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(on the absolute scale) of small k values for which the
resolution of the neutron scattering technique is usually
rather poor. Most hopefully, the effect could be ob-
served in the @ direction (near 7T,), in which the ferro-
electric mode and the longitudinal acoustic mode are
polarized perpendicularly to each other. Therefore,
arranging the experiment in such a way that only
phonons with particular polarization are detected, the
neutron inelastic scattering peak from one branch
should decrease rapidly near ko, and the peak from the
other branch should increase as the mode polarizaton
changes gradually from one to the other. As a result,
one could expect to observe near ko two fairly close
peaks with different intensities. However, because the
individual peaks have nonzero widths, certainly com-
parable with their frequency separation near ko, one
unresolved, markedly asymmetric peak most likely
will be observed. (This asymmetry will change dras-
tically with % near ko.) Similar conclusions about the
form of the differential cross section (two peaks or one
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unresolved asymmetric peak, depending on the damp-
ing of modes) can be made' if the anharmonic, essen-
tially electrostrictive, interaction (not considered ex-
plicitly in this paper) between close mixed branches
near ko is taken into account. Therefore, to analyze
properly the observed form of the cross section, an-
harmonic effects should be considered explicitly. An-
harmonic effects, in general, will also remove the ac-
cidental degeneracy of the ferroelectric and acoustic
branches in the cubic phase of BaTiOs, in which the
piezoelectric effect is missing.
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An analysis is presented of the compatible subgroups which can arise by second-order phase transition from
the perovskite structure, without change of unit cell. The symmetry analysis is based upon the subduction-
criterion simplification of the thermodynamic Landau theory. The possible displacements from the perov-
skite structure are taken as the normal modes at k= (0, 0, 0). Additional criteria for selecting compatible
subgroups are developed, based on a chain of subgroups. Only eight space groups can arise in this manner,
of which six can be ferroelectric. An error in the previous theoretical analysis by Haas is eliminated. Our
results are compared to the meager experimental determinations of compatible subgroups, but more such

determinations are needed.

1. INTRODUCTION AND METHOD

N the present paper we report on a theoretical
analysis carried out in the framework of the thermo-
dynamic Landau'+? theory of second-order phase transi-
tions in crystals, to determine the possible lower-sym-
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1 L. D. Landau, Z. Physik 11, 26 (1937); L. D. Landau and E.
M. Lifshitz, Statistical Physics (Pergamon Press, Inc., New York,
1958), Chap. XIV.

2 C. Ya. Lyubarski, Application of Group Theory in Physics
(Pergamon Press, Inc., New York, 1960), Chap. XII.

metry space groups which can arise from the perovskite
space group Pm3m— Oy!, without change of unit cell.

The Landau theory?® assumes the existence of a single
thermodynamic potential (e.g., Gibbs or Helmholtz
free energy) G which is capable of describing the
thermodynamic state of both high- and low-symmetry
phases of a solid. By hypothesis, this potential is a
function of sets of quantities ¢, which are chosen
to span an irreducible linear vector space of the high-
symmetry space group ®. That is, the set

(CaB 0™} g=1ee-l,  g=1-e-5 (1)
spans the irreducible linear vector space
3 (xk) (M), (2)

¢ Also reviewed by J. L. Birman, in Ferroeleciricity, edited by
E. F. Weller (American Elsevier Publishing Co., Inc., New York,
1967), pp. 20-61.
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so that the potential
G( {ca(ka)(m) } ) (3)

is a scalar invariant of the group ®, when the crystal
is in its high-symmetry state, and of the group @, when
the crystal is in its low-symmetry state. Then
G({ca®”®™}) may be expanded into a series of scalar
invariant, homogeneous polynomials in the {c,%2®};

G=GO+GOHGO4+ ¢ GOF-o0e, (4)

where G® is of sth degree. Consonant with this theory,
it suffices to work with the quantities {c,%?™}, which
span a single space-group irreducible representation,
DO On the other hand, the density function p(1),
also capable of describing high- and low-symmetry
phases, can be written

p(1) =po(r) +8p(r), (5)
where 8p(r) is a linear function of the {c &2}
8p(r) = el my k) (m) (1) (6)

The symmetry group @ of the crystal is the set of all
space-group operations {¢ |t} such that p(r) is in-
variant under {¢ | t}.

