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(on the absolute scale) of small lr values for which the
resolution of the neutron scattering technique is usually
rather poor. Most hopefully, the effect could be ob-
served in the a direction (near Te), in which the ferro-
electric mode and the longitudinal acoustic mode are
polarized perpendicularly to each other. Therefore,
arranging the experiment in such a way that only
phonons with particular polarization are detected, the
neutron inelastic scattering peak from one branch
should decrease rapidly near ko, and the peak from the
other branch should increase as the mode polariza, ton
changes gradually from one to the other. As a result,
one could expect to observe near ka two fairly close
peaks with different intensities. However, because the
individual peaks have nonzero widths, certainly com-
parable with their frequency separation near 40, one
unresolved, markedly asymmetric peak most likely
will be observed. (This asymmetry will change dras-
tically with k near ke. ) Similar conclusions about the
form of the differential cross section (two peaks or one

unresolved asymmetric peak, depending on the damp-
ing of modes) can be made" if the anharmonic, essen-
tially electrostrictive, interaction (not considered ex-
plicitly in this paper) between close mixed branches
near ko is taken into account. Therefore, to analyze
properly the observed form of the cross section, an-
harmonic effects should be considered explicitly. An-
harmonic effects, in general, will also remove the ac-
cidental degeneracy of the ferroelectric and acoustic
branches in the cubic phase of SaTi03, in which the
piezoelectric efI'ect is missing.
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An analysis is presented of the compatible subgroups which can arise by second-order phase transition from
the perovskite structure, without change of unit cell. The symmetry analysis is based upon the subduction-
criterion simpli6cation of the thermodynamic Landau theory. The possible displacements from the perov-
skite structure are taken as the normal modes at k= (0, 0, 0). Additional criteria for selecting compatible
subgroups are developed, based on a chain of subgroups. Only eight space groups can arise in this manner,
of which six can be ferroelectric. An error in the previous theoretical analysis by Haas is eliminated. Our
results are compared to the meager experimental determinations of compatible subgroups, but more such
determinations are needed.

1. INTRODUCTION AND METHOD

N the present paper we report on a theoretical
„.analysis carried out in the framework of the thermo-
dynamic Landau" theory of second-order phase transi-
tions in crystals, to determine the possible lower-sym-
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metry space groups which can arise from the perovskite
space group Em3m —OI, ', without change of unit cell.

The Landau theory' assumes the existence of a single
thermodynamic potential (e.g. , Gibbs or Helmholtz
free energy) G which is capable of describing the
thermodynamic state of both high- and low-symmetry
phases of a solid. By hypothesis, this potential is a
function of sets of quantities c +'~ &, which are chosen
to span an irreducible linear vector space of the high-
symmetry space group Qs. That is, the set
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so that the potential

G(fc "'"'})
To summarize: let Sp+S& mean that S& is a subgroup
of Sp, and J, mean "subduces. "We conclude that

is a scalar invariant of the group Sp when the crystal
is in its high-syrrunetry state, and of the group St when
the crystal is in its low-symmetry state. Then
G(fc,&"'&& &}) may be expanded into a series of scalar
invariant, homogeneous polynomials in the fc «"'m&}:

SpDStDSt'

Q * of Sp j S 1' o+ of S (once)

@&pk)&m) of Sp 1 g)&F&&&+& of S&~ (once)
G—G&p&+Go&yG&s&+. ..G&e&+. .. (4)

then the transition

The symmetry group S of the crystal is the set of all
space-group operations {fI t} such that p(r) &s &n-

variant under {Q I t}.
The thermodynamic Landau theory can then be

epitomized' in a series of exact conditions (A)-(D) on
the high-symmetry group Sp, the compatible subgroups
S~, the acceptable irreducible representations $&p~&&"&

of Sp, and the space-group reduction coeflicients in Sp..

