xe['
B& modes

Z f
Xe/'

B& modes

2.73
0.00
2.68
7.76

0.49

calc

8.08

71.6

2.49+0.25
0.94&0.06
2.58&0.17
7.96+0.36
2.20~0.06
1.68&0.28
1.41~0.13
2.14&0.20

obs

13.7+1.3

6.6a1.2

71.0&8,0

1323
826
194

1235
188
157
223
149

First of all, it appears from a comparison of the apparent
charge components Q,;"with the assumed static charges
Z~ that the polarization eGects which we are calculating
are far from negligible. Secondly, the large Bs(stretch)
dipole strength, mentioned previously and revealed in
Table V by the large observed mode charge, is well
approximated by the use of the Qs of Table V. To state
the underlying cause as nearly perfect constructive
superposition of individual atomic moments would
seem to be correct but deceptively simpli6ed. Since in
all of the inner N02 vibrations the nitrogen and
oxygen atoms are moving out of phase (the motions
must be orthogonal to the uniform NOs translation),
we might expect roughly constructive superposition of
dipoles and thus high mode strengths for all of these
modes. If, for example, we use the assumed Zq in place
of the Q» to calculate the mode charges, we find
XLAt(stretch) j=2.02

I
e I, XLAt(bend)]=1. 02

I
e I,

and XLBs(stretch) j=1.89
I

e I. The point to be made is
that the large value of XLBs(stretch) j relative to the
other two internal mode charges depends critically
upon having nonisotropic and/or nondiagonal apparent
charges. Furthermore, the local dipole 6eld model seems
capable of introducing these features in about the
correct proportions.

The ability of the calculated Qs to predict the sum

Ps I XP I' inspires confidence in the method at least
as much as does the good agreement for the individual
mode charges. Because it seems improbable that the
sum rule would. work so well if the Qs were grossly in
error, it appears that the lack of agreement between the
measured mode charges and the mode charges calcu-
lated for the idealized Bj and 82 symmetry modes of
low frequency must be ascribed to an incorrect descrip-
tion of the mode eigenvectors rather than to short-
comings of the apparent ionic charges. It is therefore
quite likely that the low-frequency 8& and 82 modes
can be approximately described only as complex inter-
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mixtures of the appropriate translational and librational
motions.

IV. DISCUSSION

From a pragmatic viewpoint, the results Sec. III
seem to justify the discussion of the high-frequency
susceptibility and the apparent charges within the con-
text of the local dipole field model. But is the model

physically sensible' The problem, of course, is that as
the bonding becomes less and less ionic the meaning of
assigning individual charges and polarizabilities to the
atoms becomes less and less clear. %hat we are really
considering is a case with mixed bonding, i.e., the
bonding between the Na ion and the entire NO2 group
should be ionic enough to justify separation of a Na
ion charge and polarizability. Fortunately, it is possible
to discuss just this portion of the calculation as well.
This is so because the quantity QN'/ZN, turns out to
be nearly independent of 8, that is to say, we calculate
that Q '~QbsN'~1. 3

~

e
~

and Q„'~1.6
~

e
i

irrespec-
tive of how the net negative charge is distributed over
the NO& . Fortunately again, the low-frequency A&

mode is especially simple with a mode charge directly
proportional to QssN', so that a direct comparison is

possible. There can be little doubt that the good agree-
ment obtained here is meaningful. Of course, as a result
of translational invariance the net apparent charge
tensor for the NOs group as a whole is Ql"o" = —QN~.

This is probably an appropriate place to make clear
the distinction between the apparent charge tensors Qs
and the scalar egectitie charges Zt. ', introduced by
Szigeti. 's The Qs are simply the first terms in a series
expansion of BP/BN(k) and provide a phenomenological
description of lattice polarization. Szigeti's eGective
charges ZA,

' are at the next higher level of abstraction.
They are the values which the static charges Zk rice
assume so that when modified or "dressed" by dipole
local field effects they produce the correct Q". Szigetps
has discussed the significance of effective charges and
their deviation from formal charges in ionic compounds.
The closed expressions for Z' he has given for cubic
diatomic lattices can easily be obtained as a special
case from the equations of Sec. III.The Szigeti effective
charges Z'N, ———Z'No, can be obtained from the data
in Table V by changing ZN, slightly until the measured
and calculated values of XC At(trans) j are in perfect
agreement. We find in this way Z'N, ——0.96(+0.06)

~

e ~.

