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Electron Interaction in Rare-Earth Metals
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We discuss from a unified point of view various aspects of the s f(s d) -exc-hange interaction in the ferro-
magnetically spin-ordered states of rare-earth metals, such as (1) the indirect Ruderman-Kittel-Kasuya-
Yosida-type exchange interaction between localized 4f spins, (2) the spin-wave spectrum of the localized
spins, and (3) the interaction between conduction electrons mediated by the exchange of spin waves of the
localized spins. The present problem is very simBar to that of the electron-phonon interaction in metals,
and to obtain the electron-electron interaction we employ a similar method of using a cononical transforma-
tion. The electron interaction obtained leads to a repulsion between electrons of opposite spins at the same
atomic site in the vicinity of the Fermi surface. The self-energy due to this eGective electron interaction
is calculated for a simplified model, and we discuss the possibility of an appreciable enhancement of the
specific heat.

I. INTRODUCTION

N a previous paper' we discussed an effective ex-
„.change interaction between conduction electrons
mediated by the Gipping motion of localized spins in
dilute magnetic alloys. Similar and related discussions
were given also by other authors. ~ The rare-earth
metals are another system whose main magnetic
behavior may be described by the s f(s d) -exch-ange

interaction between conduction electrons and the
localized 4f spins. ' In this paper we extend our previous
discussion on the dilute alloys to pure rare-earth metals.
As is well known, the rare-earth metals are complicated
systems in many respects. The conduction electrons
consist of 5d, 6s bands and they behave quite diGerently
from the simple free-electron band, e'I and as was
revealed by the neutron diBraction experiment, the
pattern of 4f spin ordering is generally screw type and
this is related to the detailed nature of the anisotropy
energy, crystal structure, and so on.' Since our primary
interest is mainly to point out a new aspect of electron
interaction which has been neglected so far, we drasti-
cally simplify the picture of a rare-earth metal. %e
approximate the conduction electrons by a single
spherical electron band, and retain only the s-f exchange

* Supported by the U.S. Air Force Once of Scientific Research.' D. J.Kim, Phys. Rev. 149, 434 (1966),hereafter referred to as
I. In I the following correction should be made. In the energy
denominator on the right side of Eq. (2.11), the sign before et and
eg, should be reversed. The same correction should be made in
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interaction as the magnetic interaction neglecting the
anisotropy energy, etc., and also limit our discussion to
the case of ferromagnetic ordering of the 4f spins. The
case of Gd seems to 6t most nearly to our simplified
picture of the rare-earth metals.

Under the approximations mentioned above, the
total Hamiltonian of our system is given by the sum of
the kinetic energy of the conduction electrons, XI„and
the s-f exchange interactions K,/,
K Xs+Kgf )

Xk ~6k@ ko'Cke)

(& &)

(i.2)

XJ(x) $5,*(tt'giant —u"~ta~ .t)
+ S,+tttsta~ „tyS;-at~la~ .tj, (I.3)

where utk is the creation operator of a conduction
electron with momentum Sk, energy es, and spin
a ( = 1' or $, the quantization axis being in the direction
of the z axis), 8; is the 4f localized spin at the atomic
site R;, S is the number of atoms in the unit volume,
and J(x) is the Fourier component of the s fexchange-
integral. Though J(x) is by no means a constant
independent of x,' we often approximate it by a con-
stant J in the following.

This Hamiltonian is the same as the one treated in I
except that for simplicity we have not included the
Coulomb interaction between conduction electrons.
Therefore, in the paramagnetic region, namely, above
the Curie point T„hewre the 4f spins are disordered,
the discussion is quite the same as in I. We present a
summary of the results of I in a form which can be
applied to the rare-earth metals. The main modification
of the earlier argument is simply to set the number of
localized spins No in the dilute-alloy case equal to the
number of the total atoms X for the rare-earth metal.