S& is a subgroup of Sp,

(Lplrmj&s& I
1'1+)=0

(L*lrml&s) I
1's) =o

$&e'"&&"& of S subduces &&1 &&'+& of St.
(C)

(D)

also, if an acceptable S&*+& & is one-dimen-
sional, or if 5)&s &&~& of Sp subduces only a
multiple of X)&1 &"+& of St, then the accept-
able St is normal in Sp, (D.1)

Now we present a new general result, based on the
existence of a chain of subgroups. Thus, let S&++~ & of
Sp subduce 5)&1'&&'+& of S~ once, and let the same $&s"&&"&

of Sp subduce $&r &&'+& of S&' once, where St' is a sub-
group of Sr. Then consider the density function of S&',
viz. p(St') . Since the given irreducible space Z&p"&&"& by
hypothesis contains only one invariant vector for St,
namely p(Sq), and since S&' is a subgroup of S&, it is
clear that the invariant vector p(S&') must be identical
to p(Sr) . That is, given the density p(Sj'), one finds it
invariant also under all elements in S&. Hence the
density function p(S&') actually is invariant under the
larger group. Alternatively put, this eliminates the
transition Sp—pSt. The possibility of the transition
St-pS&' succeeding Sp-rS& must be examined separately.

e J.L. Rirman, Phys. Rev. Letters 17, 1216 (1966).

where 6&'& is of sth degree. Consonant with this theory,
it suffices to work with the quantities {c+ && '},which
span a single space-group irreducible representation,
$&e"&& &. On the other hand, the density function p(r),
also capable of describing high- and low-symmetry
phases, can be written

p(r) =po(r)+3p(r) (5)

where 8p(r) is a linear function of the {c &~'&& & }:
Sp(r) =gc «"' cog @' & (

Sp~Q& is eliminated. (D.2)
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Condition (D) will be referred to as the subduction
criterion. Conditions (D.1) and (D.2) are related to
it, and we found (D.2) to be particularly valuable in
reducing the number of potentially compatible sub-
groups.

To (A) —(D), we add the rule4

$&p~&&"& of Sp corresponds
to a physical tensor field.

For a displacive phase transition a complete set o
variables with which to describe the shifts in atom
positions within the unit cell are the normal modes.
Another general manner by which some subgroups
have been eliminated is by recognizing that the assumed
shift from their positions in perovskite, as given by the
amplitude pattern of a normal mode, leaves the atoms in
such positions of high symmetry that added symmetry
elements are necessarily present. In this way we recog-
nized that the lower-symmetry group actually must be
augmented and so becomes some group of higher
symmetry, which is also a compatible subgroup of Sp.
This will be illustrated below.

Observe that (A), (3), (C), (D), (D.1), and (D.2)
are exact, within the thermodynamic Landau theory.
They may be considered as simultaneous restrictions on
the acceptable $&p~&&"& and on the compatible St, and
they serve to eliminate the tedious minimization usually
needed in this analysis. ' Our analysis of perovskite was
carried out in the framework of the Landau theory to
obtain new results for a case of considerable current
theoretical5 and experimental' interest. No critical
evaluation of the assumptions of the Landau theory will
be given. ~

2. ANALYSIS AND RESULTS

4Ve are concerned, in the perovskite structure'
O~' —Em3m, with the possibility of second-order phase
transition without change of unit cell; the transition is
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Representations of Op,

subducing $&~)('+& Point group Space group

Alg, Alu

Alg, A2g

Alg) F2g

Algp A2up F2g) Flu
Alg, A2u) Alu) A2Q, Flg, F2g,

Elup F2Q

Alu) Eup Elg

Alg) Alu, Eg, Eu
Alg, A2Q) Eg, Eu, F2u

Alg, A2u, Eg, Eu, F2Q

Algp A2Q) Eg) EQp Flgp F2Q

Alg) A2g, Eg) F2

Alu) A2gp Eu) F2u

Alg, A2g, Alu, A2Q) Eg, Eu,

A lg) A 2g) A 1Q) A2Q) Eu) Eu)
F2 F2

Alg) A2g) A2Q) Egp Eu) F2gp

Alg) A2gp A2Q) Eg) EQ) F2g)

