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(4) There have been theories developed' " for the
phonon thermal conductivity at magnetic phase tran-
sitions employing the coupling term (1). Since they
also use the small-q approximation, these theories are
in principle equivalent to the theory of ultrasonic at-
tenuation. They, however, do not use the factorization
procedure. They can express their result in terms of the
specific heat C and the spin thermal conductivity z. In
this way the sound attenuation, or the reciprocal of the
phonon relaxation time, becomes proportional to ~, all

other singular factors cancelling. A theory for ~ at the
magnetic phase transition has not been developed so
far. Similar ideas have recently been expressed by
Eiuber. ~
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A theory of the erst-order phase transition in UO2 is presented and discussed in the molecular-Geld approx-
imation. An isotropic nearest-neighbor exchange and local quadrupole-lattice interaction are taken as the
basic interactions in the model. Interesting behavior is obtained due to the two distinct ways in which
the collective ground-state degeneracy can be removed at T=o'K: a cooperative Jahn-Teller distortion
or a polarization of the sublattice magnetization by the exchange Geld. Depending on the relative gain in
free energy obtained by these two mechanisms, one obtains four diferent types of behavior near the critical
point: (1) a second-order transition to a distorted state with no magnetic ordering; (2) a second-order
transition to a distorted state followed by a second-order magnetic transition; (3) a first-order transition
yielding a discontinuous change in lattice distortion and sublattice magnetization; (4) a second-order
magnetic transition accompanied by a weak distortion. The temperature dependence of the elastic constant
C44 is also derived. The parameters required to give a erst-order transition in agreement with the measured
discontinuity in sublattice magnetization and the correct behavior for C44 are found to be consistent with
the parameters obtained from the measured spin-wave excitations.

I. INTRODUCTION

NTERACTION between the single-ion ground
state and lattice is expected to be large in systems

where the ground-state degeneracy is associated with
the orbital state of the electrons. In a concentrated
system both the collective ground state and low-lying
electronic excitations will be significantly modified by
this interaction. Uranium dioxide is a particularly
striking example of this situation. In a previous paper,
(henceforth referred to as l), it has been shown that
the ground state is characterized by a balance between
the exchange and Jahn-Teller (JT) forces and that
indirect quadrupole-quadrupole interactions caused by
the virtual exchange of an optical phonon must be
included to obtain the proper excitation spectra. Since

' S.J. Allen, Jr., Phys. Rev. 166, 530 (1968).

much of the current interest in UO2 was stimulated by
the observations of Frazer et ul. ' that the transition to
the ordered state was a first-order phase transition and
the subsequent explanations of Blume, ' it is particu-
larly interesting to consider whether the spin-lattice
interaction used to obtain the ground state and spin-
wave excitations is able to generate the first-order
phase transition.

In the following, the thermodynamic properties of
U02 are derived in the molecular-GeM approximation.
Interesting eBects are obtained due to the two distinct
ways in which the ground state degeneracy can be
removed at T=O'K—a cooperative JT distortion or
the usual polarization of the sublattice magnetization

' B. C. Frazer, G. Shirane, D. E. Cox, and C. E. Olsen, Phys.
Rev. 140, A1448 (1965).' M. Blnme, Phys. Rev. 141, 512 (1966)
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by the exchange held. In the regime where the gains in
free energy due to these two mechanisms are com-
parable, interesting complications occur.

II. THEORY OF THE PHASE TRANSITION

as follows:

Oe=3S '—S(S+1),
0 p=-,'(S Sp+SpS ).

O,=S'—S'

In the molecular-6eld approximation the total Gibbs
free energy is given by

G= kT ln—Z+-', s J(S)'
k

+-ZZ
ka k&p ~ p

u (k)up(k')

in which the E; are the molecular-field energy levels.
The spin Hamiltonian used to find the energy levels,
used in the partition function, is the following.

H= —s„J(S) S
—sp(Frp) I (A/ —v3) I Oe(2U3 Ut Up)

+ ', 0,(U U) $-+(B/ ',K—3) [O„.U +O-,U +O,„U )
+-,'CI 0„,(u, (1)—u, (2) )/rp+0„(u„(1) —u„(2) )/rp

+o*.(u. (1)—u. (2) )/» j}, (3)

where sp( = 8) is the number of oxygen iona surrounding
a uranium ion, ro is the uranium-oxygen separation

2.36 X, and F is a constant with the dimensions of
force and given by

F= (1/4s-ep) (se'/v3rp4) (r ') (a II ~ II cr) (4)

in which se is the oxygen ionic charge, (r, ) is the
average Sf' electron radius squared, and (cr II J II cr) is
a reduced matrix element evaluated by Elliot and
Stevens. ' In (3) the operators 0 are quadrupole or
quadratic spin operators which operate on the effective
S=1 ground-state manifold of the U4+ ion.6' They are

4 H. Born and K. Huang, Dyrtastical Theory of Crystal Lattices
(Oxford University Press, London, 1954), pp. 129 tl.

p R. J. Elliot and K. W. H. Stevens, Proc. Roy. Soc. (London)
A218, 553 (1953).

p C. A. Hutchinson, Jr., and G. A. Candela, J. Chem. Phys. 27,
707 {1957).

