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The presence of an impurity spin in a Heisenberg ferromagnet can give rise to localized modes whose
energies may lie above or within the spin-wave band, depending upon the magnitude of the impurity spin
and its coupling to the host. We have calculated the eigenvalues of the p-like modes for a one-dimensional
chain and a simple cubic lattice when two such impurities are present. In the case where the single-impurity
mode lies outside the spin-wave band, we Qnd two modes symmetrically located with respect to this original
mode. This mode splitting defines an effective impurity-impurity interaction. We 6nd that this interaction
can be quite large when the modes lie close to the spin-wave band. When the single-impurity mode lies
within the band, it is characterized by a redistribution of the density of states. We have also investigated this
redistribution for the case of two impurities. It is found that these results are considerably different from
those obtained by a spin-wave scattering approach. This difference illustrates the importance of the contri-
bution of bound states to indirect coupling.

spin waves. This so-called Suhl-Nakamura interaction
is predicted to extend over many lattice spacings. The
purpose of this present paper is to investigate whether
such coupling might exist between localized magnon
Diodes.

In order to resolve this question, we have considered
the problem of two impurities in a linear chain and in a
simple cubic lattice. We used the Green's-function
approach of Wolfram and Callaway, which is reviewed
in Sec. II, with application to a single impurity in a

I. INTRODUCTION

r iHE localized modes associated with impurities in..crystals have been the object of many recent in-
vestigations. For example, localized excitons have been
found to play an important role in the Buorescence of
optically active materials. Similarly, localized phonons
are a useful probe for studying lattice dynamics. In
this paper we shall be concerned with spin impurities
in a magnetic host and their associated localized modes.
Although this problem has had a long history of study
within the framework of molecular-field theory, the
first exact treatment of localized magnon modes at zero
temperature was made by Wolfram and Callaway. '
Using Green's-functions techniques they considered
the conditions for the existence of the localized modes
of a ferromagnetically coupled impurity in a ferro-
magnetic host. Ishii, Kanamori, and Nakamura' used
spin-wave techniques to investigate the modes asso-
ciated with an antiferromagnetically coupled impurity
in a ferromagnet. This case has also been investigated
recently by Wang and Callen. ' The case of a spin
impurity in an antiferromagnetic host has been exam-
ined by Tonegawa and Kanamori. 4 All these results
were obtained for zero temperature. The thermo-
dynamic properties of such impurity modes have been
studied by Hone, Callen, and Walker. '

In all these calculations the interactions between
impurities were neglected. At first, this might appear
reasonable if the concentration is not large. However, it
is known that nuclear spins in ferro and antiferro-
magnetic hosts are coupled by the virtual exchange of
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linear chain, as shown schematically in Fig. 1. In
Sec. III we add a second impurity and determine how
the single-impurity states are split. This splitting is
taken as a measure of the effective impurity-impurity
coupling. In particular, consider two spins S~ and
Ss (~ Ss ~=[ Sr [=S). In the presence of an external
field H, and the absence of any coupling between the
spins, the first excited state of the pair is twofold
degenerate, with an energy gp&H. If a coupling of the
form JS~- S~ is introduced, this first excited state splits
by an amount 2JS. Thus, the localized-mode splitting
divided by twice the magnitude of the impurity spin
gives the eQ'ective coupling J. We find that when the
local modes lie outside the spin-wave continuum, their
interaction, depends upon the overlap of the localized
mode wave functions. Thus, if the modes have energies
far above the spin-wave band and are very localized,
the interaction is very small. On the other hand, if the
modes are close to the spin-wave band, their interaction
will be appreciable. In Sec. IV these results are com-
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MAGNETIC HOST

pared with those obtained from a perturbation calcula-
tion. %e Gnd that when the impurity is sufhciently
diGerent from the host to produce a local mode, the
neglect of bound states in the perturbation approach
can lead to considerably diferent results. In Sec. V we
present computer results for the simple cubic lattice.
These are qualitatively the same results as those of the
linear chain. However, the linear chain has the advan-
tage that the results may be expressed in a relatively
simple analytic form.