The thermodynamic Landau theory can then be
epitomized* in a series of exact conditions (A)—(D) on
the high-symmetry group ®&,, the compatible subgroups
®, the acceptable irreducible representations D*&m
of @, and the space-group reduction coefficients in @:

®, is a subgroup of ®y; (A)
([*km]m | T14+) =0; (B)
(C*km]iy | Tv) =0; ()
DI of @ subduces DID of Fy; (D)
also, if an acceptable D™ ig one-dimen-
sional, or if DV of @ subduces only a
multiple of DI of @, then the accept-
able &, is normal in ©,, (D.1)

Now we present a new general result, based on the
existence of a chain of subgroups. Thus, let DAL of
®p subduce DI of @, once, and let the same DK m)
of & subduce DIUD of &' once, where @, is a sub-
group of ®;. Then consider the density function of @/,
viz. p(@y’) . Since the given irreducible space S0 by
hypothesis contains only oze invariant vector for ®,,
namely p(®), and since ®,’ is a subgroup of @, it is
clear that the invariant vector p(®,") must be identical
to p(®,). That is, given the density p(®,'), one finds it
invariant also under all elements in ;. Hence the
density function p(®,’) actually is invariant under the
larger group. Alternatively put, this eliminates the
transition @—®,’. The possibility of the transition
®—®,’ succeeding &—®; must be examined separately.

4J. L. Birman, Phys. Rev. Letters 17, 1216 (1966).
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To summarize: let @D mean that @, is a subgroup
of @, and | mean “subduces.” We conclude that

if
DG, DG

DA of G, | DI of @, (once)

and

and
DI of G, | DI of @, (once),

then the transition

®—®,’ is eliminated. (D.2)

Condition (D) will be referred to as the subduction
criterion. Conditions (D.1) and (D.2) are related to
it, and we found (D.2) to be particularly valuable in
reducing the number of potentially compatible sub-
groups.

To (A)—-(D), we add the rulet

DV of @, corresponds
to a physical tensor field. (E)

For a displacive phase transition, a complete set of
variables with which to describe the shifts in atom
positions within the unit cell are the normal modes.
Another general manner by which some subgroups
have been eliminated is by recognizing that the assumed
shift from their positions in perovskite, as given by the
amplitude pattern of a normal mode, leaves the atoms in
such positions of high symmetry that added symmetry
elements are necessarily present. In this way we recog-
nized that the lower-symmetry group actually must be
augmented and so becomes some group of higher
symmetry, which is also a compatible subgroup of @,.
This will be illustrated below.

Observe that (A), (B), (C), (D), (D.1), and (D.2)
are exact, within the thermodynamic Landau theory.
They may be considered as simultaneous restrictions on
the acceptable D* and on the compatible ®;, and
they serve to eliminate the tedious minimization usually
needed in this analysis.? Our analysis of perovskite was
carried out in the framework of the Landau theory to
obtain new results for a case of considerable current
theoretical® and experimental® interest. No critical
evaluation of the assumptions of the Landau theory will
be given.?

2. ANALYSIS AND RESULTS

We are concerned, in the perovskite structure?
On'— Pm3m, with the possibility of second-order phase
transition without change of unit cell; the transition is

8 P. W. Kwok and P. B. Miller, Phys. Rev. 151, 387 (1966);
R. C. Casella, sbid. 154, 743 (1967).

¢ G. Samara, Phys. Rev. 151, 378 (1966); A. Frova and P. J.
Boddy, 4bid. 153, 606 (1967).

?V. L. Ginzburg, Fiz. Tverd. Tela 2, 2031 (1960) [English
transl.: Soviet Phys.—Solid State 2, 1824 (1961) J; L. P. Kadanoff
et al., Rev. Mod. Phys. 39, 395 (1967), and references therein.