7 H. U. Rahman and W. A. Runciman, J.Phys. Chem. Solids 2"I,
1833 (1966).

1
+Q Q, p u (k) Uo+ —Q(pa}UoU, , (1)

kcr p ~ p~

where s„(=4) is the effective number of uranium
spins contributing to the exchange field and J is the
exchange constant. u (k) is the internal displacement
of the 4th oxygen in the paramagnetic unit cell in the
0.th direction from the uranium ion and Up is the
external strain in the Voigt notation. For instance,
Ut ——U„and U4 ——U„,+U,„.

Z is the partition function given by
3

Z= Q exp( L~,/kT), — (2)

The constants A, 8, and C are left as adjustable param-
eters, and can be determined by including the spin-
lattice interaction in a theory for the low-lying excita-
tions and comparing with experiment, as was done in I.
Likewise, in this discussion, they are left as parameters
and are determined where they can be by fitting theory
with experiments regarding the phase transition.
Before proceeding it should be pointed out that the
spin-lattice part of (2) is simply an expression of the
JT effect in a concentrated salt assuming a homoge-
neous deformation.

To find the equilibrium magnetization and lattice
distortion, one minimizes the Gibbs free energy, at
fixed temperature T, with respect to the independent
variables (S), Iu (k) }, and I U, }. The following
relations are obtained:

0= —s„J(S)r+s„J(S),

0= sp(F—ro) (A/V3) (Oe)r+ Q Co,U„

BA 8

0=+spFrp (Op)r —sorpF (0 )r+ P Ct U,23 23

A 3A 3

0=+spFrp (Oe)r+soroF (0 )z'+ +Co U,
2

J3 g2
0= —soFro —(0 *)r+ roM*( —) +f44}U4

v3 4trepQp

C g2

0= —spF —(Op )r+ rpGU4
4~spQo

e~+- Hu, (—),
2 4s-epQp

u.(+) =u„(+)=u, (+) =0,

where advantage has been taken of a simple trans-
formation on the internal distortions

u (+) =u (1)+u (2),

u (—) =u„(1)—u, (2),

and where G and H, defined in I, are determined from
the short-range force constants' and Coulomb inter-

p G. Dolling, R. A. Cowley, and A. D. B.Woods, Can. J. Phys.
43, 1397 (1965).



S. J. ALL EN 167

actions' between ions. C;; are the elastic constants in
the absence of spin-lattice interaction. 4

The above conditions consist of a set of relations
between the thermal average quadrupole moments and
the strains, in addition to the usual requirement of
self-consistency on the sublattice magnetization. Note
that (S)r is the thermal average spin given by

(S)r——Z ' g (i
~
S

~
i) exp( E;/k—T) . (8)

where the energy levels for Z are found from the follow-

ing Hamiltonian:

s J(S )S 8e(0 v)0*v
where

8e = s (4seof}o/e'ro') (C'/II) (soFro) '

(10)

+ (1/C44) —,
' (spFrp) '(8—&3C(G/H) )' (11)

(Note that 8e=es defined in I.)
At a given temperature T, the equilibrium values of

(S,) and (0,„) are determined by finding the position
in the (S,), (0,„)plane, within the region. 0& (S,)&1
and 0& (0,„)&—,', that gives an absolute minimum for
G, the Gibbs free energy in (9). In this manner we
determine (S,) and (0,„)as a function of temperature,
and the position and character of the transition points.
The nature of the phase transition is determined by the

'R. Srinivasan, Proc. Phys. Soc. (London) 72, 566 (1958).I0. G. Brandt and C. T. Walker, Phys. Rev. Letters 18, 11
(1967).

It is not the same as (S), one of the molecular-field
order parameters. However, to minimize the Gibbs
free energy, (S)z ——(S).

With the aid of (5) the problem can be simplified by
using the average quadrupole moment as the inde-
pendent variable. Since every set of quadrupole
moments generates a unique set of external and in-
ternal strains, the free energy can be re-expressed in
terms of the sublattice magnetization and local-
quadrupole moment. The problem is further simplified

by noting that the results of the ground state and spin-
wave calculation indicate that A is much less than 8
or C. That is to say, the strong interaction occurs with
the shear distortions rather than the compressional
distortions. This is also apparent from the behavior of
the elastic constants. " In the following the com-
pressional distortions are ignored entirely and we set
3 =0. Assuming the configuration at T=O'K consists
of spins along a given L110) direction, the free energy
may be expressed in terms of only three variables;
temperature, (S,), the average spin in the L110j
direction, and (0,„), the average quadrupole moment.