F1Q) E2Q

Alg) A2g) A2up Eg) Eu) F2gp

Flu, F2Q

Alg) A2g) Eg) E]g) F2g

Alg) A2g) Eup Flg) E2g

Alg, A2up Eu) Elup F2g) Alu,
A2, Eu, Flu, F2

Alg) A2g) Egp Flgp F2gp Alup

A2Q, E, Fl, F2Q

Alg) A2g) Eg) Flgp F2gp A2up

EQ) Elu) E2Q

Alg) A2g) Eg) Elg) E2gp A2up

Eu, Flu, F2

Alg, A2g, Eu) Flu) E2g

Algp A2Q

Alg) A2g, Alu, A2„
Alg, A2g, Alu, A2Q, F2g, F2Q

Alg) A2g, Flu, F2u

Alg, Eg
Alu) Alu) Egp Eup Flg) Flu
A lg Eg Flu

lg) A2g) Eg) lg) F2g) Alup

El F2Q

0 432
Th m3

D3g 3m
C3„3m
C3 3

C4s 4/m
D4 422
Dgg 42m
D2g 42m

S4 4
mmm

D21, mmm

D2 222

D2 222

C2„mm2

C2„mm2

C,„mm2

Cg, 2/m
C2I, 2/m
C2 2

C2 2

C. m

C; l
Tg 43m
T 23
D3 32
C3; 3
D4g 4/mmm

C4 4
C4, 4mm

Cl 1

O' P432
TI,l Pm3
D3g' 83m
C3,' E3m
C34 R3

C4g' P4/m
D4' P422
D2d' P42m
Dgg' C42m
S4' P4
D2J,' Pmmm

D2A,
'9 Cmmm

D2' P222

D26 C222

C2,' Pmm2

C2vll Cmm2

C2,'4 Amm2

Css' E2/m
C2I,3 C2/m
C2' P2

C23 C2

Cl Pm

c: cm

C' Pl
Tg' P43m
Tl P23
D37 832
C3,' E3
Dsa' E4/mmm
C4' P4
C4,' P4mm
Cl' P1

t' Reference 11.

TABLE I. The 32 subgroups of OA' with the same unit cell,
and the irreducible representations of Oy, which subduce the
identity representation on each subgroup. '

O~' has 32 subgroups with the same unit cell. '0 In Table
I we list the subgroups of OI,' with the same unit cell,
and the irreducible representations subducing the
identity representation on each subgroup. "

Of the 10 irreducible representations of 01„ the
representations A1„Eu) and Il2u are unacceptable'
since they do not satisfy (3). As the physical tensor
6eld which plays a decisive role in the displacive transi-
tion, it is natural to choose the optic-branch normal
modes at I, in perovskite. "The symmetry species are"

TABLE II. Those subgroups of OI,' with the same unit cell upon
which a normal-mode species subduces the identity representation,
and the corresponding species.

Normal-mode species
subducing $&r )&'+&

Flu
Flu) F2Q

F2Q

F2u

F2Q

Flu, F2u

Flu, F2Q

Flu, E2

Flu, F2Q

FlQ) F2Q

Flu F2Q

Fl, F2Q

F2Q

Flu
Fl„
Fl F2

Space group

R3m
E3
P43m
C43m
P4
P222
C222
Pmm
Cmm

4 Amm

P2
C2
Pm
Cm

E32
P4
P4mm
P1

C3~'

C 4

D2~'

S 1

D 1

D26

C2 1

C2 1

1

C'
C23

Cl
C3
D37

C 1

C4v'

Il

optic modes: 3F1„Q)F2„. (~)

Since Table I shows that many potentially compatible
subgroups can only be achieved by use of unacceptable
representations (e.g. , the space group 0', etc.) we
may eliminate all but 18 such subgroups. In this manner
Table II is obtained.

To continue the analysis, " we examine each of the
remaining subgroups in Table II to ascertain whether
the occupiable sites in that subgroup are consistent
with the assumptions that they represent atoms slightly
displaced from their initial positions in 0A,'. In other
words, we are attempting to determine some of the

of the displacive type. ' Since the unit cell does not
change, we may, as in another recent analysis, ' restrict
consideration to the irreducible representation of OI, '
with star F Lk= (0, 0, 0)), i.e., to the irreducible
representations of the point group O~. The space group

W. Kanzig, in SoHd State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1957), Vol. 4, p. 1;
F. Jona and G. Shirane, Ferroelectric Crystals (Pergamon Press,
Inc. , New York, 1962).