The small deviation of Z'N, from 1X
~

e
~

can be taken
as a quantitative measure of the relative unimportance
of the combined effects of short-range polarization and
covalency between the Na+ and the NO2 ions.

If the orbital electronic states of the NO2 ion are
approximated by functions of the form% =X(|PN+XiPo),
where i' and iso represent separately normalized linear
combinations of atomic orbitals centered at the nitrogen
and oxygen nuclei, there is no unique way of assigning
the charge if i' and iso overlap. In simplest approximate
terms the charge distribution within the NO2 group
can be described by assigning the fraction 1/(1+As)

of the charge of each electron in the orbital to the nitro-
gen, the remainder to the oxygens. McEwen" has deter-
mined a set of such molecular orbitals (linear combina-
tions of atomic orbitals) for NOs which give a good
representation of the low-energy electronic spectrum.
The values of ZN and Zo deduced from these molecular
orbitals are in very good agreement with the values
required in Sec. III, so that this latter set must at least
be considered highly reasonable in the light of present
knowledge.

The significance of separate polarizabilities O,N and
0.0 is even more difficult to discuss satisfactorily from
a fundamental point of view, and falls beyond the
scope of this paper. Empirically, however, it may be
pointed out that some success has been achieved in
correlating the optical refractivity of a large number of
carbonate minerals in terms of individual atomic
polarizabilities. " In fact, the range of values of 0.0
necessary to explain the carbonate refraction
(1.3—1.4 A.') is very similar to the value no=1.45 P'
needed for NaNO& (and considerably less than the
Tessman-Kahn-Shockley value of 2.4 L' deduced for
more ionic compounds) . Undoubtedly the present agree-
ment between the observed and calculated optical di-
electric response could be further improved by introduc-
tion of a nonzero eN, by a nonisotropic eN, or both.
However, it is our belief that any such elaborations
could be more satisfactorily made when the theoretical
foundations for such refinements are better understood.

In BaTi03 and related materials, the dynamics of
the ferroelectric transition are intimately connected
with displacements consisting of phonon modes against
which, essentially, the lattice becomes unstable. " In
contrast to ferroelectrics of this type, which have been
termed displacive, are materials of the present type
which even in the paraelectric state have two or more
possible configurations of a unit cell diGering by 6nite
reorientations or displacements. Each unit cell has a
permanent dipole moment, but above a critical tem-
perature there is a loss of long-range ordering of the
dipoles and a resultant loss of the net spontaneous
polarization. By analogy with the unstable phonon
modes in displacive ferroelectrics, one might try to
describe the dynamics of such an order-disorder transi-
tion in terms of elementary excitations of the lattice,
and there have been several recent discussions from
this point of view. "" It is found that the essential.

w K. L. McEwen, J. Chem. Phys. 34, 54'I (1961). Miss
McEwen s. calculation is explicit for the four m-bonding and six
C.-nonbonding electrons. Following her suggestion, we consider the
four 0-bonding electrons to be nonpolar (X=1),and the remaining
L(1S)N', (1S)o'(2S)o'g electrons to be fully localized. In this way
we calculate ZN =0.49

(
e ), 2Zo = —1.49 ) e (.

~ W. N. Lawless and R. C. DeVries, J. Phys. Chem. Solids 25,
1119 (1964).

~ W. Cochran, Advan. Phys. 9, 387 (1960); R. A. Cowley,
Phys. Rev. 134, A981 (1964);