II. EIGENVALUES FOR ONE IMPURITY

where a is the distance between spins and k is equal to
some integer times 2m/Ea. It is customary to choose the
X values from —(~/Xa) (X—2) up to +s./a. The
corresponding eigenvalue is

Eo(k) = 2JE—S'+4JS(1 cosk—a)

=Ea(~/2a) —4JS cos(ku), (7)

which is the familiar spin-wave dispersion relation.
Now let us replace the spin at l by an impurity spin

S', which has an exchange coupling J' with its host
neighbors. The Hamiltonian then becomes

In the absence of an impurity the isotropic exchange
Hamiltonian for a linear chain of spins is

Ho= —Jjg g S„'8„+s.
n 8=+1

where
X=Xo+Xg,

X,=2 (Jsg —J'Sg') ~ Q 8~).

Let us consider the eigenstates of this Hamiltonian
when one spin deviation is present in the system. For
this purpose let us introduce a complete set of ortho-
normal single-spin deviation states

Io'

The matrix elements of X~ in the basis of single-spin
deviation states are

(e I
Xq I m) = —4JS'pA(m, m) +4JSek(l, m) A(e, m)

+2JSp g 6(l+b, m) A(m, nz) —2JSy

xg p (i+~, I)~(i, m)+~(i, ~) ~(i+&, m) j, (1o)

(2)
where

p= (J'S' —JS)/JS, e= (J'—J)/J,
and

,0)

In this basis the matrix elements of ~ are

(1$ I xo I m) =L
—2JES'+4JSjh(e, m)

—2JS g d(e, m+8). (3)

Let
I k) be a single-spin-flip eigenstate of Xo, then

Let us redefine Ko and K& by incorporating the erst
term in (I I

X~ I m) above into (n I Xo
I
m). This now

means that Eo(s/2u) = —2EJS'+4JS—4S(J'S'—JS) .
Then (e I X~ I m) is an S by E matri~, all the elements
of which are zero except for a 3 by 3 submatrix centered
at l. Since all the sites are equivalent we may choose
t=2 Then (e I

.X~
I nz) has the form

o',

XOI k)=Ep(k)
I
k). (4)

(12)
Expanding I k) in terms of the single-spin deviation
states, and multiplying by (e I

gives a system of lV

homogeneous equations of the form

I
—2JES'+4JS—Eo(k) )(e I k)

—2JS Q (m+8 I
k)=0.

0

Let
I 4) be the eigenstate of the system in the presence

of the impurity. This may be expanded in single-spin
deviation states,

Assuming periodic boundary conditions these equations
have the solution I+)=Z (NI+) I~)= (13)

(n I k)= (1/QE) exp(ikey), (6)
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Thus the Schrodinger equation is the matrix equation convenient to introduce the Green's-function matrix

(Xo+Xl) I O) =E
I +) (14)

G=2JS(E—Xp) '. (16)

ol

Ll—(E—X,)-X,) ~
e)=O,

where I is the E by E unit matrix. We shall find it

The eigenvalue equation then becomes

Ll —(2JS)-lgx,j i e) =0. (17)

Because of the form of K~ the matrix product GX~
has elements only in its erst three columns, in particular

Pgll+YG12 Ygll 28G12+ YG18 G~2 —pG

)&)G21+ YG22 1+YG21 2pg22+ YG28 YG22 PG28

—)&)G81+yg82 yg81 —2pg82+YG88
I

1+yg82 —PG88,'

1—(2JS) 'GX1=

Pgnl+Ygn2 Ygnl 28gn2+Ygnp
n

yG 2
—pG„3

this integral may be evaluated by the method of residues
and gives

t (g2 1)1/2 g]n
(') =

2(8. 1) ~
('5)

Notice that for 8) 1 the Green's function is real, while
it becomes complex when 8&I.

As in all problems involving clusters of ions it is
convenient to work on a basis which is characterized
by an irreducible representation of the point group.
This is equivalent to transforming G and X by a unitary
transformation which diagonalizes some symmetry
operator of the point group. For example, the inter-
change of particles 1 and 3 is a symmetry operation of
the system and has the representation

(o o

0 1 0 (26)

0 1]
A unitary transformation which diagonalizes this matrix

(o i o

U= —,'v2 0 —,'v2

—,'v2 0
The new states are

( &' In)

l~2((1 I +)+(3 I +))

—:~&&0 I
n)- &o

I
n)) I

Because of their symmetrical form, the erst two new
modes are referred to as being s-like modes while the
third is a p-like mode.

This means that the first three components of j 4),
corresponding to the impurity and its nearest neighbors,
may be solved for independent of the others. These
other components are then easily found from the re-
maining equations. Thus our problem reduces to the
3X3 matrix equation

(I (2JS)—'GX1$
i

—+)=0, (19)

where I, G, and Xl are now 3&&3 matrices and
i p) is

constructed from the first three components of
~
+).