The usual method of discussing the spin ordering in
rare-earth metals, as well as in dilute magnetic alloys, is

I R. E. Watson and A. J. Freeman, Phys. Rev. Letters 14, 695
(1965).
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first to derive the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction between the localized 4f spins S;,
Xf from a second-order perturbation calculation of the
energy starting with the Hamiltonian Eq. (1.1);

Xg ——Q ri;;S,'S;. (1.4)

This procedure may be regarded as introducing an
effective Hamiltonian 3'.,ff, in place of the original total
Hamiltonian Eq. (1.1);

C=-ss(J'/E) (koT) 'S(—S+1) (1.12)

where 5 is the magnitude of 8;.
If we calculate the Curie point of the conduction

electrons by a random-phase approximation (RPA)
as in I using Eqs. (1.10) and (1.12), we obtain

C can be reduced further if we notice that the bracketed
quantity in Eq. (1.9) is simply the magnetic suscepti-
bility of the individual localized spin which in the
paramagnetic region is just the Curie law

Xeff Xs+Xf
koT, =-ssX 'Esp(sp) S(S+1), (1.13)

In I we asked the question whether this X,« is fully
equivalent to the original Hamiltonian Eq. (1.1), and
our answer was negative. We found a canonical trans-
formation which transforms the original Hamiltonian
Eq. (1.1) into a form similar to Eq. (1.5). Then the
transformed Hamiltonian 3C had an extra term in
addition to Eq. (1.5) which gives an effective inter-
action between conduction electrons:

X=Xfg+Xf +Xg.
X, is given as

X = —
s Z C(» 1', ~)ls(attt«. t

—atttat .t)

(1.6)

where g is the g factor of the localized spin, p~ is the
Bohr magneton, B' is the local Geld at the ith spin site
from surrounding localized spins due to the interaction
Kf and the direction of H; is taken as the quantization
axis of S;and ( ~ ~ ~ ) means a thermal average. C(l, 1', x)
depends on the lattice site i, as discussed in I; however,
since we are considering the paramagnetic situation, we
have assumed that it becomes independent of i if the
thermal average is taken appropriately for the com-
pletely random distribution of the orientation of the
localized spins.

In the region near the Fermi surface when the energy
differences are such as ) st .—st ), ~

et —st+. ) &
~
gpoH; ~, the expression for C(l, 1', x) is simplified to

C(l, 1', st) —2( J'/lV) (S;*/gfrttH )=C, (1.9)—
and accordingly K, reduces to

X,= ——,'Cgd(st) .d( —~), (1.10)

where d(x) is the Fourier component of the spin
density of the conduction electrons

d*(~) =-', Q(at„a, „,—at„a, „„),etc.
k

X(a t'tat'+~t a t'tat'+x$)+sa Ital —fata t'tat'+a&

+sa t tat ~la t'tat'+~t ji (1 7)
with

C(l, 1', x) = —1V
—'

i J(st) is

X(Si't (s]~+a st~ gpBHi ) (st g
—st+g—pJtH, I) j),

where p(er) is the density of states of conduction
electrons at the Fermi surface. What is interesting about
Eq. (1.13) is that it coincides with the Curie tempera-
ture of the localized spins which would be obtained
from Kf using a molecular-Geld approximation. ' This
means that both the conduction electrons and the
localized spins order at T= T,.

In Sec. II we extend the previous theory given in I to
rare-earth metals and generalize the results of the
present section to the spin-ordered state. The extension
can be done very naturally and it seems very instructive
in the sense that it teaches us what the spin-wave
analog in the paramagnetic region is. Already in I we
pointed out the similarity between our problem and the
electron-phonon-interaction problem. ' " We pictured
our electron interaction as mediated by the exchange of
Zeeman energy of the Ripping motion of the localized
spins under the local Geld. In the spin-ordered state the
spin wave of the 4f localized spins is a well-defined
excitation and now a pair of conduction electrons
interact through the exchange of this spin wave. Thus
the analogy between our case and the electron-phonon
case becomes more direct in the spin-ordered state. In
the vicinity of the Fermi surface, the electron inter-
action obtained tal. es the form of repulsion between
electrons of opposite spin on the same atomic site (in
the case of simple s band) and thus, as is well known,
one obtains a ferromagnetic interaction. "

In Sec. III we discuss the change in the electronic
specific heat of rare-earth metals resulting from the
electron spin-wave interaction. This problem has been
discussed by others. " "ttEofe added its proof Since this.
paper was submitted, a few papers, other than that men-
tioned in Ref. 14, dealing with the same subject
have appeared. '"7 A recent paper by Nakajima'4
formulated this problem by following Migdal's treat-
ment of the electron-phonon interaction, " and corre-