116 P. G. De Gennes, Solid State Commun. 1, 132 (1963).
~ R. Brout, K. Miiller, and H. Thomas, Solid State Commun. 4,

5O7 (1966).
J. Villain and S. Stamenkovic, Phys. Status Solidi 15, 585

(1966).
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features of an order-disorder transition can be incorpo-
rated into a Hamiltonian similar to those encountered
for magnetically ordered lattices, giving rise to new
elementary excitations analogous to magnetic spin
waves, representing the finite displacements between
alternate configurations. Furthermore, these treatments
predict that the ferroelectric ordering and the asso-
ciated anomalous dielectric susceptibility are direct
consequences of the frequency of this "spin-wave"-like
mode tending to zero near the characteristic ordering
temperature. These are modes of excitation which exist
in addition to the phonon excitations representing
infinitesimal displacements about the equilibrium con-
figurations. Experimental evidence for such extra "soft"
modes in order-disorder ferroelectrics is less than con-
clusive. "~ The interpretation of infrared and neutron-
scattering experiments on the rn.ost extensively studied
materials such as the hydrogen phosphates and tri-
glycine sulfate are made dificult because of the com-
plexity of the lattices. Because NaNO& is perhaps the
structurally simplest known order-disorder ferroelectric,
the present study was partially undertaken to search
for direct evidence for "extra" modes associated with
the positional disordering, as we mentioned in the
Introduction.

Several independent kinds of measurements have
established that XaNO2 is nearly completely ordered
at room temperature. Simple theory predicts that the
spin-wave-like mode frequency in the ordered lattice
should be of order kT,/h, well within the range of the
present measurements.

Our results give no direct evidence for such a mode,
and in fact show with some certainty that the gross
features of the infrared dispersion arises from normal
phonon excitations. One factor possibly involved in the
failure to observe the predicted mode is that it may
be heavily damped. The additional dispersion in ebb

below 3)&10' Hz shows a Debye relaxation behavior
which would be consistent with the spin-wave formula-
tion only if the mode were overdamped. In addition to
the preceding argument, we can speculate that the
quantum transitions associated with the excitations
may be weak as well. It is not dificult to show that at
temperatures well below T, such an extra spin wave
contribution to the susceptibility is proportional to the
square of the tunneling frequency for reorientation of
the NO2 group. This frequency may be quite low, at
least by comparison with the tunneling frequency in
hydrogen-bonded ferroelectrics. The sensitivity of
reQectivity measurements is not well suited to the
detection of very small changes in the dielectric
response.

If additional confirmation is needed for the conclusion
that none of the infrared modes studied here is responsi-

IQ D. Hadzi, J. Chem. Phys. 34, 1445 (1961).~ A. S. Barker, Jr., and M. Tinkham, J. Chem. Phys. 38, 2257
(1963).

ble for the dielectric anomaly near the ferroelectric
Curie point, it is only necessary to repeat the dispersion
measurements at higher temperatures, We have, in
fact, redetermined the b-axis reQectance of NaNO2
near 170'C, finding generally good agreement with
Vogt and Happ, who made more extensive measure-
ments at several temperatures up to 200'C. These
measurements clearly reveal both shifting and broaden-
ing of the dispersion frequencies beyond what might
be termed normal temperature effects and must almost
certainly be connected with the loss of long-range order
in the lattice. However, it is equally certain that the
changes in observed mode frequencies and strengths
can account at best for only a small part of the behavior
of the low-frequency dielectric response near T,.

In summary, the present study of the infrared dielec-
tric response of NaXO2 has attempted to establish the
following points:

(1) A rather complete experimental determination of
the infrared spectral reQectance and, by use of Kramers-
Kronig relations, the lattice dielectric response function.

(2) The dispersion frequencies identifiable from the
dielectric response are explainable as frequencies asso-
ciated with normal polar vibrational modes of the
ordered NaNO2 lattice. In particular, it is established
that there is no sizeable resonant infrared contribution
to the dielectric response which can be attributed to
either a soft phonon mode or to an additional spin-wave-
like mode of excitation involving positional disordering
of the XO2 group. The failure to observe a mode of
the latter type, the existence of which seems fundamen-
tal to a proper dynamical theory of order-disorder
transitions, is probably the result of excessive damping
and small dipole strength well below the ordering
temperature.

(3) The dipole strengths of the polar vibrational
modes are discussed by introducing the concept of
apparent ionic charges. The electronic polarization
effects greatly modify the static ionic charges to produce
anisotropic apparent charge tensors. These effects are
calculated in detail for XaNO2 in the dipole field
approximation, and it is found that this treatment can
account quite well for the observed dipole strengths.
Details of the charge distribution within a unit cell
can be directly inferred. The most reliable such deduc-
tion is that the static charge associated with the Na
ion is very close to unity.
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