The matrix elements of G are

(2&)

(28)

Introducing E—Ep (or/2a)

4JS (24)

G„„=2JS(88
( 1/E —Xp i 288). (20)

Expanding the spin-deviation states in terms of the
eigenfunctions of Xp the matrix elements become

2JS + expgik(N —2)8) aj
A' 8 E—Ep(k)

Notice that G„depends only upon
~

28 288 ~. Thus—
there are only three different matrix elements of G in
this part of our problem,

Go

G= Gg Gp Gg (22)

(G G o)
The general matrix element G„may be evaluated by
converting the sum over k into an integral,

2JS Ea exp(ikla) dk

1V 28r, ), E—Ep(vr/2a) +4JS cos(ka) +i4JSp

(23)



MAGNETIC HOST

The transformed Green's function and Bamiltonian lead to the determinantal equation

1—2EGO+ 2pGy ~&(vG~ —uG~)

~2(VGO —2~R+VG2) 1+27%—p(GO+G2) =D,D~ =(}.

1—u(Go —G2)

As we see, the p-like mode is relatively simple, depend-
ing only upon the parameter p. As a result of this
simplicity we shall 6nd that we can obtain analytic
expressions for the eigenvalues and eigenfunctions of
this mode. For this reason we shall specialize our dis-
cussion to this mode, arguing later that the results
obtained apply generally to the other modes as well.

The eigenvalue is given by

The eigenfunction of this p-like mode may be ob-
tained exactly. For this mode we have

(34)

From the 6rst three of our S homogeneous equations
we obtain

D~=1—p(GO —G2) =0. (30) and

Using the results for Go and 62 obtained from the
general relation for g„, this eigenvalue for g) p becomes Therefore, the eth equation gives for e&3

1—
I p/2 (g2 —1) ~12)I 1—((gm —I) ~12—g )2j=0 (31)

which leads to (35)

g = (p +1)/2~ (32)

The behavior of this p-like mode is shown in Fig. 2.
As p becomes large, the eigenvalue of this mode becomes
p/2. Thus, its energy is

E=ED(m/2a) +2JSp

=
I
—2XJS'—4S(J'S' —JS)]+4JS+2(J'S' —JS) .

Finally, (1 I +& is obtained by the condition that the
total spin deviation be one, i.e., that the function be
normalized. This condition gives

N/2

2
I (1 I +& I'+2 Z I (& I +) I'

n=4

N/2

(33) and therefore

The part in the square bracket is just the ground-state
energy of the impurity system while the remaining
part is the Ising energy required to create a spin devia-
tion on a host spin which is a neighbor of the impurity.
Thus, as the local modes move away from the spin-wave
band, their frequencies approach an Ising limit.

(3&)

As p goes to zero this approaches 1/+1V. In the limit
of large S it becomes

2.5—&I
Choosing (1 I 4& as positive we have

(38)
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FIG. 2. Frequency of p-like local mode in a linear chain.

and

e&3.

The resulting wave functions are shown in Fig. 3. The
origin of the term "p-like" mode is now evident. Since

I (e I +& I' is the probability of finding the spin deviation
at site e we see that as the mode moves away from
the spin-wave band it becomes more localized.

Notice that the eigenvalue (32) is defined for all
values of p. However, for p&1 the solution does not
correspond to a localized mode. To see this let us con-
sider the eigenvalue condition in its original form in-
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The perturbed Green's function is dehned analogously
to the unperturbed Green's function, i.e.,

g=2JS(E—X) '.

This is related to G by the identity

g=[1—(2JS) 'GX&] 'G

=G+(2JS) 'GXg[1 —(2JS) 'GXQ-'G. (42)

OA-

0.2-

Oa2

-OA-

p (JS -45/JS'3

I&nit)l

3 4 MW8

Taking the trace, we have

Trg=TrG+ g G„l(2JS) '(Xq)l~
nlmy

&([1—(2JS) 'GXQ„„'G~ . (43)

This may be written as

Trg =TrG+ (1/2D) (d/d8) D,

where

D =
i

1—(2JS) 'GXg ).

Fzo. 3. Wave functions of p-like mode in a linear chain.