8 1. G. Slater, Quantum Theory of Molecules and Solids (McGraw-
Hill Book Co., Inc., New York, 1965), Vol. 2, Appendix A3-4.
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TasiE I. The 32 subgroups of Op! with the same unit cell,

Oy! has 32 subgroups with the same unit cell.’® In Table
and the irreducible representations of O; which subduce the h group

identity representation on each subgroup.2

Representations of Oy

I we list the subgroups of O, with the same unit cell,
and the irreducible representations subducing the
identity representation on each subgroup.*

subducing DD Point group Space group Of the 10 irreducible representations of O, the
representations Aj,, E; and Fp, are unacceptable!
Ay Aru 0 432 0t P432 since they do not satisfy (B). As the physical tensor
Asg, Ay T m3 T Pm3 field which plays a decisive role in the displacive transi-
Asg) Fog Daa ?S’m IC)”: ﬁm tion, it is natural to choose the optic-branch normal
j:’: j:"’ ﬁfz i:;, Fa, Fa, (C:j" 3m C:’,' Rsm modes at T, in perovskite.”? The symmetry species are!?
Fry, Fay optic modes: 3F;,@® Fy,. (7
Aw, Eg, F1g Can 4/m Cant P4/m
Aug, Ar, Ey, Eu Dy 422 D P422 Since Table I shows that many potentially compatible
Asg, Azu, Ey, Ey, Fa,, Dy 42m Dyt Pi2m subgroups can only be achieved by use of unacceptable
Ay, Asuy Eyy Ey, Fay Dy 42m Dy C42m representations (e.g., the space group O', etc.) we
Ay, Az, By, Ey, Frg, F2uw Sa 4 S¢ P4 may eliminate all but 18 such subgroups. In this manner
Arg, Aug, By, Fry Do mmm Do’ Pmmm  Taple 11 is obtained.
Asgy Azg, By, Fog Doy ;”mm D 21‘19 g’znz’gm To continue the analysis,”® we examine each of the
A‘;’, A"’F’ Auw, Az, By, Buy Dy 222 D remaining subgroups in Table II to ascertain whether
Al.,,zz 2,,,2':4 o dun B B Dy 222 D Cm tl'{e occupiable si'tes in that subgroup are cons'istent
Fag, Fru W_1th the assumptions that they represent atoms slightly
Ay, Aoy, Asuy Eyy Euy Fay,  Cay mm2 Cwt Pmm2  displaced from their initial positions in Opl. In other
Fiu, Fay words, we are attempting to determine some of the
Alﬂ, Azg, Azu, Eg, Eu, Fzg, sz mm2 C2pu Cmm?2
Flu, qu 1wt .
Ao, Az, Ariy By, By Prgy - G 2 Coit A2 orimalmode ooy st the e ot e apon
Fry, P, and the corresponding species.
Asg, Azg, By, Fig, Fay Ca  2/m Cal  P2/m
Augy Azg, Eq, Frg, Fyy Con  2/m Ca®  C2/m Normal-mode species
Aig, Azg, By, Frgy Fog, Aiu, C 2 G P2 subducing DO aH Space group
A2u; Eu, Flu; FZu
A]g, Azg, Eg, F],,, an, Alu, Ce 2 C3 C2 Fiu Cs® R3m
AZu, Eu, Flu, Fay Fl"’ Fru Gt R§
Asg, Azg, By, Fag, Fay, Asu, C m Gt Pm Fru Dni! P‘_13m
Eu, Flu, qu F2u DEdS C%Sm
Alm A'la; Em Fla, F2y, A2u, Cs m Cs Cm Fay St P4
Ey, Fiy, Fay Fa Dyt P222
Aig, Azg, By, Frg, Foy Ci i ¢t P1 Fau Dy C222
Alg, Azu Td Z3m le P‘I3m Flu; qu C2vl Pmm
A[g, Azg, Alu, Asy T 23 It P23 Flu; Fay C%ll Cmm
Arg, Aog, Aruy Asuy Fagy Fow Dy 32 Df  R32 Fryy Fau Gt Amm
A]g, Azg, F]g, Fz, Cs.’ g Ca.:z Rg Flu, FZu Czl P2
Ay, E, Dy, 4/mmm Dyt P4/mmm Fry, Fyy C? Cc2
Alm Alu; Eﬂ: Eu; Fla: Fiy Cy 4 Cg P4 Fl“’ Fau Gt Pm
A, Ey, Fry Cy dmm Csw! Pdmm Fru, Fay Cd Cm
Allh AZO: Ea, Flh Fﬁv; Alu: Cl 1 Ct P1 Fay D37 R32
Azu, Eu; Flu, Fay F1y s P4
F 1y c4u1 P dmm
Fry, F, Cit P1

8 Reference 11.

of the displacive type.® Since the unit cell does not
change, we may, as in another recent analysis,* restrict
consideration to the irreducible representation of Oj!
with star I' [k=(0, 0, 0)], ie., to the irreducible
representations of the point group O,. The space group

9 W. Kanzig, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1957), Vol. 4, p. 1;
F. Jona and G. Shirane, Ferroelectric Crystals (Pergamon Press,
Inc., New York, 1962).