~ H. Frohlich, Phys. Rev. 79, 845 (1950)."J.Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955).
"See, for instance, J. Hubbard, Proc. Roy. Soc. (London)

A276, 238 (1963)."J.Kondo (private communication)."VV. F. Brinkman (private communication).
'4 S. Nakajima, Progr. Theoret. Phys. (Kyoto) 38, 23 (1967)."'L. C. Davis and S. H. Liu, Phys. Rev. 163, 503 (1967);

H. S. D. Cole and R. E. Turner, Phys. Rev. Letters 19, 501
(~967).

"A. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 1438 (1958) )Eng-
lish transl. :Soviet Phys. —JETP 7, 996 (1958)g.
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sponds to our result in Sec. III concerning self-energy of
conduction electrons. Our treatment, however, follows
closely the Sardeen and Pines's treatment of electron-
phonon interaction" and it seems much simpler. Also,
our method can equally treat the problem in the tem-
perature region both above and below T,.

3C Xp+X gf Xg Xf~ (2.1)

Xp =Xp+X,+Xf+3C,f*(0), (2.2)

where X, is the electron-electron interaction, 3'.f is of
the form of Eq. (1.4), and both of them will be deter-

II. ELECTRON INTERACTION BELOW T,

%e consider in the temperature region sufBciently
below T„T«T„where the localized 4f spins are
aligned ferromagnetically (assume in the z direction)
and the conduction electron spins are polarized. In this
region the spin wave of the 4f localized spin (or of the
coupled system of 4f localized spin and conduction
electrons) is a well-defined excitation mode. In this
section we derive an effective electron interaction
between conduction electrons mediated by this spin
wave. In obtaining the effective electron interaction we
also determine the spin-wave spectrum of the 4f spins
which includes the dynamic effect. '6

We rewrite the total Hamiltonian Eq. (1.1) in the
following way:

mined self-consistently later. X,r*(0) is the diagonal
part of R,q, which corresponds to the terms propor-
tional to S,* and with «=0 in Eq. (1.3) and gives rise
to a uniform polarization of conduction electrons and
K f —X f X f (0) . As in I we find a canonical trans-
formation in such a way as would eliminate K',f to
first order with respect to J. The transformed Hamil-
tonian BC is expanded in the following way:

3'.= e—~Xe~

=Xy[X U]+-'LLX U] U]+"
If U is determined so as to satisfy

fXp, U]+X',f——0,

then the transformed Hamiltonian becomes

(2.3)

(2.4)

X X/g+X f (0) +sPC f U]
—[X„U]—pCf, U]+ ~ . (2.5)

As will be shown below, in order to satisfy Eq. (2.4), U
must be proportional to J, and 3'., and Kf are propor-
tional to J'. In this paper assuming J/e~((1, we retain
only the first three terms on the right side of Eq. (2.5)
by keeping terms to order J'. Our task in the following
part of this section is to find U so as to satisfy Eq.
(2.4) and then to calculate the commutator of LX',r, U]
with that V to obtain BC' and 3', The operator U
needed to satisfy Eq. (2.4) is obtained as

S (—sr) S (—x)U= —Q & (ie) a iiai —Lf+ „a
lanai

—zi
2 J(S~(0) )+cp(ie) e, „i e, (+2J(S (0) ) oi( sr)

—ZZ'~( )S*(- )
&&—«t &&t

Ct&~Ci g~ (2.6)
61—«$ 61$

where

S*(re) =N 'g exp( —iv. R,) S' etc. , (2.7)

Or, more explicitly,

~(~) = —N 'I.—~(0) Z(f~i —f»)
k

—2(8" ( )+8 +( ) )(S*(o))] (2 9)
and the prime on the summation excludes x=0. It
should be noticed, as in the case of the electron-phonon
interaction, U given by Eq. (2.6) satisfies Eq. (2.4)
only under certain approximations: (1) S*(0) is often
replaced by the thermal average (S'(0)). (2) X„
which is an electron-electron interaction as will be dis-
cussed below in this section, is diagonalized by a
Hartree approximation to give a self-energy of the
conduction electron, and ~™& is the one-particle energy
which includes this self-energy. This procedure of
obtaining the self-energy is the theme of Sec. III. (3)
The spin-wave energy of the localized spin pp(«) is
introduced by a molecular-field approximation as
follows:

LX f*(0)+Xr, S (se) ]=pp(se) S (x) . (2.8)

"Y. Nagaoka, Progr. Theoret. Phys. (Kyoto) 28, 1033
(&9m).

where the number operator of conduction electrons
a z,az, is replaced by a Fermi distribution fz„and the
tensor g(sr) is the Fourier transform of the RKKY
interaction Xr, and is given explicitly by Eq. (2.11)
below. The spin-wave frequency determined from Eq.
(2.9) should contain an imaginary part. However, for
simplicity in this paper we will not consider the imagi-
nary part and assume pp(x) to be a real quantity.