The free energy G((S,), (0,„), T) is given as

G= kT lnZ+-', s„—J(S,)'+-', (8e) (0,„)', (9)

1.2

4-
& 1 ~ 0
K
Lli
Z
4J

U 0.6—
I-
CII

4J
I

O 0.6—

U

~ 0.4—
ui
N

~ 2/7~
tK0 0,2—

SPIN AN

0
0 0.2

I I I I

0.4 0.6 2/3 0.6 1,0 1.2
NORMALIZEO TEMPERATURE kTjg J

I

1.4 1.6

FIG. i. Transition temperature versus normalized magnetoelastic
energy f.

relative size of the magnetoelastic energy e and the
exchange energy 2'„J. Four distinct types of phase
transition may be obtained depending on the ratio

f=e/s J.
(1)f& 1. There is no magnetic ordering at any tem-

perature. At T= (4/3) (e/k) a second-order transition
to a cooperative JT distorted state is obtained.

(2) 1&f&sr. Two transitions occur. As the tempera-
ture is lowered one first encounters a second-order
transition to a JT distorted state followed by a second-
order magnetic transition.

(3) ~s &f&2/7. The transition is a first-order transi-
tion, generating discontinuously a local magnetization
and quadrupole moment.

(4) 2/7&f&0. The quadrupole moment or lattice
distortion and sublattice magnetization appear simul-
taneously, but they suffer no discontinuity. The transi-
tion temperature is independent of f in this region and
equal to —s's„J/k.

In Fig. 1, the results are summarized by plotting
transition temperature normalized to the exchange
energy s„J against normalized magnetoelastic energy
f. The curves generated separate the three regions
where one has either a paramagnetic, nondistorted
state, a distorted state without a sublattice magnetic
moment or both a magnetically ordered and dis-
torted state. A purely magnetically ordered state cannot
occur, for it is easily shown that the presence of an
average local magnetization necessitates an average-
quadrupole moment. The converse is not true.

In Fig. 2 is plotted the discontinuity in (S,) and
(0,„)at the transition as a function of f Also sho.wn is
a(S,)/(S, )r=p*K. The largest value of A(S, )/(S, )z~'I
that can be obtained is just slightly greater than 0.5.
If we assume a value of 0.5, corresponding to the
observations of Frazer et al. ,' one obtains a value of
f=0 450 Sublatt. ice m. agnetization versus temperature
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for f=0 45.0 is compared with experiment in Fig. 3.
It is clear that the theory is capable of producing the
discontinuity but falls far short of a good detailed 6t.
The transition occurs at k T=0.7z„J.From the neutron'
work, TN ——30.8'K, which gives z„J=44'K or 32.4
cm '. The latent heat is found to be 2 J/cm'.

'I .0

III. SUSCEPTIBILITY AND ELASTIC CONSTANTS
ABOVE T~

Above the transition, expansion of the free energy in
(5,) and (0 „) about. (S,)=0 and (O~)=0 is valid.
The terms that are present are

0.2—
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Since there are no (S.)(O,„) terms, there wil be no
linear magnetostrictive effect and the high-temperature
susceptibility will be unchanged from that obtained in
absence of spin-lattice coupling. Experimentally from
40 to 300'K the susceptibility can be 6t to a Curie-
Weiss law with a 8 value equal to ~200'K."The simple
model used in the phase-transition calculation gives
8=2z„J=88'K. The deviation is too large to be
ignored. A molecular-field treatment of the high-
temperature susceptibility is expected to be better than
a molecular-field treatment of the transition tempera-
ture. That is to say, the value of z„J inferred from the
transition temperature is suspect. It should also be
noted that the inclusion of other than nearest-neighbor
exchange will alter 8 but probably not sufFiciently to
make up the present dehcit.

O. B

I'iG. 3. Sublattice magnetization and quadrupo1e moment
versus temperature for f=0.450. The dashed curve is the experi-
mental result of Frazer ef al. (Ref. 2).

The elastic constant C44 in the paramagnetic region
may be calculated from Eq. (1). Since the lattice
distortion produces no sublattice magnetization the ex-
change energy in Eq. (1) may be ignored. The thermal
part of the free energy, —k T lnZ, is expanded to second
order in the internal strain I,( —)/ro, and external
strain U4.

where

—k T lnZ = kT ln3 —,—', () s/k T), (13)

), =FroL:',VS(z,B)U+ ,'(z,C)N, (-—)/ro j (14)

The free energy is now in quadratic form and expressed
in terms of the internal and external strains.