1 International Tables for X-Ray Crystallography, edited by
N. F. M. Henry and K. Lonsdale (Kynoch Press, Birmingham,
England, 1952), Vol. 1.

1 Notation used is that of E. B. Wilson, J. C. Decius, and P. C.
Cross, Molecular Vibrations (McGraw-Hill Book Co., Inc., New
York, 1955).

2 B. D. Silverman and G. F. Koster, Z. Physik 165, 334 (1961) H
K. fD;orak, Phys. Status Solidi 3, 2235 (1965); also reviewed in

ef. 3.

13 Additional details are contained in: Senior Honors Thesis in
Physics, submitted by Fredric E. Goldrich to University College
ﬁthags and Science, New York University, April 1967 (unpub-
ished).
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“free parameters” of the subgroup by our knowledge
that a small displacement, consistent with the same
unit cell, has occurred. In this fashion the groups
Co'-P2; Co'-Pmm2; C{~P4; Co,"'-Cmm2; C3-C2;
D$-C222; Dy~ P42m; and Dy'~P222 can be eliminated.

The cases of D.f; Dy'; and D,! are instructive. We
see, by inspecting the tables,® that the only allowed
sites are, in fact, the sites originally occupied in Ojl.
There are thus two possibilities. Either the symmetry
of the system is truly tetragonal (¢/e#1), or it is
actually cubic. If the system possesses tetragonal sym-
metry, but the coordinates of the positions of the atoms
with respect to the crystal axes do not change, then
the symmetry change corresponds to a deformation of
the unit cell without atomic displacement, or, in other
words, a strain. The strain tensor, however, transforms
according to irreducible representations which were
eliminated by earlier criteria, so that a strain may not
take part in the transition.

If the symmetry after the transition is cubic, and the
atoms have not moved, then there is no transition, be-
cause there is no symmetry change—both states are
identical. Therefore, the space groups Dsg!, Dy, and
D, have been eliminated. We will say in the future that
D»g', D8, and D, are “included in Ol.”

In a similar fashion, it is found that the occupiable
sites in C4 actually correspond to Ca!; that is, given
available atoms in BaTiOs, a slight displacement to
C4 actually produces the higher symmetry Cg!. This
is a case of a lower-symmetry group included in a
higher-symmetry group, and twelve possible displace-
ment patterns have been ruled out through similar
arguments. One of these is Co,!, which Haas" in-
correctly identified as the orthorhombic phase of
BaTiO;. In fact, not only js it impossible to achieve
Co,!* from O;! by means of a second-order phase transi-
tion, but the experimental identification of the space
group® is Cy,'.

The final step in the analysis is to verify that indeed
each of the remaining eight space groups can be obtained
by small displacements which transform as a row of a
single acceptable irreducible representation. Using the
relevant projection operator for the third row of each
of Fy, and F,,, this was done. The result is given in
Table III, which summarizes our work. Table IV gives
the atomic displacements from O,! to each of the
compatible subspace groups.

3. DISCUSSION

Of the eight space groups presented in Table III,
two have been given by Haas (C;® and Cs'). The
remainder are new. Only those space groups which can
be achieved by mode Fy, can correspond to a ferro-
electric lower-symmetry phase.’® It follows that a ferro-

14 C, Haas, Phys. Rev. 140, A863 (1965).
15 A, F. Devonshire, Advan. Phys. 3, 85 (1965); W. Cochran,
ibid. 9, 387 (1960).
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TasrLe III. The eight subgroups of Oi! with the same unit
cell allowed by the subduction criterion, and the corresponding
irreducible representations.

Irreducible
Crystal system Space group representations

Triclinic it P1 Fyyor Fyy,
Monoclinic Cd Pm Fyy or Foy

C.3 C m F 1u
Orthorhombic Cott Amm2 Fyy or Fy,
Tetragonal Cat Plhmm Fiu

Dy C42m Fay
Trigonal D37 R32 F, 2u

C‘.wﬁ R3m F 1u

electric second-order phase transition without cell
change can be achieved from the high-symmetry
perovskite Op! structure to each of those space groups
identified by Fy,.