We now turn to the calculation of the commutator
-', LX',r, U] which is the third term on the right side of
Eq. (2.5) and from which we expect to obtain Xr and
K,. This commutator consists of two qualitatively
di6'erent parts which may be written symbolically as

-', [X',r, U]= LgS(x) uta, PS(sr') ata]
= QS(x) S(se) Lata, ata]

+P(S(ie), S(v.') ]ataata
—=—,'I BC', , U] +-,'t X',r, U] . (2.10)
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From a simple calculation,

&1—«t fit 61

+ S"(x) S (—x) —=Q'g*'(x) S*(x)S'(—x)

+QLg +(~) S (~) S"(—x)+g -(x) S+(x) S—
(—x) 7—=Xr. (2.11)

In Eq. (2.11) we retained only the diagonal part of the conduction electron number operator and replaced it by
the Fermi distribution function. This is a dynamic RKKY interaction between localized spins. t'To be exact, to
obtain an ordinary RKKY interaction we have to incorporate X,&*(0) to the above Xr, the Xr appearing in Sec.
I, therefore, should be understood to include X,I'(0) .7

Similarly, the second part of the commutator, Eq. (2.10), is calculated as

(s'(0) &

2I X'.~, ~7*~=~-' 2 I ~(-) I' „,, ".«.+.~ "~t~~-.i
k, «, 1

&s*(0)& 8 ~~8~,«g«g+„1 =X~. (2.12)

apart from a constant term. For an s band, Eq. (2.15) is
transformed to the more familiar form, " aside from a
constant term

(2.16)X,=EC+n;tn, ~,

where n is the number operator for the conduction
electron at the ith atomic site. In the case of degenerate
bands, as in real rare-earth metals, we would obtain
intra- and interband repulsive interaction between
electrons with opposite spins on the same atomic site.
The strength of this interaction near the Fermi surface
is nest; small, The order of ma&~nitude of uo can be

This is an effective electron-electron interaction which
is mediated by the exchange of spin-wave excitation
and it originates from the fact that the localized spin
S, is a dynamic entity.

The coupling constant appearing in our electron
interaction contains a complicated wave-number de-
pendence. To see a qualitative feature of X, in Eq.
(2.12) we neglect this wave-number dependence in
the narrow region near. the Fermi surface of the spin-
polarized conduction electrons such that

I
~~-.~

—
~~ t+»(s'(0) & I,

I +.t
—

~
—2~(s'(0) & I

& ( ) (2 13)

and approximate the coupling constant by a positive
constant C;

c=—(2(x) J'&S'(o) &(1y

where coo is a representative spin-wave energy. %ith
this approximation X„Eq. (2.12), is written as

X,= —Cgo+(sc) 0 ( —x), (2.15)

C=2Xp(cp)-', (2.18)

and therefore SC appearing as the repulsive energy in
Eq. (2.16) is on the order of the Fermi energy. It should
be noticed, however, as we have stressed, that this
interaction is effective only in a small energy interval
near the Fermi surface as dehned by Eq. (2.13).

Our spin-wave dispersion relation, Eq. (2.9), with
Eq. (2.11) would reduce to the ordinary one' if we
neglect the effect of the self-energy due to 3'., by re-
placing e&, simply by e&.

Since the model that Doniach and Kohlfarth' used in
discussing the dilute alloys below the spin-ordering
temperature and our model are similar, we may com-
pare the two results. In the static limit their effective
electron interaction I the second term on the right side
side of Eq. (3.20) of Ref. 3 with o&= 07 is of the form of
our Eq. (2.16), with arz in Eq. (2.14) taldng only the
6rst term on the right side of Eq. (2.9), but they do
not need to impose the restriction Eq. (2.13) for the
validity of Eq. (2.16). We plan to discuss further the
relation between the two results.