"Imterrtateonat Tables for X Ray Crystallography, edited -by
N. F. M. Henry and K. Lonsdale (Kynoch Press, Birmingham,
England, 1952), Vol. 1.

"Notation used is that of E.B.Wilson, J. C. Decius, and P. C.
Cross, 3fotecglar Vebrateoas (McGraw-Hill Book Co., Inc. , New
York, 1955).

'2 S.D. Silverman and G. F.Koster, Z. Physik 165, 334 (1961);
V. Dvorak, Phys. Status Solidi 3, 2235 (1965); also reviewed in
Ref. 3.

"Additional details are contained in: Senior Honors Thesis in
Physics, submitted by Fredric K. Goldrich to University College
of Arts and Science, New York University, April 1967 (unpub-
lished) .
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"free parameters" of the subgroup by our knowledge
that a small displacement, consistent with the same
unit cell, has occurred. In this fashion the groups

P2 j C2 —Pmm2 ) C4 —P4; C2 "—Cmm2; C23—C2;
D26—C222; D2~'—P42m; and D2'—P222 can be eliminated.

The cases of D2', D&~', and D~' are instructive. We
see, by inspecting the tables, " that the only allowed
sites are, in fact, the sites originally occupied in 0&.
There are thus two possibilities. Either the symmetry
of the system is truly tetragonal (c/u/1), or it is
actually cubic. If the system possesses tetragonal sym-
metry, but the coordinates of the positions of the atoms
with respect to the crystal axes do not change, then
the symmetry change corresponds to a deformation of
the unit cell without atomic displacement, or, in other
words, a strain. The strain tensor, however, transforms
according to irreducible representations which were
eliminated by earlier criteria, so that a strain may not
take part in the transition.

If the symmetry after the transition is cubic, and the
atoms have not moved, then there is no transition, be-
cause there is no synnnetry change —both states are
identical. Therefore, the space groups D2~', D&', and
D2' have been eliminated. We will say in the future that
D2~', D2', and D2' are "included in O~'."

In a similar fashion, it is found that the occupiable
s'Jtes in C4' actuajly correspond to C4, ', that is, given
available atoms in BaTi03, a slight displacement to
C4' actually produces the higher symmetry C4„'. This
is a case of a lower-symmetry group included in a
higher-symmetry group, and twelve possible displace-
ment patterns have been ruled out through similar
arguments. One of these is C2,", which Haas" in-
correctly identified as the orthorhombic phase of
BaTi03. In fact, not only is it impossible to achieve
C2,"from Oz' by means of a second-order phase transi-
tion, but the experimental identification of the space
groupo is C&„'4.

The final step in the analysis is to verify that indeed
each of the remaining eight space groups can be obtained
by small displacements which transform as a row of a
single acceptable irreducible representation. Using the
relevant projection operator for the third row of each
of Fq„and F2„, this was done. The result is given in
Table III, which summarizes our work. Table IV gives
the atomic displacements from Oq' to each of the
compatible subspace groups.

3. DISCUSSION

Of the eight space groups presented in Table III,
two have been given by Haas (Cs„s and C4,'). The
remainder are new. Only those space groups which can
be achieved by mode F&„can correspond to a ferro-
electric lower-symmetry phase. "It follows that a ferro-

~4 C. Haas, Phys. Rev. 140, A863 (1963).
'5 A. F. Devonshire, Advan. Phys. 3, 85 (1965);W. Cochran,

ibid. 9, 387 (1960).

TAaLE III. The eight subgroups of Op' with the same unit
cell allowed by the subduction criterion, and the corresponding
irreducible representations.

Crystal system Space group
Irreducible

representations

Triclinic
Mono clinic

Orthorhombic
Tetragonal

Trigonal

C1
CS

14

1

D37

C3$

P1
pm
Cm
Amm2
p4mm
C42m
R32
R3m

F1u or F2u

F1u or F2u

F1u or F2u

Flu
F2u

F2u

Flu

16 E.Ascher, Phys. Letters 20, 352 (1966); and private commu-
nication (to be published).

electric second-order phase transition without cell
change can be achieved from the high-symmetry
perovskite OI,' structure to each of those space groups
identified by Fj„.