The space groups which may be achieved by mode
F,, do not correspond to the occurrence of ferroelectric
polarization. In the cubic system the normal-mode
representation Fy, corresponds to the transformation of
components of a second-rank pseudotensor, such as
would be constructed from the cross components of
macroscopic electric and magnetic fields, E;H;. Thus a
transition to space group Dbs’; Dy; Cyp't; Cit or Cyl
may be accompanied by the appearance of a macro-
scopic crystal physical property of the symmetry of a
second-rank pseudotensor.

It appears that the results given in Table III are as
far as one can go if one confines oneself rigorously to
the symmetry theory contained in the Landau theory.
To go further requires the construction and minimiza-
tion of the thermodynamic potential G, in order to
narrow down still further the possible predictions. For
such minimization to be meaningful, one should possess
sufficient microscopic information to be able to obtain
the exact form of the coefficients in the expansion (4)
and so to decide among alternative compatible sub-
groups. No such completely rigorous theory has yet
been advanced, or at any rate none is known to us. In
the absence of the complete analysis, it has been pro-
posed'® that among the compatible subgroups one should
choose certain “‘maximal’ ones. This criterion does not
seem to be justifiable from a fundamental point of view,
but it may possibly be a useful way of selecting more
likely candidates in the absence of a rigorous theory.
It may be, however, that some physically implausible
transitions [e.g., O'=Cy! which (Table III) according
to our result may occur as second order] can only be
eliminated depending upon quantitative calculations,
based on the full theory.

We conclude by emphasizing the importance of
obtaining experimental information on the full space-

18 E, Ascher, Phys. Letters 20, 352 (1966) ; and private commu-
nication (to be published).
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TaBLE IV. Atomic displacements for symmetry-lowered BaTiO;.

Allowed
space group

Irreducible
representation

Displacement from higher-symmetry position
Ba i

Ti ]

(oY P1

G P1

Cd Pm

Cd Pm

Cs Cm

Cot Amm2

Fyy Co,¥ Amm2

Fl u Pdmm

C22m

Fy, Dy7 R32

Fl u C37;5 R3m

(%, 9, 2)

(0,0,0)

(%, 9,0)

(0,0,0)

(xl x7 z)

0,5,

(0,0,0)

(0,0,2)

(06,0,0)

(0,0,0)

(x, x, x)

(xll’ yll’ ZH)
(xlll’ ylll, zll)
(xlll7 yll, Z"I)
(0,7, 2)

- (%,0,2)
(,5,0)
(xll, yll’ 0)
(xlll, ylll’ O)
(xlﬂ, yll’ 0)
(0,9, 0)

(&, 0, 0)
(x, 9, 0)
(2", 3,3")
(y) x”} z")
3, 9,2
0, 5", 9")
(0, 2,5")
(0,",2)
0,9,y
(0,0, )
(0,9, 0)
(0,0,2")
(0,0,2")
(O’ 0’ Zl“)
(0,0, 2)
(0,0,2)
(0,0,0)
0, 9,9)
(7,0,9)
(5, 9,0)
(z, x’l’ xll)
(xll, z’ xll)
(xll, xll’ Z)

(x’Y y’} z')

(0,0,0)

(x,f y’) 0)

(0,0,0)

(x” x,) z’)

0,9,5)

(0,0,0)

(0,0,2")

(0,0,0)

(0,0,0)

(o, o, &)

group symmetry (not merely the “crystal class”) of
lower symmetry phases which have arisen by second-
order transitions. Very few such determinations are
available, against which the predictions of theory can
be checked. Some exceptions are: the tetragonal phase of
BaTiO;, identified” experimentally as Cy!, and the
orthorhombic phase of BaTiO;, identified” as C'.
However, in BaTiO; the transition O'—Cy' is first
order. In the binary system K (NbTa) Os, a second-order

1 H, T. Evans, Acta. Cryst. 14, 1019 (1961) ; B. C. Frazer, H.
R. Danner, and R. Pepinsky, Phys. Rev. 100, 745 (1955); also
H. Danner and H. T. Evans (private communication).

transition has been identified'® as a tetragonal phase, but
the space group of the latter is merely surmised®® to
be that of the analogous tetragonal perovskite. This
illustrates and emphasizes the need for precise structural
information.
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