III. ELECTRON SELF-ENERGY AND
SPECIFIC HEAT

Sy applying the Hartree approximation to our effec-
tive electron-electron interaction X„Eq, (2.12), quite

estimated from Eqs. (2.9) and (2.11) as follows:

(oo=X(J'/X) p(ep) (S*(0)& (2.17)

by assuming X,r*(0) is the dominant factor leading to
the conduction-electron spin polarization and neglecting
the possible eGect of 3'., X is a positive constant of order
1.Then from Eqs. (2.14) and (2.17),
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similarly to the case of dilute alloys, s we obtain the
self-energy Z. (1, e~,) associated to the electron with
momentum A,1, energy ~~„and spin ~'~:

~t(» e»)
0-X

=-(~/j) ) (S (0))Z
g eel —ei i+2 J(S*(0))—ia(lr —1)

'

(3.ia)
&l(i, e»)

E -0

/////'//l/
'i////
/////', ",':.

ekr= ek+~n(lr& ate) ~ (3.2)

For simplicity we will not consider the imaginary part
of the self-energy as in the spin-wave frequency. Ke
may define more appropriately one-particle energy
Ej„ofa conduction electron by incorporating the part
of the exchange splitting due to X,/*(0) into eq„

Eg, ——eg, —J(S*(0))8„ (3.3)
where

8.= 1 foi. a= T

= —1 for (3.4)

The effective mass of the 0-spin conduction electron,
m, which gives the electronic specific heat, is obtained
from the following relation:

(m*.)-'= (j'tk,.)-'PE,./d(jib) j I, s... (3.3)

where kp, is the Fermi wave number of the spin-
polarized conduction electron with spin (T. From Eqs.
(3.5), (3.2), and (3.3),
(m*,) '=m '+(m*) '(8/8%, )&,(1, R) li s... (36)
where m is the electron mass without the effect of K,.

In this paper we will not attempt to carry out any
exact calculation of Eqs. (3.1a), (3.ib), and (3.6).
Since our purpose is only to obtain qualitative features,
we will estimate the effective mass by adopting as
simple a model as possible. (1) On the right side of
Eqs. (3.1a) and (3.1b) we replace Eq, by Eq, which
neglects the contribution from the self-energy due to
K,. (2) For the energy band Eq, l

= ea—J(S'(0) )8,j we
assume a square band with a constant density of states

=-(~/»(S (0) )Z „—„,+2J(S'(0) )— (1—k)

(3.1b)

The renormalized one particle energy eq„aside from the
spin splitting due to the molecular 6eld of localized
spin +J'(S*(0)), is determined from

ps and width 2D, such as shown in Fig. 1. (3) We
represent the spin-wave spectrum by a constant fre-
quency ops (Einstein approximation) as given by Eq.
(2.17) and neglect the efkcts of the finite maximum
wave number in the spin-wave spectrum. The latter
approximation may be justi6ed from the fact that the
maximum wave number which is on the order of inverse
atomic distance or k~ is much larger than kit —k~~,
say, for Gd, as will be seen from the discussion below.
Under these approximations and for zero temperature
the self-energy, Eqs. (3.1a) and (3.1b), is calculated as

~, (1, 8,)=-2(~/~)(S (0))p.Dnl 4, -ol--
—-' »

I
D+X—At —oio

I

—-' »
I

D+X Sit—ego
I j, — —

(3.7a)

El(1, »1) = —2(J'/&) (S'(0) )psL —»IEil —«I
+-', 1 IE l

—D+x—o I+pl I
E 1+D+X , I], —

(3.7b)

and accordingly the effective mass is obtained as

me t/m= m*1/m

=1+2(J'/Ã) (S*(0))psl-', t (D+X—ois) '

—(D—X+ois) 'j+(ops) iI, (3.8)

where 2X is the exchange splitting of conduction elec-
trons (see Fig. 1) which, neglecting the effect of K„ is
given as 2X= 2 J(S*(0)), where in Fig. 1, J is assumed
to be positive. H

then
D+X, D—X»~s, (3.9)

(b)

Fin. 1. (a) The density of states for the parainagnetic state for
a square band. The Fermi level is assumed to be at the center of the
band and the energy is measured from there. pf) is the density of
states of electrons and is assumed to be constant within the band-
width 2D (b) Th. e density of states for the ferromagnetic state.
The bands given in (a) are split in energy by 2X=2/(S*(0) ).

m*./m 1+2(Js/E) (S*(0))ps(1/o~s)

= 1+2/X, (3.10)

where X is a positive constant of order j. defined in Eq.
(2.17).