1 (Pro)' zIIB
G = I4T ln3 ——— U4+~z(zoC) (I,(—) /ro)

12 kT vS

0.5—

z
O

0.4—
X
K

I-

0.3—
H

n, O2-
X

v~

4
0.1—

a &sz)/ gsz)

d'G/d U4'= C44( T) . (16)

It must be noted that the internal strain 44, (—)/ro is
not an independent variable and adjusts itself for a
given external strain U4, to minimize the energy in
(15) .'

Performing the necessary manipulations one obtains

1 (1 ez e'
H

~
Q, ( —)'+ Gro44 ( —) U4

2 &2 4IreoQo Il 4«oQo

+ ', I 4, 4}U4'. -(15)

The elastic constant C44(T) is obtained from (15) by
calculating

0
O

I

0.) 0,2 0.3 0.4 0.5
NORMALIZED MAGNETO" ELASTIC ENERGY, (f )

0.8

Fxo. 2. Discontinuity in (S,) and (ONI ) as a function of f in the
region of the erst-order transition.

» M. J. M. Leask, L. K. J. Roberts, A. J. Walter, and W. P.
Wolf, J. Chem. Soc. 1963, 4788 (1963).

where C44( DD) is the elastic constant in the absence of
spin-lattice coupling or at arbitrarily high temperatures.
C44( oo) is itself a temperature-dependent quantity but
over the temperature range of interest, from T~ to
room temperature, the variation should be at most a
few percent and we ignore this complication. The tem-
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peratures T; and T, are defined as

T;+T,=pe/lp,

FIG. 4. Elastic constant C44 versus temperature.

260

(18)

and that the external and internal distortions are

Ug= U2= U3= U4= US=0,

I p4( —)/rpl ~4x10 .

In comparison, the spin-wave calculation gave

s„J=35.0 cm ',

I el =31.s,

lcl =31,

I
8—1.03C

I
=0.4,

from which values one has for the spin deviation

(S,—(S,))/S, =0.063

that is to say, the temperature at which one would have
a second-order cooperative JT distortion in the absence
of any exchange interaction, and

T =—'(4' BpQp/e'rp') (C'/H) (spFrp) ' (19)

T; is the temperature at which a purely internal in-
stability would occur if the coupling to the external
distortion should disappear. Under that rather singular
condition, T,=O'K, there would be a lattice instability
but it would not manifest itself by a softening of the
elastic constant C44.

In Fig. 4 the high-temperature behavior of the
elastic constant C44 is compared with experiment. The
theoretical curve is fixed to experiment at T=240'K.
T,+T, is taken as 26.4'K, the value given by f=0.4SO

and s J=44'K. T, is taken to be 6.4'K, C44( ap ) =0.66.
Although Eq. (13) fails to give a detailed fit, it clearly
displays the experimental features in a semiquantitative
manner.

IV. DISCUSSION

A comparison of parameters used to describe the
phase transition and elastic constant anomaly with
those used to obtain the proper spin-wave excitations
can be made. It is clear that the theory is not sufhcient
to extract precise values for the interaction constants
but good estimates can be extracted from the semi-
quantitative fit. From the present discussion we have

s„7=32.4 crn ',

I
2

I

= assumed 0,

I
8

I

= undetermined,

I
a—(Gvs/a) c

I

=
I
a —1.o3c

I
=4.4;

from these values we infer that the ground-state spin
deviation is

(S,—(S,))/S, =0.043

and for the strains

I
U,

I

=
I U,

I
=o.sx 1o-4,

I
vp I

=10-'

Iv, l
= Iv. l

=o,

I I,(—) I/rII —8X10

The only serious discrepancy occurs with regard to
I
8 (Gv3/P) C I.—The nearly complete cancellation

obtained with the values of 8 and C calculated from
the spin waves must be regarded as somewhat artificial.
Certainly, G&3/H obtained from the force constants
cannot be known to within better than 15%, which
would allow a value for

I
8 (G&3/H) C

I
as—large as

that obtained by fitting to the elastic-constant be-
havior. However, we still conclude that strongest inter-
action interaction occurs between the quadrupole and
the internal distortions.

Although the e6ect of the quadrupole-lattice inter-
action in UO2 is treated throughout in the simplest
approximation, the theory describes the experimental
situation sufliciently well to make meaningful estimates
of the relevant parameters. At the same time, three
important consequences of the non-Kramers, orbital
ground-state degeneracy are revealed.

(1) At T=o'K competition between JT forces and
exchange energy cause the spin to be reduced from its
fully polarized state. (2) The spin-wave excitations
from the ground state are significantly modified by
quadrupole-quadrupole interactions produced by the
virtual exchange of an optical phonon. (3) Since the
collective ground-state degeneracy can be lifted by a
cooperative JT distortion as well as an exchange field,
the properties of the system at the critical point become
complicated and may exhibit multiple transitions, a
first-order transition, or no magnetic ordering at all.
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