Therefore, we have

q(8) =qp(8) —(1/vr) Im(d/d8) lnD, (46)

volving sums over k. This becomes

1—cos(2ku) E
S salrra, 4alÃa, " 8+COS(~lI) P

(39)

The left-hand and right-hand sides of this equation are
plotted schematically in Fig. 4. The solutions correspond
to the intersections of these two functions. %e see that
when p is large there is always a solution at point A
with 8)1.As p decreases the horizontal line 1V/p moves
upward, eventually intersecting at 8 = 1 (point 8) .
The value of p at which this occurs is obtained by
evaluating the sum on the left-hand side of Eq. (39)
with 8=1.This may be accomplished by grouping the
terms for k =e2~/Eu with those for k = (X/2 —m) 27r/Eu.
The result is that the sum has the value E. Thus we
6nd that when p=i the solution just begins to enter
what was the original unperturbed spin-wave band. At
this point the separation of this solution from the next
solution at 8' becomes comparable to the separation
between the spin-wave states themselves. Therefore,
any formalism employing an integral representation
of the Green's functions is not capable of distinguishing
local modes from band modes beyond this point. In
order to describe the situation for p& j. we must con-
sider the density of states. The density of states g(8)
of the perturbed system is related to the Green's func-
tion g(8) of the perturbed system by

where the unperturbed density of states is given by

gp(8) = —(2/s') ImTrG(8+is)

= —(2/pr) ImXGp(8+is)

=X/~(1 —8') 'l'. (47)
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FIG. 4. Schematic description of local-mode solution.

The singularities at 8=&1 are due, of course, to the
one-dimensional nature of our problem. The contribu-
tion of the p mode to the density of states may be
determined explicitly by recognizing that the deter-

g(8) = —(2/7r) ImTrg(8+is). (4o) ' Y. Isyumov, Advan. Phys. 14, 569 (1965).
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and therefore

D„=1—pr, +ip(1 —S') '» (49)

'4=p(~ p) j (1 ~ ) (1 2p~+p ) (5o)

This is plotted in Fig. 5 as a function of 8 for p=4 and
p=-', . The unperturbed density of states divided by E
is indicated by the dashed curve. Notice that

minant D factors into an s part and a P part, thus

g, = —(1jm) Im(D„'jD„)

ImD„ReD„' —Rea„&ma„'
mt (ReD„)'+(ImD„)'j

For 8&1, D„becomes

l
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FIG. 5. In-band density of states for p-like mode.

+1
g„(8)d8=0

—I
p+1
p) 1. (51) P—(2~5') '«314)=o, (53)

The reduced eigenvalue equation in this case becomes

This minus one corresponds to the fact that the localized
mode appearing outside the band does so at the expense
of one mode inside the band. We see that the construc-
tion of the local mode results in a nearly uniform
depletion of states within the band. For p&i the
perturbation is not strong enough to produce either a
localized mode or a resonant state, but merely causes
a redistribution of the states.

In the three-dimensional case when a mode appears
inside the band it manifests itself as a definite "bump"
in the density of states. Presumably, the one-dimen-
sional nature of our problem is responsible for the
absence of such a bump in this case.

T"G Gs Gn+1 G~S

G1 Go G1 Gn-1 Gn

Gg Go G —S Gn-1 G

(G~2 G +1 G G2 G1 Go

G„ G y G g Go Gy

Gn+1 Gn Gn —1 G1 GO G1

(54)

III. EIGENVALUES FOR TWO IMPURITIES

Consider, in addition to the erst impurity at site 2, a
second identical impurity at the site N+2&5. Thus
n —1 is the number of intervening host spins. The.
perturbed Hamiltonian then becomes

0

0,

1 2 3 ~ ~ ~ x+1 n+2 m+3

26

X1——2JS

26

&3 I+)

(e—1 I+)

(nI+)

(55)

(52) ,(m+1 I 0),
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2.5—
where

Xo———2JES'+Q el, (alta'+ ', )-—4J'(S')52"

and
-4J'(s )s ,'* (60)

X~= —2 (25/X) '~'J'52t gy~ exp( i—k2a) al, t

+c.c. 2(25/—E) '~'J'5„+2't P y~ expL —ik(v+2) afaj, t

PINWAVE BA

0.5
2 3

p us~-~siiJs

Fzo. 6. Splitting of p-like mode with two impurities.

where
D (+)D„(—) —0 (56)

D,'+' =1 pI GO G—a~t G—~+a (G.+s+G.-2) j} (&7).