When the condition (3.9) is satisled, we may
simplify the expression of the self-energy, Eqs. (3.7a)

"Our expression, Eqs. (3.1a) and (3,ib), for the self-energy is
slightly dÃerent from that of Nakajima LEqs. (5.5) and (5.6) of
Ref. 14j. If we replace 2f&l 1and 2fst 1, respect—ively, by-2fsl
and 2(fat-1) in Eqs. (3.1a) and 3.1b), our results reduce to that
that of Nakajima. The possible origin of this difference might be
traced in the procedure of reducing Eq. (2.12) to Eqs. (3.1a) and
(3.1b). %e have followed Ref. 2 by putting at~I =f~+
(ati,as, f~) and neglecting—(ati as, fs,) (atg;;ai;, fs;). A—s-
can be easily checked, this diGerence, however, does not aGect our
conclusion, for instance, Eq. (3.10).
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FIG. 2. A schematic graph of the energy-dispersion curve for
conduction electrons including the self-energy modifications. Note
that the self-energy contributions for up- and down-spin electrons
are of opposite sign; however, since they also appear on opposite
sides of the Fermi surface, their contributions to the enhancement
of the density of states at the Fermi surface do not cancel.

and (3.7b), near the Fermi surface as

Z, (1, E„)=—2(J'/X)(S*(0))p, ln
I (E„+~,)/D I,

(3.7a')

Z1(1, E )) 2(J'/1V) (5*(0))p, » I
(E„—~,)/D I,

(3.7b')

where Eg, is measured from the Fermi surface. The self-

energy of an up-spin electron near the Fermi surface is
positive and therefore its maxinslm lies approximately
Gop below the Fermi surface, whereas the self-energy of a
down-spin electron is negative and its mimmlm lies
approximately cop above the Fermi surface. We illustrate
the situation schematically in Fig. 2.

It was suggested that the exchange splitting of the
conduction band would drastically suppress the mass
enhancement due to the spin-wave mechanism, ""but
in our calculation we do not see such a tendency. We
believe that this was a result of the fact that the self-
energies for up- and down-spin electrons are of opposite
sign. What may not have been realized is that they con-
tribute to opposite sides of the Fermi surface. Though
we will not make any further eRort to evaluate the
more exact expressions for the self-energies by aban-
doning the Einstein model for the spin-wave spectrum

we believe that the assumption of the constant spin-
wave frequency is not a vital assumption needed to
obtain the result presented in this section.

In real rare-earth metals, for instance in Gd, however,
the condition (3.9) is very likely to be realized from the
fact that (J/1V) p(ep) (~J/D) &&1.' Actually a large
electronic specific heat is observed in most rare-earth
metals. For instance, in Gd, the specific heat is eight
times that given by the free-electron model. ' From a
band calculation on Gd, Dimmock and Freeman' gave
the density of states three times that of the free-electron
value and attributed the remaining part to the electron-
phonon interaction effect. It seems fairly possible that
our spin-wave mechanism also would contribute here.

IV. DISCUSSION

Though we have said that we eliminated K',f to erst
order in Sec. II, to be exact, this statement is incorrect.
As in the case of the electron-phonon interaction, ~ the
part of 3C',~ which corresponds to the energy-conserving
processes such as E~ „1—E~1+co(x) =0 and Eq „,
E~ =0 cannot be eliminated, as is seen from the struc-
tures of the canonical transformation we used I see Eq.
(2.6) j, and this part of X',~ not eliminated gives rise to
the ordinary electrical resistance. This part of K'.f(0)
not eliminated, as well as BC,r*(0), should be incor-
porated to X'f of Sec. II, to give the ordinary RKKY-
type interaction. "

As to the eBect of our effective electron interaction
K„we discussed only the problem of the electronic
specific heat. Its effect in many other problems, es-
pecially magnetic ones, will be considered in a future
publication.

As has been stressed repeatedly, our model may be
too crude; however, we believe that our results are
qualitatively correct for rare-earth metals.
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