The space groups which may be achieved by mode
F2„do not correspond to the occurrence of ferroelectric
polarization. In the cubic system the normal-mode
representation F2„corresponds to the transformation of
components of a second-rank pseudotensor, such as
would be constructed from the cross components of
macroscopic electric and magnetic fields, E;H;. Thus a
transition to space group D2g', D3 j C2„", Ca' or C»'

may be accompanied by the appearance of a macro-
scopic crystal physical property of the symmetry of a
second-rank pseudotensor.

It appears that the results given in Table III are as
far as one can go if one confines oneself rigorously to
the symmetry theory contained in the Landau theory.
To go further requires the construction and minirniza-
tion of the thermodynamic potential G, in order to
narrow down still further the possible predictions. For
such minimization to be meaningful, one shouM possess
sufhcient microscopic information to be able to obtain
the exact form of the coefBcients in the expansion (4)
and so to decide among alternative compatible sub-
groups. No such completely rigorous theory has yet
been advanced, or at any rate none is known to us. In
the absence of the complete analysis, it has been pro-
posed" that among the compatible subgroups one should
choose certain "maximal" ones. This criterion does not
seem to be justifiable from a fundamental point of view,
but it may possibly be a useful way of selecting more
likely candidates in the absence of a rigorous theory.
It may be, however, that some physically implausible
transitions Le.g., Os'-+Ct' which (Table III) according
to our result may occur as second order) can only be
eliminated depending upon quantitative calculations,
based on the full theory.

We conclude by emphasizing the importance of
obtaining experimental information on the full space-



I"'. E. GOI. DRICH AND J. I . BIRMAN

TABLE IV. Atomic displacements for symmetry-lowered SaTio&.

Irreducible
representation

Allowed
space group

Displacement from higher-symmetry position
Ba Tl Og

F1u

C11

14

14

C4,1

C, 6

I"m

Amm2

Amm2

C42m

R32

R3m

(g yz)

(0, 0, 0)

(0, 0, 0)

(x, x, z)

(o y, y)

(0, 0, 0)

(o, o, .)
(0, 0, 0)

(0, 0, 0)

(x, x, x)

(x', y', z')

{0,0, 0)

(0, 0, 0)

(x', x', z')

(o, y', y')

(o, o, o)

(0, 0, z')

(0, 0, 0)

(0, 0, 0)

(x', x', x')

tt

(xn& ui zn)
(gll/ y// z/l/)

(o, u, z)

(g, o, z)
(x, y, o)

0)
(g/I/ ylf/ 0)
(xlll yll ())

(0, g, 0)
(2:, o, o)
(x, y, 0)
( ll l/)

(y gl/ z//)

(y, y, z"')
(o, y", y")

(0, y", z)

(o, y, y)
(o, o, y)
(0, f7, o)
(o, o, z")
(0, 0, 8")
(o, o, "")
(0, 0, z)

(o, o, z)
(o, o, o)
(o, y, f7)

(W, 0, y)
(y, u, o)
(z g/l g")

(g/l gll z)

group symmetry (not merely the "crystal class" ) of
lower symmetry phases which have arisen by second-
order transitions. Very few such determinations are
available, against which the predictions of theory can
be checked. Some exceptions are: the tetragonal phase of
BaTi03, identi6ed'~ experimentally as C4, ', and the
orthorhombic phase of BaTi03, identified' as C~,".
However, in SaTi03 the transition OI,'—+C4„' is first
order. In the binary system K(NbTa) Oz, a second-order

'7 H. T. Evans, Acta. Cryst. 14, 1019 (1961);B. C. Frazer, H.
R. Banner, and R. Pepinsky, Phys. Rev. 100, 745 (1955); also
H. Danner and H. T. Evans (private communication).

transition has been identified' as a tetragonal phase, but
the space group of the latter is merely surmised" to
be that of the analogous tetragonal perovskite. This
illustrates and emphasizes the need for precise structural
information.
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