Just as in the case of one impurity we can block-di-
agonalize the eigenvalue matrix by making use of
symmetry operations. Again, the s-like modes are
extremely complicated while the p-like modes are
determined by

+c.c. (61)

Here aA, and al, t are the spin-wave annihilation and
creation operators, respectively, and are related to the
spins S„in the usual manner. The spin-wave energy is
eq=4JSL1 —cos(ka) $ and

yI. ———,
' Q exp(ikba)

8=+1

We shall take the thermal average (5') to be S. Notice
that we are neglecting any effect which the impurity
may have on the original spin-wave spectrum.

%e now apply second-order perturbation theory to
obtain an effective interaction between the impurity
spins, Those terms leading to coupling between the
spins are

For 8& 1 this gives
—2J.g

g&"& (52'-5~2'++52'+S.+2'-), (62)

2 (g9 1)ll2

(~g)
1—L(g~ —1)&12—gy~2yg(g& —1)u2 —gj~

For a given value of p there are two solutions, shown
in Fig. 6 for n=3. The splitting of these two solutions,
68, is shown in Fig. 7 as a function of e. By comparing
Fig. 7 with Fig. 4 we can see that the coupling between
two localized modes appears to depend upon the overlap
of their wave functions.

If the perturbation for p&I were strong enough to
produce an identifiable mode within the band, i.e., a
bump, then we could proceed in the same way to
Qnd the splitting of such a mode and thereby determine
the interaction between in-band modes. However, the
one-dimensional nature of our problem seems to pre-
clude this possibility.

IV. PERTURBA'DON THEORY

It is interesting to compare results with those ob-
tained from a spin-wave scattering approach. Consider
impurities from the single-ion point of view. The
longitudinal part of the exchange interaction between
an impurity and the host produces a molecular Geld,
while the transverse part enables the impurity to emit
or absorb spin waves.

For our one-dimensional chain of E spins, the Hamil-
tonian is given by

X Xo+Xlp

where

45 „+cos'(ka) exp(ikna)

4J'5+ay,
(63)
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I"zo. 7. Mode splitting as a function of impurity separation.

This anisotropic exchange interaction leads to a split-
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FIG. 8. Frequency of p-like local mode in a simple cubic lattice.

ting of the single-ion levels equal to J,gf(n). This
result divers from the Suhl-Nakamura result in two
respects. First of all, since we are dealing with electronic
spins instead of nuclear spins we must retain the impur-
ity spin-Qip energy in the denominator. Secondly, there
is the cos'(ka) factor which arises from the fact that the
impurity spin couples to the host via a nearest-neighbor
exchange interaction instead of a contact interaction.

Converting the sum in J,fq~"& into an integral, the
mode splitting is given in units of 4JS as

($+&)2(3+&) {2+g—L(2+g) 2 —l$'12 I&
Qg —— (64)

4S L(2+ )'—lj"'
where e is defined as

.=(J -~)i~=(l+.) (~&~ ) l-
This result is plotted as the dashed curve in Fig. 7 as a
function of n for S'= S=-', and p=3, 3.5, and 4.

We see that the resul t obtained from a spin-wave
scattering calculation differs appreciably from the
exact solution. Part of this difference undoubtedly
arises from the fact that our exact results apply to a
p-like localized mode whereas an s-like mode calculation
provides a more appropriate comparison with the
scattering theory. Nevertheless, we feel that our exact
determination of the impurity coupling illustrates that
bound states, which scattering theory neglects, are very
important;

V. SIMPLE CUBIC LATTICE

An impurity spin in a simple cubic Heisenberg ferro-
magnet gives rise to a 7)&7 perturbation matrix. This

to-i—

Io 2—

b,

I 2JS

lO 4—

FjG. 9. The p-like mode splitting for the simple cubic lattice.

factors into two s-like modes, three p-like modes, and
two d-like modes. An analytic representation for the
eigenvalues of any of these modes analogous to Eq. (32)
is not possible since the three-dimensional Greens
function is an integral over three Bessel functions. The
numerical results for the triply degenerate p-like mode
are shown in Fig. 8. Again we notice that as the mode
moves away from the spin-wave band, its frequency
approaches the Ising result for a spin deviation at a
site adjacent to the impurity.

If we now add a second impurity separated by e
lattice spacings along, say, the x axis, then the p, mode
splits. This splitting as a function of e is shown by the
solid curves in Fig. 9. We see that the mode splitting
decreases very rapidly as the mode moves away from
the spin-wave band. The dashed curves in Fig. 9 are
the results of a perturbation calculation analogous to
the one-dimensional calculation described in Sec. IV.
Again we see that the neglect of bound states gives
results which diGer appreciably from the exact results
as the modes move away from the band.


